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Interconnect evaluation via simulation answers system
design questions that are difficult or impossible to
answer on an existing, live production system

• Test designs before full expense of procurement/implementation

— Performance of new topologies or routing algorithms

— Value of switch architectures provided by different vendors

• Test system configurations without interrupting production system

— Reconfigure network routing tables or QoS

— Placement or allocation strategies

• Controlled environment to isolate individual design parameters

— Sometimes difficult to isolate exact causes of performance in real system

— More easily control aspects like job placement
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The session today should focus on expressing
capabilities to and collecting requirements from facilities
and other interested customers

• Introduction to simulator capabilities
— Done through brief descriptions of some previous milestones

• Questions and insights from facilities representatives

• Discussion
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Previous milestones show range and type of questions
being addressed

• Milestone #1 (Q3 2018): Topology + routing design space survey

• Milestone #2 (Q4 2018): Analysis and sensitivity to interconnect
interference for A21

• Milestone #3 (Q2 2019): Detailed performance counter validation on
production systems

• Milestone #4 (Q4 2019): Ability of simple QoS strategies for
alleviating multi-job interference
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Simulator Capabilities from Milestone #1: General
topology and routing study SST-Macro
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Simulator Capabilities from Milestone #2: Sensitivity of
A21 interconnect to interference

• 8,448 node Dragonfly+ (a.k.a. Megafly) network

• Two service levels with bandwidth capping on fixed time
interval

• SWMs to represent application patterns

• Nekbone

• LAMMPS

• Nearest Neighbor (NN)

• Synthetic background traffic
(e.g., uniform random)

• Two QoS scenarios

• Priority to a single, latency-sensitive app

• Priority to collective communication
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Dragonfly+ architecture: 2-level fat trees
for local group connections, many
options for spine connectivity.



Prioritizing a select application
(QoS-I)
• Prioritizing traffic from Nekbone (2,197 ranks)
— Communication intensive and collective
heavy

— Given 70% of bandwidth as cap

• Uniform random background traffic on
remaining ranks
— Vary intensity as a percentage of link
bandwidth

Traffic differentiation with bandwidth
shaping and prioritization can mitigate
variability while causing minimal slowdown
to background traffic.
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Prioritizing latency-sensitive
operations (QoS-II)
• Again examining Nekbone (2,197 ranks)
— Given 10% of bandwidth as cap, only for
collectives

• Uniform random background traffic on
remaining ranks
— Vary intensity as a percentage of link
bandwidth

Traffic differentiation focused on collectives
can bring up to 60% speed up in
communication time with collective-
intensive applications such as Nekbone,
with a modest bandwidth allocation.
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Multiple applications running in parallel

Max Communication Times with Varying QoS Settings
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• 3 SWMs in parallel:
— Nekbone (2,197 nodes)
— Nearest Neighbor (2,197 nodes)
— LAMMPS (2,048 nodes)
— Nekbone is most comm. intensive

• Baseline: Single SWM in isolation

• Multi-QoS-I: Prioritizing Nekbone
and guaranteeing 1/3 BW

• Multi-QoS-II: Prioritizing collectives

Adding bandwidth cap on
Nekbone helps improve the
performance of other skeleton
applications as well.
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Simulator Capabilities #4: Effectiveness of simple QoS
strategies to alleviate interference effects

4 Topologies
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For each milestone, goal is broad survey
over the interconnect design space covers
different workloads and scales
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Subcom heavily affected by halo background
traffic, QoS smooths performance
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QoS not only helps with fair BW sharing, but also
seems to improve congestion outliers
1e13 Background = halo3d

Outlier tail improved
with QoS

QoS BW Sharing
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Where are simulations needed

• Broadly speaking if we can study and adjust a parameter on a real
system after delivery, simulation is less important.
— However, simulation may be able to whittle down a large parameter space to
the most important parameters to study on a live system

• If we need design or architectural insights that are hard to change in
place we need to invest in simulation/models.
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What network simulation can help facilities with today

• Understanding bandwidth provisioning (particularly for new
topologies)
- lots of experience with dragonfly topologies, but no experience with MegaFly

or HyperX

— In some cases we don't have extra switches or cable ports available to
expand the system if not designed in early

• Resilience studies: how are different topologies and routing
strategies performing under link failures?
— impractical to study this on production systems (has been done at the end of
system life), but easy to simulate

— this information could help influence the overall architecture we choose
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Where simulators need additional development

• Tying into network endpoints: complex hierarchies of memory and
accelerators make end-point simulation difficult to incorporate (e.g.
kernel launch/synchronization overheads b/n GPU communication)

• Provisioning the right number of NICs for a specific CPU/Accelerator
and network topology

• Do accelerators drastically change the communication patterns of our
motifs and traces that we are using today?
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Simulation Use Cases

• Use cases
— Optimal network operating parameters

• QoS/Traffic classes configuration

• Routing biases

— Feature interplay

• Congestion management, routing and QoS

— System design decisions

• E.g.: How much injection bandwidth is good enough?

• Simulation is the only way (most of the times) to study these

— No hardware available

— Too costly or not feasible to evaluate on real machines
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Where do we go from here

• Where things could be improved
— Fidelity of the simulations

• Representation of the real application characteristics

- Often missing computation component and communication-computation overlap aspect

• Validation against the real systems

— Translation of simulation observations into actionable insights useful for real
systems

• Scale issues
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High-level Simulation Use Cases

• Machine configuration decisions

• Non-Recurring Engineering (NRE) Engagements

• Co-design and Pre-RFP Discussions

23 Exascale Computing Project E
EXRSCRLE
COMPUTING
PROJECT



Detailed Questions Simulations Can Help With

• How job placement and task mapping impact performance and how
sensitive a given network is to these factors? Are there cases when
the next job should not be scheduled to help defragment a system?

• What application or system level data can we measure to help us
understand how well the network is performing? For example, switch
counters, link utilization, etc.

• What the tradeoffs of configuring the network are to applications? For
example, tapering, global links, etc.
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Current Issues With Using Simulators for Our Work

• Hard to understand their accuracy/error bars

• Have not been shown to be predictive onto future networks

• Validation is often not through or well documented

• Need to have someone on the simulator project to perform work fast
enough
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