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Future applications of Neutral Atom quantum
information systems
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AI phase shift: a simple perspective

Use atom to stroboscopically measure lateral
position (optical phase) at three equal-
spaced points in time
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Photon recoil beam splitter
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Light-pulse atom interferometers
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SNL Atom Interferometer Development

Integrated Photonics

Custom vacuum chamber

Cold Atom Sensor Head with Grating-mirror

MOT and Alignment-Free Optical Package

Alignment-free
optical package
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SNL Guided Atom Interferometer
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Stitched images of a tapered optical fiber demonstrating algorithmic pulling
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• ODN = 3.95, OD1= 0.078; absorption measurement with nanofiber probe

• Trapped atom number = 50; Trap lifetime = 30ms
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Quantum metrology of inertial forces with
neutral atom spins

M atte rwave

interferometer (a
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Quantum metrology of inertial forces with
neutral atom spins

Matterwave

interferometer •

GHZ state 
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E. Rasel, Physics 5, 135 (2012)

? optimal states ?
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Neutral atom spins

A

Couple to Rydberg orbitals for entangling
----- 1 interactions—create GHZ state
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Rydberg orbitals

ground

►

valence electron
•

orbital radius a n2

+Core
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An example of the radial wavefunctions of a Cs atom at n = 100:

x10-

...,.,,,,EL,Likitaiiiiilliiiiiiiiq iiiii, ,

loos
1/2

100P
1/2

100Pa/2
100Da/2
100D

E.2

0 2 C1 4 0 6 0 8 1

Radius m)
1.2 1.4 1.6 1.8

12



Interaction between neutral atoms

Valence electron in
Rydberg state

orbital radius a n2

Valence electron in
Rydberg state

• Excite valence electron to Rydberg state—nearly ionized
• Atom becomes highly polarizable—strong interactions
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Interaction between neutral atoms
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• Even the presence of another atom can cause a massive response >> l 0 MHz
• Induced Electric Dipole-Dipole Interaction oc 1 / r
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Entanglement demonstrations
• Madison: Phys. Rev. Lett. 104, 010503 (2010)
• Paris: Phys. Rev. Lett. 104, 010502 (2010)
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Rydberg blockade
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Direct Rydberg —> Rydberg-Dressed
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Rydberg-Dressed Interaction 
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Spin-flip blockade
Verify the entanglement via parity measurements
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Spin-flip blockade
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Experiment hardware

J. Lee, G.B., I.D., et a/.,Phys. Rev. A. 95, 041801(R), (2017) 19



Outlook: large arrays

Spatial light modulator allows
arbitrary patterns

• Large systems > 100

Spatial Light Modulator
(SLM) generates phase
pattern

Averaged over many exposures
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Data and image credit: Michael Martin, Sandia (now at LANL) 20



Path to complex quantum systems

Sequential gate approach 

H
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Generating an entangled state of N atoms
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Progress in entangling neutral atoms

Atom Method Bell fidelity Post selected fidelity Year and reference

H7Rb Blockade, simultaneous addressing (0.46) 0.75 2009 [35]
m7Rb Blockade, separatc addressing (0.48) 0.58 2009 [33]
H7Rb Blockade, separatc addressing 0.58 0.71 2010 [34]
Cs Blockade, separate addressing 0.73 0.79 2015 [10]
Cs Dressing, simultaneous addressing 0.60 0.81 2015 [1 1 ]
R7R b Local spin exchange (0.44) 0.63 2015 [31]

M. Saffman, J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 202001 Now 89% to 97%

(see new results from Harvard and Wisconsin)

Dressed-Rydberg C2ir
approach ENABLES 

Q 
Q 01 ci

this protocol _1 L L 99.5%
fi).„ (77/2){.'r, fix ( (-Tic. /2A(112)

See our new theory work: A. Mitra, G.B., I. Deutsch, Robust Molmer-Sorensen gate for

neutral atoms using rapid adiabatic Rydberg dressing, arXiv:1911.04045 (2019)
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Parazzoli,...,G.B., Phys. Rev. Lett. 109, 230401 (2012)

Matter wave control at the
single atom level
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Building fringe one atom at a time
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• 1 atom per phase through interferometer.

Scan laser phase

Parazzoli, et al., "Observation of free-space single-atom matterwave interference", Phys. Rev. Lett. 109, 230401 (2012) 24



Building fringe one atom at a time
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• 2 atoms per phase through interferometer.

Parazzoli, et al., "Observation of free-space single-atom matterwave interference", Phys. Rev. Lett. 109, 230401 (2012) 25



Building fringe one atom at a time
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Force resolution of a single atom interferometer
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Force resolution of a single atom interferometer
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The Ideal Atom Interferometer

N entangled atoms
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As N grows:

Parity oscillates faster

(11) = COS ON

ON = NK • aT2
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Theory by Constantin Brif

Brandon Ruzic

Sandia National Laboratories
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Imperfect Initial State Preparation

Random initial Uncertainty in

state fraction, initial phase

Analytic result when p a2/2 < 1 Loo -
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Metrological advantage is only linearly sensitive to entanglement imperfection
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Random Doppler Shift

Atoms start in optical tweezers

Initial momentum spread

• Each run randomly samples a
momentum distribution

4 doppler shift
4 detuning error in pulses
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number of
atoms
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Theory by Constantin Brif & Brandon Ruzic

Sandia National Laboratories

5 10

Trap Frequency (kHz)

cx Temperature

50

31



Su m ma ry

• Sandia is a significant player in the development of atom
interferometer technique and instrumentation

• Entangled atom interferometer for > 1000 atoms appears
feasible with our current approach

• Doppler broadening is the dominant limitation

• Phase resolution performance of GHZ state with 100 atoms
is already comparable to typical LPAI results (1 0 mrad/shot)
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