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2 Modeling and Simulation

Enormous progress in computational
mechanics over the past 3 decades.

Computer architectures

Geometric details

Scalable algorithms

Multiphysics simulation codes

Physics in computational models

Solving previously intractable problems
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3 Material Behavior

• Understanding and modeling material behavior is at the core of solid
mechanics simulations
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4 Motivation

A family of yield surfaces implemented in Sierra/SolidMechanics provides
the basis for a flexible and reliable family of plasticity models
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5 Return Mapping
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6 Return Mapping Algorithm — Testing
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7 Performance ofYield Surface Models

does not converge

Newton-Raphson
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8 Verification

"The process of verification assesses the fidelity of the computational model
to the mathematical model." *

Four approaches:
• Analytical Solutions - difficult to find

• Method of Manufactured Solutions - forcing function depends on material
model

• Numerical Benchmark Solutions - semi-analytical, code-to-code

• Consistency Tests - "complementary to the other types of algorithm tests"

"With the ever-increasing complexity in CSM [computational solid mechanics]
models, especially constitutive models, the task of verification becomes
more difficult because of a lack of relevant analytical solutions." *

* Guide for Verification and Validation in Computational Solid Mechanics - ASME VEtV 10-2006 (reaffirmed 2016)



9 Verification

• Method of Manufactured Solutions (MMS)

• Standard and effective method for verification of solid mechanics codes

• Difficult to use for nonlinear, path dependent material models
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10 Verification

• Material Point Driver (MPD)

• Code that exercises only the material model
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11 Verification

• Use a Sierra/SolidMechanics as MPD
• Find a solution you can quantify
• Carefully construct boundary/initial conditions
• Document and peer review

• Derive stress/strain paths to get the "correct" result
• Strain paths

• Uniaxial strain
• Simple shear
• Pure shear

• Stress paths
• Uniaxial stress
• Pure shear
• Biaxial stress



12 Uniaxial Stress — Rate Dependent Plasticity

an / 0 aij = 0 otherwise

Ut =

X2

I
►

drive boundary condition with plastic strain rate

hardening model initial condition

a" (09 (t))  00 
ul (t) [exp EP (t) 1 L

E0(a) 111 /f
yield surface

= aygW)

rate dependent multiplier



1 13 Uniaxial Stress

a- = [a-y+ A (1 - exp(-be))]g(M

g(P3) = 1+ sinh-1 [(-13)11m1
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14 Lateral Strains for Anisotropy
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15 Pure Shear
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16 Pure Shear

Hosford (isotropic)
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17 Conclusions

• Constitutive models that are used in modeling and simulation to
support decision making require extensive verification and testing

• Verification is difficult
• Show that a model is not verified
• Test the algorithm -> test the implementation

• Test to fail
• Avoid positive reinforcement

• Get it right, then make it fast

• Generate a lot of results

• Documentation and peer review


