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The Von Neumann Bottleneck

CI)11  Communications Bus Memory

Current Transistors - 10 aJ
40kT Noise Limit - 0.2 aJ

Communications require
orders of magnitude more
energy!
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Cross chip communications - 1 pJ
DRAM Access >10 pJ
Ethernet - lnJ

` 00
• •

•.
••

http://www.bu.e
du/iplfiesearch.html

Processor Layer Photonic Layer

Optical interconnects 100 fJ to 1 pJ



Use Resistive Memories for Local

Computation

.1\Mr° 
• A resistive memory or ReRAM is a

programmable resistor
V = IXR • Apply small voltages allows the conductance

I = G><I7 • 
to be read: l=G XV
Apply large voltages to change the resistance

multiplication

I1 6-MAr•

12

Addition: '41+12

Current

Read Window

r

Write -----"

VRESET
k 

4—  I
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Directly Process in the Memory Itself

V1=x1

V2=x2

V3=X3

V4=X4

NI 
w7/#4 :;t44 :44 :44- 1 1 - 12 - 13 - 14

* A- 21 A A wik.
- 22 - 23 - 24

wik. 
A A

32 - 33 - 34

WI4k A witeet.
42 - 43 - 44

v

1 1 =x 1*VV11 + • • • + x4*VV41
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Analog is efficiently and naturally
able to combine computation and
data access

Effectively, large-scale processing in
memory with a multiplier and adder
at each real-valued memory location
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Crossbars Can Perform Parallel Reads
and Writes

V1=x1 - +

V =

v =

V4—X4 H

W711.1 W14

W21111111 W24

W31
111IN

W34

71
W41

1
W42

1
W43 W44

M columns

xi=0

VI- -÷t
x2=0.33

V >t
A  x3 • =0 66
V  _I I_ >t

ii X4=1

V  J L >t
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yi=0.25 y2=0.5 y3=0.75 y4=1

t=71-1=1-t1=1If=
4,V 4, V 4, v.g.

* williall W14

* W2111111 W24

* witilli w
— 34

*wl
—41

w7
—42

wl
— 4

W
 44

Energy to charge the crossbar is CV2
EaCcx number of RRAMs NxM

E 0(N)<M)



SRAM Arrays Require Charging

Columns Multiple Times

o
z

WL[0]

WL[1]

WL[2]

BL[0] BL[1] BL[2]

M columns
SRAMs must be read one row at a time, charging M columns

Each column wire length is O(N).

Energy = N Rows x M Columns x O(N) wire length
Energy - 0(N2x1V1)

O(N) times worse than a crossbar!
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Need to Use Analog to Efficiently
Discard Precision

V1 X1

V2 X2

V3 X3

V4 X4

Sandia
National
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Sum 1024 8 bit weights X 8 bit inputs:
• Result has 26 bits of information!
• A 26 bit ADC would eliminate any analog advantage!

The sum can be done at full precision in analog, but a
lower precision approximation is needed when digitizing
• i.e. digitize only 8 bits or fewer

To get the highest 8 bits of information, digital would need
to keep a 26 bit intermediate result

Can design an ADC to choose
non uniform values to digitize

Analog Sum

9



The Noise Limited Energy to Read a Crossbar

Column is Independent of Crossbar Size

= G„V

Sandia
National
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Measure N resistors and determine the total output
current with some signal to noise ratio (SNR)*

What is the minimum energy?

 1\AA/  1
= GoV Energy = V2 G0 x N x

Af

Thermal Noise = (A/2)

= N x @kJ' x G„x Af)

SNR2 = (NI 0)2Al2)K 

1
 = 4k T x SNR2 x 
Af V2 

1

G0 xN

Power in each resistor x

number of resistors
Determined by

noise and SNR

lf we double the number of resistors, we can double
the speed to get the same energy and SNR.

This is because the noise scales as sqrt(N) while the

signal scales as N

Energy = 4kbT x SNR 2

*we are assuming we need some fixed precision on the output, and don't need full floating point accuracy



Want To Accelerate Many Different

Neural Algorithms

Backpropagation 
Sparse
Coding

Input
Nodes

lit
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Liquid State
Machine

Reservoir
Output
Nodes
(
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Crossbars Can Perform Parallel Reads
and Writes

V1=x1 - +

.0*
V =

v =

V4—X4 H
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yi=0.25 y2=0.5 y3=0.75 y4=1
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Energy to charge the crossbar is CV2
E C oc number of RRAMs NxM

E 0(N)<M)



General Purpose Neural Architecture

Run any neural algorithm on the
same hardware

Bus
7

[Neural Digital
Core(s) Core

Bus

Neural Digital
Core(s) Core

Bus

Router

Bus

Neural
Core(s)

1

Digital
Core

Bus

Neural
Core(s)

1/4_ 

Digital
Core

Bus R

Neuromorphic core: 
• Evaluate vector matrix multiplies along

rows or columns
• Train based on input vectors

positive
weights

D/A

D/A

negative
weights

D/A

A/D

D/A

A/D

A/D

Digital Core: 
• Process neural core inputs/outputs
• For NxN crossbar, the crossbar accelerates

O(N2) operations leaving only O(N) operations
for the digital core



Can Run Neural Networks on this
Architecture

O(N2) O(N)
Operations Operations

Neural Core

z x wij

yi

yj

Digital Core
1

=
1 + e

-z 
'
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Back Propagation

zj

Digital Core

= 
dy
(zi)-Ak

dz

Sada
National
laboratories

O(N2) Read yi O(N) O(N2) Write

Operations Operations Operations



Design & Model Detailed Architecture
Vector Matrix Multiply

Temporal
Coding
Logic

Mesh
Bus

ADC

Row
Drivers Two

1024 x 1024
Crossbars

Rij

Offset
Correction

Integrators

Ramp 7 Comparators

Register 2

Neuron Circuitry

Ri

Cf

Integrating
Cap
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Matrix Vector Multiply Outer product Update

Temporal
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Logic

Mesh
Bus
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Row & Column Driver Circuitry

OneHot

Data In

Load

Polarity

Enable

I TC To Col > 

l Enable TC > 

I Data In > 

Load 

Trigger

Polarity

EnableV
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Row Driver Logic
Bitwise

D Q

EN
A

-D Drive +

N.j 0—D—)
3
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3
/ 
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D Q • 
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8
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Voltage level shifter (drive
high V transistor with low V)

po s

VN EG

Array driver pass transistors

dry+

dry-

• Vp05
• VNEG

STANDBY



Compare Architectures
1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
• Vector Matrix Multiply
• Matrix Vector Multiply
• Outer Product Update

Energy
430 — 6,900X over SRAM
105 

io4

10

102

10°
Ana og Digita SRAM
ReRAM ReRAM

JR.

Latency
35 — 800X over SRAM

Ana
ReR

og Digita S
M ReRAM

Sandia
National
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Area
11 — 20X over SRAM

A a og Digital SRAM
ReRAM ReRAM

8 bit in/out
8 bit weights

4 bit in/out
8 bit weights A

2 bit in/out
8 bit weights

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices
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Neural Core Energy Analysis

Analog
ReRAM

Digital
ReRAM

SRAM

8 bits ln/out
8 bit weights

28 nJ

7,520 nJ

12,010 nJ

4 bits ln/out
8 bit weights

2.7 nJ

5,580 nJ

10,150 nJ

2 bits ln/out
8 bit weights

1.3 nJ

4,340 nJ

8,970 nJ
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-IN

I

•

ADC

Integrator

Array Write

Array Read

Temporal Drivers

Voltage Drivers

Data Movement

11

_-111

IMM

Multiply & Add

Data Movement

Write Memory

Read Memory

r 1

ii

11 IN

I

•

Multiply & Add

Data Movement

Write Memory

Read Memory

Read Transpose



Multiscale Model of a
Neural Training Accelerator

— named
— (145.41 raimanwarlt ,

g. a

4

Digits

t'"
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CROSS SIM
Sandia Cross-Sim:

Translates device measurements and

crossbar circuits to algorithm-level

performance

Vlemristor

Fabrication and

measurements

n MESAFab

DFT of model of oxide

physics, bands

T T T

Target Algorithms

• Deep Learning

• Sparse Coding

• Liquid State

Machines

Algorithms

Architecture

Circuits

Devices

Materials

v,zT

electrolyteAnsulalor

L,C000 ,Co, • OL1+

cathode/channel dreian

yc

In situ TEM of filament switching: Use

DFT model to interpret EELS signature

Neural

Core

Digital

Core

Digital

Core

Fortino 1

Fortuno 2

Fortin. ]

Neural

Core
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ipaill" ale

1111111EIESIEW

Modified McPAT/CACTI:

Model performance and

energy requirements

Sandia's Xyce Circuit Sim: Simulate

crossbar circuits based on our devices

Drift-diffusion model of ReRAM band diagram

& transport (REOS, Charon)

I 10 111
ArnxIi—C*Iftlwar ONO

VTE

a Ta0 Pt
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https://cross-sim.sandia.gov
X

Sandia National Laboratenex ... X +

c Sandia
National
Laboratories CROSS SPil

Crossbar Simulator

CROSS SIM
About CrossSim

CrossSim is a crossbar simulator designed to model resistive memory

crossbars for both neuromorphic computing and (in a future release)

digital memories. It primacies a clean python API so that different

algorithms can be built upon crossbars while modeling realistic device

properties and vanability. The crossbar can be modeled using multiple

fast approximate numerical models including both analytic noise

models as well as experimentally derived lookup tables. A slower. but

more accurate circuit omulation of the desices using the parallel spice

simulator Xyce is also being developed and will be included al a future

release.

Download
Download the user manual here: CrossSim manual udf

Download Crosssim v0.2 here: cross sim-0.2.0.tar 

Download example scripts here: exan

Contact Us
Please email Sapan Agarwal for any questions or if you would like to contribute to the source code: saciarwansandia.scry

Selected Publications Using CrossSim
• S. Agarwal, R. B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. rts Talin, C. D. James, S. J. Plimpton, and M.

J. Marinello, "Achieving Ideal Accuracies in Analog Neuromorphic Computing Using Periodic Carry," in 2017 IEEE

Sinnposium on VLSI Technology Kyoto, Japan, 2017.

Learning
Algorithm

Neural Core I
Simulator

Xyce
Crossbar

Circuit Model

Simple Python API:
1:t a matrix vertnr multinlication

result = neural core.run xbar mvm(vector)

Detailed but
slow

Measured
Devices

30

28

E 26

224
No

.it; 22
z
12 20

t-/o

16
200 4 6 00 1

e Number
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(W11 W12 W13

w21 w22 w23

/4231 32 W33)

Numeric
Crossbar
Simulator
Fast but

approximate

1M 
Algorithmic
Performance

99
TaOx —MNIST

Ideal Nuinerid

Periodic Carry

Single Device

0 10 20 30 40
Training Epoch



Simple API to model crossbars
# ************" set parameters defining the crossbar

params.algorithm_params.weights.sim_type = "XYCE" # Use a XYCE based sim
params.algorithm_params.weights.maximum = 10 # clipping limits
params.algorithm_params.weights.minimum = -10 # clipping limits
params.xyce_parameters.xbardevice.TAHA_A1 = 4e-4 # Xyce Parameters

# ************** API for running neural operations
# All crossbar details are transparent to the user

# Create a neural core object that models a crossbar
neural core = MakeCore(params=params)

neural core.set matrix(weights) # set the initial weights
result = neural core.run xbar vmm(vector) # Do a vector matrix multiply
result = neural core.run xbar mvm(vector) # Do the transpose, a matrix vector mult.
neural core.update_matrix(vectorl ,vector2) # Do an outer product update

Sandia
National
labotatodes
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Go from Measurement to Accuracy
Fabricate
Device

TiN
Ta0), — 10 nm

Ta— 5 n

TiN
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weights
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Experimental Device Nonidealities

• Backprop training: Ideally weight would increase and
decrease linearly proportional to learning rule result

• Key issue in experimental devices: altered the relationship
between intended and actual update: Write Nonlinearity,
Asymmetry, Stochasticity, Read Noise

o0
0

Conductance versus Pulse

= !deal = Write Variability o = Nonlinear

Sandia
National
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0 0 0 0 0 0 0 0 0 2 a •

o 
o
0 

• ° • . w o • •• 
Symmetric and Linear

Asymmetric, Nonlinear
o 41" 0 • •,

4 4 4 _ ,(D0 0
0

Pos. Pulses Neg Pulses o  • • ,.
000nn Cw•>

Pulse Number (Vwrite +1v, tpuise lOns)
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Asymmetric Write Nonlinearity

Causes Weight Decay

0.5

Write Nonlinearity

— •••••
•
•
• Positive
•

Pulses

•
•

• Pulses
•
•
•••••

0 10 20 3 40
ullse N ber
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Alternating Pulses Cause Weight Decay
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Positive Alternating
Pulses Pulses

la 2 0 3 0 4 0 5 0 60 7/0

Pulse Number
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Modeling Device Requirements

Wmax

Wmin

Asymmetric Nonlinearity

Positive Pulses Negative Pulses

0 0.5 1 0.5
Normalized Pulse Number

0

W
e
i
g
h
t
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C
o
n
d
u
c
t
a
n
c
e
)
 Wrnax

Wrnin

0

MNIST

Read Noise a (% Range) 5%

Write Noise a (% Range) 0.4%

Asymmetric Nonlinearity (v) 0.1

Symmetric Nonlinearity (v) 5

Maximum Current 13 nA

Symmetric Nonlinearity

Positiye Pulses Negatiye,Pulses

0.5 1 0.5
Normalized Pulse Number

99

C*3

E 90
c.)
cct.t.)

0
(b) 0.0 0.1 0.2 0.3 0.4

Normalized Sigma (o-wN)

Large Images

0
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A realistic variability approach
Sandia
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• Extended the CrossSim platform to draw upon a library of look up
tables (LUTs)

• LUTs assigned prior to online training and remain constant during it

• Individualized updates -> slowdown (somewhat mitigated)

Old

. ,
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l : :11.11.11
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6.4101,1 g=EVAL,
--
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y 02
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20 24 26
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G;11MN=

_2  
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'i
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'PiG„ 111 71/
3

[]=111/1G1.1

.; "1✓
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Online Updates

—

4111- 4-1- 4-

200 LD ♦

0.8
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-20
0.8

1100

0.6
0.6

0.48
3

•9

40

-60 0.9 8
50

0.2 80 0.2
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Conductance OA)

SET LUT: W31

50 100
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Implications on Neural algorithm accuracies:
Small Digits (OCR Database)

• Loss between uniform and 0.9 -

Good Devices: ̂°4-7%

• Loss between uniform and
all functioning devices
(adaptive): "113-16%

k 4p2 dif
S" 6

%
 C
or

re
ct

 T
e
s
t
 S
e
t
 

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -
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Small Digits: LUT Variability

—0- Numeric

—A— Standard LUT

—ID— Variable LUT: Good

—A— Variable LUT: Adaptive

0 2 4 16 8 10 141

Training Epoch

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Iris Dataset Ill 100 50 4x8x3

I UCI Small Digits[1] 3,823 L797 64x36x10 I
File Types[2] 4,501 900 256x512x9

MNIST Large Digits[3] 60,000 10,000 784x300x10
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Compare Analog Devices

ReRAM

TiN
TaO„ — 10 nm

To— 50 nm

TiN

SONOS
Silicon-Oxygen-

Nitrogen-Oxygen-Silicon

R. B. Jacobs-Gedrim et al., "Impact of
Linearity and Write Noise of Analog
Resistive Memory Devices in a Neural
Algorithm Accelerator," IEEE
International Conference on Rebooting
Computing (ICRC) Washington, DC,

4V

n'tYPePolY

N4 source

too c Ade

slllcon Ittride or cm/WWII:Fe
tArnel a2ide 

ist` drain

Sada
Ildiond
laboratories

Ionic Floating-Gate Memory

S. Agarwal et al. , "Using Floating Gate Memory
to Train Ideal Accuracy Neural Networks," IEEE
Journal of Exploratory Solid-State Computational
Devices and Circuits, 2019

E. J. Fuller et al. , "Parallel programming of an
ionic floating-gate memory array for scalable
neuromorphic computing," Science, vol. 364, no.
6440, pp. 570-574, 2019.
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Three Terminal Devices Tend to

Have Higher Accuracy

ReRAM

5

u, 90

15 85

< 80

75

70  
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1 ea l

1FG
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a0x

10 20 30 40
Training Epoch
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r

c
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-
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SONOS
-11V pulses +10V pulses 

50 100 150 200
Pulse Number

1

170 180 190 200 210 220 230 240
G (<tS)

Ionic Floating-Gate 30



Compare Architectural Advantages
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120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage

10-5
VMM

MVM

OPU

Total

s) Ez
.2) w c c0 w 0 < w < <

1.0-3 0.9

VMM

MVM 0.7
J OPU

0.6
Total

2 in 5 E 115

co 0.4
co

< 0.3

0 2

0.1

0
2 c3)(f) cp 0) 2To To < o 0 0 <

To z To u_ co rY•-- c c wE w 0 < < <

(75 . g(6) go C(3).0
:ED Z Li_ T2 12

° W °Li)

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices



Compare Architectural Advantages:
Vector Matrix Multiply
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National
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120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage

10

VMM

MVM

OPU

Total

To 2 To 2 s3)(8 '2 0 <<  0
u_ ry

'c3) c(i)ow .cc w 
c w
<

10

VMM

MVM

OPU

Total

cmW cm2
< 0 I) 0 <
• coz co w coc
ow c0 c — c• < w < <
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.8

0.7

O.

E 0-5
co 0.4

< 0.3

0.2

0.1

0 I • ■
gr) O Ur r(g) t

562 :5-“Y Z fY

° W ° LI) <

All Analog Vector Matrix Multiply and Matrix Vector Multiply
have same energy and latency
• Entirely dominated by ADC, device properties irrelevant

32



Compare Architectural Advantages:
Outer Product Update

Sandia
National
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120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage

10 10-7

cp o 
• co-)
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c — c
• LL co ct
< <

w

T 2 To
.64 .E3.“2
E (I) E Li)

VMM

MVM

OPU

  Tota I

LD 0 to 0

< (f) <
z co u_

c 0 c —

m w

►

Outer Product Update is device dependent
• SONOS has slow write (-1 ms) and high write voltage (11V)
• IFG and ReRAM write energy negligible compared to VMM
• IFG has extra delay over ReRAM for access device to turn off
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Compare Architectural Advantages:

Area
120-430X Energy Advantage 2-34X Latency Advantage

10-
VMM

MVM

OPU

Total

To Ft g)(8 go g).cTo z To To.21 u_ 
0 c c0 u) 0 < w < <

SONOS area cost
reasonable, roughly

doubles area

To 2 To ,2
<

(:)-)
u) 0 a)

VMM

MVM

OPU

Total E
E

co

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Sandia
National
labotatodes

5-11X Area Advantage

w (3) 2
.2 0/0 

< 

<
CD Z CD

< <C o C-

IFG and ReRAM go over
transistors, area dominated
by ADC and DAC
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Analog Devices Summary for Training

ReRAM

TiN
Ta0x — 10 nm

175W

TiN

SONOS
Silicon-Oxygen-

Nitrogen-Oxygen-Silicon

PciV

ir +AILl rr.0

1 

too eniele

silicon nitrice

D-tkve ON=

Sandia
National
labotatodes

Ionic
Floating-Gate Memory

• Large Energy/Area/Latency • Moderate Energy/Area/Latency • Large Energy/Area/Latency
advantage over digital advantages over digital advantages over digital

• Accuracy not good enough • High Accuracy • High Accuracy
• Back end of line compatible • Commercially available • Not clear how to integrate
• Under commercial •

development
Need to prove endurance and
device to device variability

• Has retention challenges
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Diffusive memristor for write-select, retention
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Wang et. al. Nature Materials 16,

101-108 (2016)
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Retention
dolielpiromelememaimemmoi
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60 — 74  

200 2'0

50 —

immousimmi* 
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Pulse number Pulse nurnber

Y. Li, E. J. Fuller; S. Asapu, S. Agarwal, T. Kurita, J. J. Yang, A. A. Talin, ACS App Mat Int., DOI: 10.1021/acsami.9b14338

(Slide from A. Alec Talin) Center 8300: Chemistry, Combustion and Materials Science



Multi-ReRAM Synapse: Periodic Carry
If we need more bits per synapse, use multiple memristors

• Three 10 level ReRAMs could represent 1-1000!
• Adding to the weight requires reading every
ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 xl

.41% \a Ns*

N. N. '122,.

Neuron

1

• Use >10 levels to represent a base 10 system
• Ignore carry and program the crossbar in parallel.
• Periodically (once every few hundred cycles) read

the ReRAM and perform the carry

;
Extra levels 1 10 levels
store the J represent the
carry ! weight

conductance



Periodic Carry Compensates for Write Noise

1 1/5 1/25 1/125
3

in2.5
0 01°2.0

1 5

1.
-1/5 -1/25 -1/125

-130.5

Read and reset every 100 pulses
Do 300,000 small (0.02% of weight range) updaLus
• net of 1500 positive training pulses

Noise Sigma = 1.4% for single device

• (from anoisel Grange — 0.1VAG Grange )

• Write noise applied during updates and carries

Sandia
National
labotatodes

I I

Periodic
Carry

Single
Device

II

.0 0.5
W ight

Learn from a 0.5% Signal



Periodic Carry Mitigates Write Nonlineari

1.0

0.5

0.

0.5

1.0

Write Nonlinearity

•
•

• •
•
•

_ •
•
•
•

•
•
•
•
•
•
•

0 10 20 30 40
Pu lse Number

Use center linear range of weights

1 1/5 1/25 1/125

Alternating Pulses Cause Weight Decay

10

Positive
Pulses

II I 

10 20 30

itetiff4v,004iitivo,

Alternating
Pulses

40 50 60 10 80

Pulse Number

Single
Device

Periodic
Carry

• Train with 1% signal
• !deal result is 0.6

-1/5 -1/25 -1/125
OA 0 2 0.0 0.2 0.,4

ight



Ta0), Results

1 1 /4 
99 

Ta0x —File Types

N >,
u
oz)

CD 
'5 90
u—1‘. 1

-1 -1 /4

Carry once every
1000 updates

0
0 10 20 30 40

Training Epoch

I I I

- Ideal Numeric :_

Periodic Carry_

ingll Deyice E

Sudo
National
laboratories

Ta0 — MNIST99   x  . 
nIdeal Numec

Periodic Carry

Single Device 
I I IE 

0 10 20 30 40
Training Epoch

A/D and D/A is modeled, Serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)



Summary
Energy Latency

430 — 6,900X over SRAM 35 — 800X over SRAM

105  iL04  

lo4

:101

Analog
ReRAM Re

103 L

102

101

Analo Digital SRAM
ReRAM ReRAM

Area
11 — 20X over SRAM

io4
An
Rel

■
8 bit in/out
8 bit weights

4 bit in/out
8 bit weights I I

2 bit in/out
8 bit weights

• Fundamental O(N) energy scaling advantage

• Use CrossSim to co-design materials to algorithms

• Use periodic carry to overcome noise devices

• Need high resistance 10-100 MO Devices

• Need Iow write nonlinearities

OSSSIM

SRAM

Sandia
National
labotatodes

https://cross-sim.sandia.gov
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Sandia is Hiring!

-12,500 people in
Albuquerque, NM

-1,800 people in
Livermore, CA

Fulfilling Our National Security Mission

Defense Nuclear

Nonproliferation

National Security

Programs

Energy & Homeland

Security

■
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Overcoming the Power Limit

CPU Commun ns Bus

Patio c Emil§ 421 baits

Richard Goering, "Three Die Stack -- A Big Step "Up" for 3D-ICs with TSVs" Cadence blog

v = 444 :foe 4k. .k.
NI w 1 1 - 12 w13 w14

V —
:, 44 1 :44 4$4. 444* - 21 — 22 w23 w24

V =

iNI wTk31 W32 W33
ist.4 .444 w44434

V =

Memory

Sudo
National
laboratories

—41
\/,‘, 444 Ze.
— 42 w43 44

4- 4- 4- 4-

Integrate Processing and Memory



Experimental Device Non-idealities
Sandia
National
labotatodes

Device: Write Variability, Write Nonlinearity, Asymmetry, Read Noise

Circuit: A/D, D/A noise, parasitics

Variability and Nonlinearity Read Noise 

= !dealjo 

= Variability Range
0 = Nonlinear

0 0 0 0 0 0 0 0 o •
. • 4

0 0 O ° O 4 A e.4•
o

o 0 40 • g0
O >

Pulse Number (Vwrite=1V, tpuise=1 Ps)

l +Al

-Al

Time (Vr„d= 1 00 mV)
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Combined Effects of Nonidealities
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File Types Accuracy

Asymmetric, v = 1

Asymmetric, v = 5 Symmetric, v = 5

Read Noise (kaRN) Read Noise (\aRN)
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What are the Neural ReRAM Device

Requirements?

Small
images

Large
images

File
Types

Read Noise cr (% Range) 3% 5% 9%

Write Noise a (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (v) 0.1 0.1 0.1

Symmetric Nonlinearity (v) >20 5 5

Maximum Current 160 nA 13 nA 40 nA

W
e
i
g
h
t
 (
C
o
n
d
u
c
t
a
n
c
e
)
 Wmax

Wmin

Symmetric Nonlinearity

Positiy e Pulses Negative, Pulses

0 0.5 1 0.5
Normalized Pulse Number

0

W
e
i
g
h
t
 (
C
o
n
d
u
c
t
a
n
c
e
)
 Wmax

Wmin

Asymmetric Nonlinearity

0 0.5 1 0.5
Normalized Pulse Number
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Full System Simulation

p ositive
weights

negative
weights Conductance Weight

G max

G max/2

0

Col Output

Row Output

Row Update

-1 to 1

-6 to 6

-1 to 1

-4 to 4

-0.01 to 0.01

Bits

8

8

8

7

W max

0

-W max

0

A/D & D/A Have
Minimal Impact

MNIST

15 20 25 30
Training E

Data set
#Training/Test
Exam • les

Network Size

File Types 4,501 / 900 256x512x9
MNIST 60,000 /10,000 784x300x10



Ta0, Results

1 1 /4

-1 -1 /4

Carry once every 1000 updates
for the LSB, and every 2 updates
on others

99 
Ta0x —File Types

0

I I I

- Ideal Numeric -_

Periodic Carry

ingll D9ice

0 10 20 30 40
Training Epoch

:A§ "j

CI 0.05

i_i 
,- 
,_, 0.3
:..., 0.2

,4:)c" 8:oci _01
-0.3

c. A- 0.05
0.00

99 
T a0x —MNIST

Ideål Numeric

Single Device 
0 E I i i 

0 10 20 30 40
Training Epoch

Weights During Training

i i i i i

\-1

imporio*NotakAthati41

A/D and D/A is modeled, serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to

compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change

0 1 2 3 4 5 6
Update Count (x10,000)

r•nr‘nr•ii-nr rin 1-hci ini-cirrrn+rarl



LISTA Results
Weight

Configuration
(base 7)

x49 x7 xl 
686 _A_ 98 14  

343

0

-343

49 7

0 0

-49 -7

-686 
-v-

-98
-v-

-14

Carry

• Carry once every 1000 updates
• Use a single device per weight and

subtract a reference current

99

u>'
(0 98

U 9 7

96
95

Sandia
National
labotatodes

LISTA - MNIST
.1

Ideal 
l 
Periodic

Numeric Carry
II " eft ri

Singf--d7:81-71etal
"'"

Device w/ A/D
1M=

I I I

0 10 20 30 40
Training Epoch



Neural Core Latency Analysis

8 bit in/out

1.28 ps

Analog ReRAM

4 bit in/out

10%

40%

x0.06   x0.04
0.08 ps

Digital ReRAM
All bit precisions

25% 25%

26% 25%

x1040 1335 ps

--1

I

VMM Read

MVM Read

OPU Write

OPU Read

2 bit in/out

0.054 ps

Sandia
National
laboiatolies

• MI

-

VMM Temporal Driver

VMM ADC

MVM Temporal Driver

MVM ADC

OPU Temporal Driver

OPU = Outer Product Update

Min write time of 8 ns vs
1 ns incremental write

SRAM
All bit precisions

x35 44 ps

SRAM transpose
read expensive

52



Neural Core Area Analysis
8 bits ln/out
8 bit weights

Analog ReRAM

x1

75k pm2

Digital ReRAM

x1.8

137k pm2

SRAM

x11.1
836k pm2

4 bits ln/out
8 bit weights

ReRAM Array
on logic

SRAM Array

2 bits ln/out
8 bit weights

Array
Drivers

Sandia
National
labotatodes

1

L

1

Timed Driver

Row Cache & Control

Voltage Driver

Col Cache & Control

Integrator

Comparator

Routing

ReRAM Array

-

N

Array Drivers

Multiply & Add

Input Buffers

ReRAM Array

NM

SRAM Array

Multiply & Add

Input Buffers

For the ReRAM, high voltage transistors require 8X area, improving this could give -2X area savings
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ReRAM Analog Characterization

6.0x104
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SET

Rise = 12.8 ns
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Modeling Pulsed Cycling
Characteristics

**>

RESET

SET

10 ns

1000 2000

1:100 2
Conductance (10

1,
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20 2' 0

6000

LO
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TaOx ReRAM in Backprop Training

20-

Performance
Gap

Bcp-, f

Ildeall Nunto ic

o 11.101m5210)15
Training E h

Increasing Network Size
—.-

II II 
File Types

Performance
Gap

Training E

20

0 

Performance
Gap

R1101[1l1
101520253035

Training E

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9

MNIST Large Digits[3] 60,000 10,000 784x300x10

CROSS SIM

Sandia
National
labotatodes
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Analog Device Comparison

1 1 11 11 ' 1 '11' 1 1, 1 i,1l 
„

Ta0,

60 100009
Pulse Number PPP

Ag-Chalcogenide ...

211420 40000 60000 80009 100900 120000 140000 160000 1801000 2000
Pulse Number (#)

0.0015

F
—0.0010

oxen -

"TA000

Sandia
National
!Ambles

182000 184000 188000 188000 190000
Pulse Number 000

0.0030

0.0025

8 0.0020

0.0015

0.0010
3 0.0005

0.0000

180000 182000 184000 186000
Pulse Number (#)

0.0020

-g 0.0010 Lainuma kevevo#700...m.

8 
—0.0015

"Wow

181;000 190000

%wow

182000 184000 188000
Pulse Number (it)

188000

• For comparison all devices at 100 ns due to impedance limitation

• Device operation voltages found by increasing amplitude by 0.1 V until switching

occurred — must survive 200,000 nudges so lowest possible voltage used

• Chalcogenide SET = +0.8 V RESET = -0.8V

• Si02-Cu SET = +1.4 V RESET =-1.6 V

• Ta0. SET +1.0 V RESET = -1.0 V

190000



Comparison of Filamentary ReRAM
Sandia
National
labotatodes

• Ta0.-Ta highest training classification accuracy initially

• Analyze effect of noise and nonlinearity on accuracy with
CrossSim

• Nonlinearity is an inherent issue for each filamentary device

Sandia Baseline Ta0.-Ta
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R. Jacobs-Gedrim et al, IEEE-ICRC, 2017

Numeric

Linearized

— No Noise

— No Manipulation
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Li-lon Synaptic Transistor for Analog

Computation (LISTA)

• Alternatively, novel devices may
offer promise

• LISTA: modulate the doping of
Lithium battery cathode

• Resistivity across cathode
changes linearly with battery
charge/discharge

anode/gate

electrolyte/insulator

LiCo 02 Li1,Co2 + xLi+ + xh

 • source cathode/channel drain

vsoT 

L
i
t
h
i
u
m
 I
o
n
 

250

200

E 150

100

50

0

G-V for LISTA

-2
Vc (V)
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500 nm

source

anode/gate
current-collector

electrolyte/insulator

Vlbsolgto, es

cathode/channel Si02 drain

E. Fuller et al, Adv Mater, 2017



Electrochemical Neuromorphic

Organic Device (eNode)
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van de Burgt et al, Nature Mater., 2017
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Electrochemical Neuromorphic
Organic Device (eNode)

b c1.0
2

0.8 0.8

1 0.6 a 0 0.6

0
0.4 -n 4.D

- 1 -
0,4 -11

0.2
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—1 - 0.0 0.0
600 700 800

Conductance (1.6)

File types

0 
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Training Epoch

600 700 800

Conductance (0)

Small digit 5
99 99

UP

0

Large digits

— Exp. derived
— Ideal numeric

10 20 30 40 0 10 20 30 40

Training Epoch

van de Burgt et al, Nature Mater., 2017

Training Epoch


