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ABSTRACT

Uncertainty quantification (UQ) is the process of identify-
ing how uncertainty in inputs to a simulation propagate to un-
certainty in outputs from that simulation. When a simulation
is computationally intensive, a surrogate function is commonly
used to serve as a proxy for that simulation, making it feasible
to combine results from the simulation and surrogate function to
efficiently sample from the simulation many times. There exist
many methods to construct surrogate functions for simulations
of physical systems (e.g., computational fluid dynamics), but ap-
plications to cyber-based experiments are less understood. We
explore the suitability of various surrogate functions against a
cyber-physical emulation and simulation of a pressurized wa-
ter reactor (PWR) that is subjected to various cyber-focused dis-
ruptions. Specifically, malicious traffic is injected to heater and
sprayer actuators, and it is determined from the model whether
pressure exceeds a critical threshold within the period of the dis-
ruption. We assume that which actuators are targeted and values
injected to targeted actuators are uncertain, random variables
following specified distributions. We investigate the performance
of traditional surrogate function formulations (e.g., polynomial
chaos expansions and Gaussian processes) and find that the as-
sumption of conditional determinism of outputs in these methods
is violated in our cyber experiments. We then develop a Gaus-
sian process model that accounts for measurement error and fit it
to the binary outcome of whether the critical pressure threshold
was crossed using a limited number of simulations. Using this
surrogate function, we identify effects of input parameters and
determine which variables drive higher frequency of undesirable
outcomes. Finally, using specified distributions of input parame-
ters and the surrogate function, we derive an overall probability
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that the pressure will exceed the critical threshold in a disruption
scenario.

Sandia National Laboratories is managed and operated by
NTESS under DOE NNSA contract DE-NA0003525.

1 INTRODUCTION
Cyber-experimental systems, such as virtual machine

testbeds and discrete event simulations, are used to assess sys-
tem responses to changing conditions in a carefully controlled
manner. In reality, experimentation on live systems is often in-
feasible because it can disrupt the operations the cyber systems
are intended to perform, so experimentation in emulation and/or
simulation domains allows an analyst to explore scenarios in a
safe, offline environment.

When a cyber experimentation framework is used to eval-
uate high consequence systems, the analyst needs rigorous ex-
perimental approaches that are repeatable and account for uncer-
tainty. Uncertain inputs that represent environmental conditions,
configurations, or threats will lead to uncertainty in cyber system
responses such as connectivity, available bandwidth, or physical
effects (for cyber-physical systems). Assessing how these un-
certain model inputs propagate to system responses allows the
analyst and decision maker to understand these uncertainties, de-
termine which uncertainties are important, and make better deci-
sions about system design and cyber security mitigations.

This study assesses the cyber-physical response of a hypo-
thetical pressurized water reactor (PWR) system under cyber at-
tack. It accounts for uncertainty in the attack details (i.e., in-
put values for heater and sprayer actuators) and their effects
on a response of interest (i.e., differential pressure). Because
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emulation-based experiments run in real time, replicated exper-
iments are time intensive, so this study also evaluates surrogate
functions that can be effectively used to efficiently compute repli-
cate results with statistics that best match those generated by an
emulation-based model.

This paper describes the UQ experimental processes for this
scenario and results. Section 2 provides background on UQ in
general, the use of surrogate functions to represent cyber sys-
tems, and emulation-based testbeds for conducting high-fidelity
experiments. Section 3 provides additional background on surro-
gate functions, including the selection of a specific class of sur-
rogate functions (Gaussian Processes) to model cyber systems.
Section 4 describes the PWR application, the cyber model, using
GP to model the system, and results. Limitations and extensions
of the analysis are covered in Section 5. Concluding remarks are
offered in Section 6.

2 BACKGROUND
2.1 UNCERTAINTY QUANTIFICATION

Uncertainty is inherent in the modeling process and can arise
from an array of sources. There can be uncertainty in inputs to
the model, parameters of the model, or even the very form of the
model itself. While a chief concern in modeling is to produce un-
biased predictions of outcomes, it is often also important to prop-
erly quantify uncertainty in predictions from whatever sources it
may arise. Broadly, uncertainty quantification (UQ) focuses on
identifying key sources of uncertainty and determining how that
uncertainty propagates through a system or model to ultimate
outcomes of interest.

Berger and Smith describe a framework to consider various
sources of uncertainty [1]. They consider a real process that de-
pends on inputs x, where the output of that process is given by
yR (x). High-fidelity computational models are used to simulate
or emulate the real process to produce predictions of output, de-
noted yA I (x; cp , Pq,), where cp is the form of the model and PT
are parameters of the model. The form and parameters of that
computational model are trained using observations of outputs,
denoted y° (x) = c (yR (x), E), where E is noise and c is a func-
tion applying noise to the deterministic output yl? (x). Finally,
for computationally-intensive models, a surrogate function, de-
scribed in the following section, may be used to approximate the
computational model. Thus, uncertainty about the true output
can arise from the following sources.

1. Uncertainty due to observational noise, E.
2. Uncertainty about the form (I) and parameters Pep of the com-

putational model and thus whether ym is unbiased for yR .
This uncertainty arises due to observational noise, among
other factors.

3. Uncertainty about whether the surrogate function accurately
describes the computational model.

4. Uncertainty about the values of inputs x, which contributes

to the distribution of outcomes.

UQ analyses aim to measure the effect of some or all of these
sources of uncertainty on output of the real process. Depend-
ing on the focus of the study and nature of the process, some
potential sources of uncertainty may be excluded. Ultimately, a
UQ analysis will propagate relevant uncertainties to produce a
description of the distribution of outcomes.

Under relatively restrictive assumptions, it may be possible
to arrive at closed-form solutions for outcome distributions; how-
ever, doing so is frequently intractable for most realistic scenar-
ios. As a result, approximate methods like Monte Carlo (MC)
analysis are frequently employed to propagate uncertainties and
form an approximation of output distributions [2]. For each of a
specified number of iterations, inputs and parameters are drawn
from their respective distributions and fed through the model or
system, and outputs are subsequently recorded. By repeating this
process many times, it is possible to form an approximate output
distribution.

2.2 SURROGATE FUNCTIONS
UQ analyses have traditionally been applied to physics-

based or other similarly computationally-intensive simulations.
In such scenarios, evaluating the model for a given set of inputs
and parameters may take an appreciable amount of time, and it
may be infeasible to evaluate the model over enough repetitions
to form an adequate description of the output distribution. A
frequently-used, computationally-feasible alternative is to create
a relatively simple function that can approximate the distribution
of outputs given the distribution of inputs [3]. Observed outputs
from a limited number of actual simulation evaluations can be
used to build these surrogate functions, which can then be called
many times to efficiently build a more complete output distribu-
tion.

Broadly, surrogate functions can take on one of a few forms
to address specific analysis goals, listed below. We denote ran-
dom inputs to the simulation with X and possibly random outputs
from the simulation with Y.

1. A possibly random function f with the property that the dis-
tribution of f (X) is approximately the same as the distribu-
tion of Y.

2. A deterministic function g with the property that g (x) is ap-
proximately the same as E[Y Ix] for all x in the range of X .

3. A necessarily random function h with the property that the
distribution of h(x) is approximately the same as the distri-
bution of Y lx for each x in the range of X .

Historically, surrogate functions were used with
computationally-intensive deterministic simulations. In
this application, the surrogate function would be trained on
output from a small number of simulations using various input
conditions and then used to predict output for other input
values. Thus, surrogate functions have traditionally focused
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on producing unbiased predictions, as in (2) above, with the
possibility of also estimating uncertainty in those predictions [1].
Many surrogate functions have been developed to address this
type of problem, including traditional Gaussian process models,
regression splines, neural networks, and many others. In addi-
tion, some methods developed primarily to address (1) above,
such as polynomial chaos expansion, can also produce unbiased
estimates of the conditional mean of output, as in (2). Surrogate
functions of form (2) are also especially useful in explaining
how changes in inputs affect mean values of outputs, offering a
means to, for example, select input values to optimize outputs.

There has been significant research in developing methods
to validate surrogate functions and select which type of function
is most appropriate for a given application [4]. These methods
tend to use split-sample validation and loss functions that are fo-
cused on accuracy of mean predictions, such as mean squared
error. As a result, many existing validation and selection meth-
ods tend to be best suited towards to surrogate functions of form
(2). Other methods make use of statistical tests of distributional
similarity, such as the Kolmogorov-Smirnov test, and are well-
suited to determining the performance of surrogates of form (1).

Surrogate functions of form (3) have not been developed and
utilized to the same degree as those of forms (1) and (2), poten-
tially due to computational complexity and lesser need for such
detailed results [5]. However, surrogate functions of form (3) can
be very powerful; they are able to accomplish the goals of forms
(1) and (2) by construction and can offer insights on how mean,
variance, and higher moments of outputs are affected by changes
in inputs. Many surrogate functions of form (2) are readily able
to be extended to produce distributional predictions rather than
point predictions. For example, under the assumption of condi-
tional normality of outputs, predictions from linear regressions
are asymptotically normal; also, input uncertainty can be prop-
agated through Gaussian process models account for measure-
ment error, as described in the following section. Further, frame-
works to validate and select surrogate functions can be also be
applicable to functions of form (3) by choosing an appropriate
loss function, such as likelihood-based losses.

This research investigates a Gaussian process model that has
been extended to produce predictions of distributions rather than
point predictions. While we qualitatively judge the performance
of this surrogate, we do not carry out formal validation nor do
we investigate other surrogate functions. However, this research
can be readily extended to more thoroughly consider surrogate
functions of form (3).

2.3 EMULATION AND VIRTUAL TESTBEDS
Cyber experimentation can be performed on live systems,

emulated virtual machine testbeds, and/or using discrete event
simulators. Live system experimentation is often used when de-
tails about the system hardware and software are highly relevant
to the results that are produced (i.e., high hardware and software

fidelity). However, experimentation on the live system is expen-
sive and doesn't scale well (due to hardware costs), and runs the
risk of impacting the functions it is intended to perform.

ACTUAL SYSTEM VIRTUALIZED TESTBED

Interoperabilityin a sing,e exPe.nent

Ded.mcIFM•My.
InagesedScaladky

SIMULATION

TESTBED

SIMULATED

REAL HARDWARE
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FIGURE 1: Spectrum of Cyber Experimentation Approaches

Simulation (using a discrete event simulator such as ns31)
is a software-based experimentation approach that uses software
models to represent hardware and software functions such as net-
work interfaces, applications, and network protocol stacks. They
are lightweight software models, so they scale very well and are
inexpensive to deploy. However, hardware and software details
are abstracted, so depending on the experimental question and
amount of effort invested in developing these models, their level
of fidelity can vary (but is always lower than live system testing).

Emulation-based testing, using virtual machine technologies
such as QEMU and tools to design and orchestrate experiments,
provide a compromise between fidelity and scalability. With vir-
tual machine environments, hardware platforms are abstracted
into the virtual machine hypervisor, however the operating sys-
tems and application software that runs in these virtual machines
is the same software that runs on physical machines. Therefore,
one can expect high fidelity in software, and reduced fidelity in
hardware.

Cyber experiments can also use a combination of emulation,
simulation, and "hardware in the loop" if an experiment requires
a degree of scalability as well as hardware realism. In the sce-
nario described here, a combination of emulation and simulation
is used - emulation to model cyber components (hosts, switches,
routers, and industrial control devices), and simulation is used to
model the PWR processes. Emulation is an appropriate selection
for the cyber components because the experimental questions are
relevant to software processes (networking, control processes,
applications, and attacker actions). Simulation is appropriate for
the PWR processes because they can be expressed mathemati-
cally and have been independently validated as representative of
the actual system.

1https://www.nsnamorg
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3 SURROGATE FUNCTIONS, GAUSSIAN PRO-
CESSES, AND RANDOM OUTCOMES
As mentioned previously, surrogate functions were initially

developed as a proxy for computationally-intensive determinis-
tic simulations. In that paradigm, researchers evaluate the simu-
lation a limited number of times using various input conditions,
then use recorded output from those evaluations to fit a surrogate
function that can be used to predict or otherwise generate output
for different input values. In this section, we will explore the
Gaussian process (GP) surrogate function using example data,
first under the assumption of deterministic outputs then relax-
ing that assumption to allow for observational noise. While this
research only considers GPs, similar formulations could be de-
veloped for other surrogate functions.

For the remainder of this section, we will consider generat-
ing representative output from the function w(x) = sin(x) *x. The
standard GP model, which we use to predict w, has the following
form.

f(x) ̂  N(0, Ke (x))

N(f(x),(Y2IN)

(la)

(lb)

In these equations, 0 and a are parameters of the model and N
represents the number of output observations used to train the
model. Equation (la) represents the prior over values of f (x),
formed using kernel function Ko. A common choice of kernel
function is the normal kernel, also referred to as the exponenti-
ated quadratic kernel. For univariate inputs,2 as in our example,
this kernel function takes the form

1
Ke(x)ii = a2 exp (— — (x )2)

2p2

Vi = 1, ...,N; j = 1, ...,N ,

(2)

where a and p are a positive scalars (contained in the parameter
vector 0) and xi E N is the ith observation of x, of which there are
N total observations. This implies that Ke (x) is an N x N positive
definite matrix. Finally, eq. (lb) relates observations of output,
y, to their predicted values, f (x).

Traditionally, the parameters 0 and a have been fit using
maximum likelihood estimation (MLE). Parameter point esti-
mates representing a single realization of the GP are then used
for inference and prediction. Specifically, if one wants to use N*
new input values, contained in the vector x*, to predict output y*,
the following result can be used [6].

y*lx* ,y,x, 0,6 N(A,B), (3)

2A similar formulation can be derived for multivariate inputs using the multi-
variate version of the normal kemel.

where

A = Ko(x*

B = Ko(x*) Ko(x* ,x)E-1 Ko(x* ,x)/ ,

where

(4a)

(4b)

E = Ke (x)+ a2IN. (5)

Using a normal kernel, the kernel functions above are defined as

(6a)

(6b)

(6c)

IC0(x)ii = a2 exp 
2p2 

(x
i 

x)2)
1 

Vi = 1, ...,N; j = 1, ...,N ,

1
Ke(x*)ii = a2 exp 

2p2 
(.4 .7CD2

Yi = 1, ...,N* ; j = 1, ...,N* ,

Ko(x* = a2 exp (— —
2p2 

(x — )2)
1

Vi = 1,...,N*;j =1,...,N.

In the maximum likelihood estimation of the above GP
model, all data points used to train the model will necessarily
be fit exactly so long as each observation of inputs is unique [5].
In other words, since predictions are formed using a single real-
ization of the GP, this model formulation does not accommodate
any kind of measurement error.

As an illustration, five values of x were uniformly sampled
from the interval [0, 10], and values of y = w(x) = x sin(x) were
recorded and used to fit the GP model. Actual values of the func-
tion, points used to fit the GP, mean predictions, and the 95%
confidence interval of predictions are shown in fig. 2. As can be
seen, the model infers zero uncertainty at observed data points,
low uncertainty near observed data, and greatest uncertainty far
from observed data.

This estimation and prediction scheme fails to propagate
uncertainty in parameter estimates, which could be caused by
observational noise, through to uncertainty in predictions. As
a result, this framework is inappropriate when observational
noise may exist. To illustrate, 100 values of x (denoted xi for
i = 1, ..., 100) were uniformly sampled from the interval [0, 10],
and values of yi = w(xi) = sin(xi) * Ei were simulated and
recorded for each i, where Ei iid N(0, 1). Ten of those data
points were randomly selected to train the GP model; the remain-
der were used to illustrate validation of the model. A plot of the
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FIGURE 2: Traditional GP Fit to Deterministic Outcomes

expected value of w, all simulated data points, mean predictions,
and the 95% confidence interval of predictions is shown in fig. 3.
From this plot, it is clear that the traditional GP predictions have
a tendency to overfit the data and can severely underestimate un-
certainty, especially near observed data points.

It can be very difficult to analytically propagate uncertainty
through a GP model in a classical estimation framework due to
non-linearities in the model. Bayesian estimation of a GP, on the
other hand, utilizes Monte Carlo methods that make propagation
of parameter uncertainty more feasible at the cost of being more
computationally expensive. In addition to the model specifica-
tion above, a Bayesian framework additionally requires specifi-
cation of prior distributions over the parameters. When there is
little knowledge about likely parameter values, it is best practice
to specify priors that are diffuse to avoid influencing ultimate
results. Gelman advocates using a half-Cauchy prior for param-
eters related to variance, such as a, p, and c in our model [7].
For this illustration, we use the following priors:

a — Cauchy+ (0,10) (7a)

p2 Cauchy+ (0,10) (7b)

o- — Cauchy+ (0,10). (7c)

We fit this model by sampling from parameters' posterior
distributions utilizing the Stan platform [8]. Predictions are then

0.0 2.5

Line — Estimated — True

5.0 7.5

FIGURE 3: Traditional GP Fit to Random Outcomes

10.0

formed using eq. (3) through eq. (6c) for each parameter sample.
When predictions using each parameter sample are combined, an
approximate posterior distribution of predictions is formed that
includes both uncertainty due to missing information about w
and uncertainty about parameter values caused by observational
noise. As a final illustration, the GP model was fit again using
the same training and validation data used in fig. 3, this time un-
der the Bayesian framework. A plot of the expected value of w,
all simulated data points, mean predictions, and the 95% con-
fidence interval of predictions is shown in fig. 4. It is clear that
the Bayesian formulation more properly quantifies uncertainty of
predictions and doesn't suffer from the same degree of overfitting
compared to the traditional GP formulation when observational
noise is present.

4 NUCLEAR POWER PLANT APPLICATION
The system described here is a hypothetical cyber-controlled

pressurized water reactor (PWR) system. 3 The scenario as-
sumes that an attacker has a presence on a network host, and
has the ability to connect to an actuator and command it with
actuation values to affect the differential pressure in the reactor
system. The experimental question that this model is intended
to answer is: given uncertainty in the actuator values that the

3The models and scenarios are not intended to describe real facilities, attacks,
or malware. They represent hypothetical scenarios and are included only for
illustrative purposes.
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FIGURE 4: Bayesian GP Fit to Random Outcomes
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attacker selects, what is the corresponding uncertainty in 1) the
absolute pressure values, and 2) the time it takes the pressure to
exceed a threshold.

4.1 SYSTEM, IMPLEMENTATION, AND DISRUPTION
As described earlier, the model consists of an emulation-

based model of the system's cyber components, and a numerical
model of the PWR process. The numerical model (implemented
in Simulink) represents a pressurizer, which regulates the pres-
sure in the primary reactor coolant loop of a PWR and consists
of two regions - an upper steam region (a steam "cushioe), and
a lower water region. The upper steam region has a continuous
steam region with discrete water droplets and wall condensate
that fall into the lower water region. Conversely, the lower water
region has a continuous water region with a discrete vapor re-
gion that rises into the vapor region [9] [10] [11] [12]. Attached
to the hot leg of a PWR, the pressurizer is comprised of elec-
tric variable heaters, electric backup heaters, and a spray valve to
dynamically control system pressure. If the pressurizer pressure
control system actuates either the electric heaters or spray valve
the water level in the pressurizer will change. To maintain the
desired water level in the pressurizer the pressurizer level control
system utilizes charging pumps and letdown valves to vary the
water inventory in the reactor coolant system [13].

The emulation-based model for the cyber components,
shown in fig. 5, is comprised of a number of virtual machines that
implement a supervisory control and data acquisition (SCADA)

server, a router, network switches, and remote terminal units
(RTUs) and programmable logic controllers (PLCs) that sense
pressure and actuate a heater and sprayer. These virtual machines
are configured into a network topology and orchestrated using
minimega. 4

ScadaBR

19 31

Switch 2
19,1.100.250

192 168.100.0/24

RTU - Heater Pressure Sensor

192.168.101.41

RTU - Spray Pressure Sensor

192.168.101.42

ROuler

192.168.101.25.

Switch 1

192.168.101.0/24

PZR Heaters

192.160.101.45

192.168.101.46

FIGURE 5: Emulation Model Topology

PZR Heater PL(

192 1613 101 1,

PZR Spray PLC

19/168.101.44

An attacker process runs on the minimega host machine and
injects false heater and sprayer values. This process connects to
the heater and sprayer actuators and creates malicious MODBUS
traffic to send these values to the targeted device(s), as specified
in command line parameters. Exposing these values to the com-
mand line allows an external tool such as DAKOTA [14] to select
these values as part of a systematic series of experiments, such as
uncertainty quantification, optimization, or mapping the system
responses.

Data is collected throughout the experiment. When the ex-
periment is started, baseline data is collected during the first five
minutes, before the attack is started, to allow the system to stabi-
lize. Once the attack is started, it is allowed to proceed for two
minutes. Data is collected during the attack phase as well, and
once the experiment is concluded, analyzed to determine if and
when the pressurizer value crosses the threshold.

4.2 QUANTITIES OF INTEREST AND EMPIRICAL
MODEL

Severe consequences can occur if the differential pressure
of the heater or sprayer exceeds one MPa. This UQ analysis fo-
cused on the probability that differential pressure would exceed
one MPa at any point over a two minute attack conditional on
which actuators are targeted and what values are injected to tar-
geted actuators as a part of the attack. These probabilities could

4https://minimega.org
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be estimated directly by repeatedly running the emulation over
the range of input values. However, as previously mentioned, the
emulation is computationally- and time-intensive, making it dif-
ficult to obtain enough samples to accurately predict outcomes
with adequate fidelity. Surrogate functions provide a method to
efficiently approximate outcomes; however, since the outcomes
of emulation runs are necessarily random, methods must accom-
modate observational noise. We use a variant of the GP model
developed in section 3, adapted to describe binary outcomes
(e.g., whether or not differential pressure exceeds one MPa).

Let X represent a continuously-valued matrix of inputs with
N rows/observations and k columns/variables. Suppose y is a
binary outcome, where y = 1 represents "success" and y = 0 rep-
resents "failure." Then, GP model takes the following form:

a — Cauchy+ (0, 10)

Pi, Cauchy+ (0, 10)

13,j = 0

f (X) ̂ N(0, Kax(X))

y,s, Bernoulli (a-1(f (X))) ,

Vi = 1, ...,k

Vi j

(8a)

(8b)

(8c)

(8d)

(8e)

where P is a k x k positive definite matrix, a-1 is the inverse logit
function, defined by a-1(x) = 1/ (1 + exp(—x)), and Kax (X) is
the multivariate normal kernel, defined by

1
Kax(X)ij = a2 exp (— (Xi — Xj)' 13-1 (Xi — Xj))

Vi = 1, ...,N; j = 1, ...,N,
(9)

where Xi is the ith observation/row of X.
Since which actuators are targeted is not a continuously-

valued variable, it cannot be included into inputs in X. Instead,
we fit a separate GP model for each of three cases: (1) where
the heater actuator is targeted, (2) where the sprayer actuator is
targeted, and (3) where both heater and sprayer actuators are tar-
geted. The input matrix X contains values injected to targeted
actuators. Input data were generated using Latin hypercube sam-
pling as implemented in Dakota, fed to the emulation, and the
time elapsed before the heater or sprayer differential pressure
exceeded one MPa in magnitude (if that event occurred) was re-
turned to Dakota and recorded. A total of 250 samples from the
emulation were used to fit the GP surrogate function; 83 sam-
ples targeted the heater actuator, 83 targeted the sprayer actua-
tor, and 84 targeted both actuators. The binary outcome y was
constructed to take a value of one if the differential pressure of
either heater or sprayer actuators exceeded one MPa within the
two minute attack and a value of zero otherwise.

The GP model was fit using the Stan platform [8] using
1000 warmup iterations and 1000 sampling iterations. Trace

plots were examined to ensure approximate convergence of the
Markov chain to the posterior distribution. Further, initial condi-
tions of the Markov chain were varied to ensure non-reducibility
assumptions were justified. Simulations of predicted values of
f(X*) were generated using eq. (3) for specified input values X* ;
probability that differential pressure would exceed one MPa was
then simulated by passing simulated predictions through the in-
verse logit function. Output of the GP is therefore the distribu-
tion of probabilities that the one MPa threshold would be crossed
conditional on which actuators are targeted and what values are
injected to targeted actuators.

As an exception, there were no simulations targeting only
the heater that resulted in differential pressure exceeding one
MPa. Thus, the posterior of the GP model was very unstable to
the point where the Markov chain had extreme difficulty in con-
vergence. Instead, an alternative formulation that did not depend
on values injected to the heater was used:

p Beta(1, 1)

y Bernoulli (p),

(10a)

(10b)

where Beta(1, 1) is the Beta distribution with shape and rate
equal to one (i.e., the uniform distribution on [0, 1]). The pos-
terior distribution is then given by

p ,-,Beta(s+ 1,f + 1), (11)

where s is the number of successes in the data (i.e., where y = 1)
and f is the number of failures (i.e., where y = 0). In our em-
ulation data where the heater actuator was targeted, s = 0 and
f = 83, so the posterior is given by p Beta(1, 84). This for-
mulation allows for the possibility that p > 0 because we sim-
ply have not observed enough observations for an instance where
y = 1 to occur.

4.3 RESULTS
As mentioned previously, three separate GP surrogate mod-

els were fit to emulation data: one where only the heater actuator
was targeted, one where only the sprayer actuator was targeted,
and one where both heater and sprayer actuators were targeted.
Plots of mean predicted probability of differential pressure ex-
ceeding one MPa in magnitude and 95% interior intervals for
each case are shown in fig. 6, fig. 7, and fig. 8. A few general
conclusions can be drawn from these results. First, the expected
probability of reaching the critical threshold is relatively low for
injected sprayer values below about 40 and quickly becomes very
likely above that level, especially when only the sprayer is tar-
geted.

Second, the probability of differential pressure crossing the
critical threshold is generally higher for injected sprayer values
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less than 40 when both heater and sprayer actuators are targeted
compared to when only the sprayer actuator is targeted.

Finally, predictions from the GP models show some evi-
dence of overfitting, driven in large part by noisiness in the data.
For example, there are several dips in predicted probability of
crossing the critical threshold for sprayer values above about 40
when only the sprayer actuator and when both actuators were
targeted; these dips coincided with samples where differential
pressure did not exceed one MPa, and the GP model inferred
that probability of crossing that threshold must be lower around
those points. There are several methods that could reduce this
overfitting and improve the overall fit of the GP, and some are
detailed in the following subsection.

1.00

a) 0 50

"5

0.00

25 50

Heater value
75

FIGURE 6: Targeting Heater Only

100

As mentioned previously, in addition to providing insight in
how inputs influence outputs, this GP surrogate function can also
be used to propagate input uncertainty through to output uncer-
tainty. We assume a design basis threat that targets the heater
actuator with probability 1/3, the sprayer actuator with probabil-
ity 1/3, and both actuators with probability 1/3. We also assume
values injected to targeted actuators are uniformly distributed be-
tween 0 and 100. Under these assumptions, we estimated the
unconditional probability of the critical threshold being crossed.
First, the probability of differential pressure exceeding one MPa
conditional on the actuator targeted was estimated by drawing
1000 values to inject to targeted actuators from their respec-

1 . 0 0 -

c

co 0 50 •

o

0.00 -

1.00 -

0.75 -
_c

c

vo 0 50 -

o

0.25-
_a
o

0.00

0

0

25 50

Sprayer value
75

FIGURE 7: Targeting Sprayer Only
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tive distributions, simulating probability of crossing the thresh-
old from the above GP models, and finding the mean of those
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simulated values. Resulting estimated probabilities are shown
between the second and third layers of fig. 9. Unconditional
probabilities were then formed by taking the average of con-
ditional probabilities weighted by the probability each actuator
would be targeted. Overall, we found the unconditional proba-
bility differential pressure would exceed one MPa was approxi-
mately 35.7%.

(Heater

lIreshold
crossed

Cumulative
probability:
35.7%

,i

Heater
and

sprayer

Threshold
not

crossed

Cumulative
probability:
64.3%

FIGURE 9: UQ Probability Tree

Using a surrogate function provides dramatically lower
computational cost per sample compared to running the emu-
lation. Each iteration of the emulation required five minutes to
stabilize, two minutes to run the attack, and some additional time
to create, start, and clean up the experiment, for a total of at least
seven minutes per iteration. In contrast, on a desktop PC with a
3.5GHz processor, each evaluation of the GP takes less than 0.7
seconds on average. Given the noisiness of emulation outcomes,
many iterations are required to achieve acceptably precise esti-

9

mates; the use of the GP surrogate function for this application
makes it feasible to obtain these estimates and characterize the
noisiness of outcomes.

4.4 EXTENSIONS

The research presented in this paper presents a potential
starting point to performing robust UQ on cyber-dependent ICS
emulation experiments. However, there are several avenues of
research to be explored that can further strengthen this analysis.
First, as noted in the previous section, the GP model used in this
paper is relatively simple and could certainly be tuned and im-
proved upon to produce better predictions and characterizations
of uncertainty. There are several theoretical concepts that could
be included into the model. For example, one may expect that
the probability of crossing the critical threshold is monotonically
increasing in values injected to the actuators, a constraint that
can be imposed on the GP. Additionally, since values injected to
the heater do not appear to have an effect on the probability of
crossing the critical threshold, one may expect the predictions to
look similar when the sprayer actuator is targeted compared to
when both heater and sprayer actuators are targeted; correlations
in those outcomes could be incorporated into the GP model to
allow for such a relationship.

The sampling method used to select inputs for the train-
ing data was relatively simple and predominantly used to evenly
cover the input space. Instead, a more targeted approach could
be used to reduce uncertainty in GP predictions and more accu-
rately separate uncertainty due to noise in outcomes and uncer-
tainty about function values due to insufficient sampling.

This research examined a binary outcome, which was rela-
tively straightforward to describe in a GP model. Other outcomes
may be real-valued or an otherwise more diverse set of values.
In such cases, it is crucial to accurately describe the distribution
of outcomes conditional on input values. While standard mod-
els typically assume conditional normality of outcomes, our ini-
tial investigations showed outcomes may come from more exotic
distributions, such as Student's t, Cauchy, or other stable distri-
butions. It is clear that correctly specifying the outcome distri-
bution is critical to correctly predict the conditional distribution
of outcomes, but since these distributions also may not satisfy
assumptions of the Central Limit and Gauss-Markov theorems,
standard methods to predict mean outcomes may not be reliable
either.

Finally, this research focused solely on an extended form of
the GP model as a surrogate function; there exist many other
potential candidates that could provide a better description of
outcomes. Future research would include development of these
methods to predict conditional distributions, methods to evaluate
and compare different surrogate functions of this form, and gen-
eral rules or guidelines to select which types of surrogate func-
tions to consider for a given system and outcome.
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5 CONCLUSION

The use of cyber-experimental systems allows for the eval-
uation of vulnerabilities and stability of a real system in a safe
environment. There are frequently many uncertain conditions in
cyber experiments that can affect the ability of the system to re-
spond to a disruption in complex, nonlinear ways. A clear under-
standing and quantification of how these uncertainties propagate
through the system is critical to identifying effective mitigations
and assessing risk.

However, cyber experiments are often computationally-
intensive, thereby complicating the task of propagating uncer-
tainty. The surrogate function approach offers an approximate
solution, where the experiment is evaluated a limited number of
times and a function is trained to predict outcomes. We employ
this approach to examine the vulnerability of a hypothetical pres-
surized water reactor (PWR) system to a hypothetical cyber at-
tack. We include both uncertainty about conditions of the cy-
ber system and details of the attack in our analysis. Due to the
highly volatile nature of outcomes from this experiment, we de-
velop and utilize an extension of the Gaussian process surrogate
function adapted to accommodate noisy outcomes.

We find that the extended Gaussian process surrogate func-
tion is able to characterize uncertainty of outcomes conditional
on simulation inputs as well as identify relationships between at-
tack characteristics and outcomes of interest, which could poten-
tially shed light on effective mitigations. We use these methods
to analyze both the conditional and unconditional uncertainty of
critical outcomes that provide insights on whether the hypothet-
ical cyber attack would be successful. Finally, we identify some
limitations of the Gaussian process surrogate and this analysis as
a whole and consider extensions to improve predictive capabili-
ties and robustness of results.
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