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Future applications of Neutral Atom quantum
information systems
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Al phase shift: a simple perspective
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.51, states behave as a pristine oscillator with phase memory .




Energy

Photon recoil beam splitter
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Store “spin” information in ground states
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Light-pulse atom interferometers
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Stanford atom interferometer gravimeter
Steven Chu, 1990’s

NIST F-1 atomic fountain clock
(credit: NIST website)

Superb gyroscopes and gravity gradiometers
demonstrated as well




SNL Atom Interferometer Development [',S?"ﬂg;f]fﬂa:m

Cold Atom Sensor Head with Grating-mirror
Integrated Photonics MOT and Alignment-Free Optical Package
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Grating-mirror chip

Contact: Jongmin Lee
Peter Schwindt




Sandia
SNL Guided Atom Interferometer @[‘:&L‘Eﬁéﬂﬁ

Raman 2 Contact: Jongmin Lee
937nm Adrian Orozco
685nm Will Kendal

Raran 1 Interferometer concept

Stitched images of a tapered optical fiber demonstrating algorithmic pulling

New direction:
microfabricated
waveguides
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Quantum metrology of inertial forces with

neutral atom spins
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Quantum metrology of inertial forces with
neutral atom spins

Matterwave AVAY. ) — 0
interferometer @ .. ~g TN < > — COS
E. Rasel, Physics 5, 135 (2012) 0 proportional to gravity
GHZ state

b)) = [0)Y + VPN

? optimal states ?

(IT) = cosNO ~ <—— e

F Frowis et al 2014 New J. Phys. 16 083010
Spin-squeezed state

Wineland, et al., PRA 46 (1992)
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Neutral atom spins

Couple to Rydberg orbitals for entangling
interactions—create GHZ state
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Rydberg orbitals

ground

A 4

valence electron

Rydberg

An example of the radial wavefunctions of a Cs atom at n = 100:

Radial wavefunction
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Interaction between neutral atoms

Valence electron in Valence electron in
Rydberg state Rydberg state

orbital radius a n?

* Excite valence electron to Rydberg state—nearly ionized
* Atom becomes highly polarizable—strong interactions
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Interaction between neutral atoms

Parameter scaling

van der Waals
U x nt!

Lifetime

DC polarizability
o (0) xcn’

_________________________

van der Waals interaction

* Even the presence of another atom can cause a massive response >> 10 MHz
g : , 6
* Induced Electric Dipole-Dipole Interaction oc1/7

Entanglement demonstrations
Madison: Phys. Rev. Lett. 104,010503 (2010)
Paris: Phys. Rev. Lett. 104,010502 (2010)
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Rydberg blockade
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Direct Rydberg — Rydberg-Dressed

Rydberg-Dressed Interaction
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Spin-flip blockade
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Verify the entanglement via parity measurements
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Spin-flip blockade

parity (II)
Parity
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Y.-Y. Jau, G.B., I.D., et al., Nature Phys. 12, 71-74 (2016)
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). Lee, G.B., I.D., et al.,Phys. Rev. A. 95, 041801(R), (2017) 19




Outlook: large arrays

Averaged over many exposures

Spatial light modulator allows
arbitrary patterns

Large systems > 100

Ring lattice Triangular lattice
Spatial Light Modulator
(SLM) generates phase lens f Image plane (CCD)
pattern ; ‘|
Rearrange
> . Traps at-will

B (z,y)

Data and image credit: Michael Martin, Sandia (now at LANL) 55




Path to complex quantum systems

Generating an entangled state of N atoms

Sequential gate approach
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1 o) = [0)®N 4 iNe|pyen




Progress in entangling neutral atoms

Atom Method Bell fidelity  Post selected fidelity  Year and reference
®Rb  Blockade, simultaneous addressing (0.46) 0.75 2009 [35]
®Rb  Blockade, separate addressing (0.48) 0.58 2009 [33]
®Rb  Blockade, separate addressing 0.58 0.71 2010 [34]
Cs Blockade, separate addressing 0.73 0.79 2015 [10]
Cs Dressing, simultaneous addressing 0.60 0.81 2015 [11]
Rb  Local spin exchange (0.44) 0.63 2015 [31]

Now 89% to 97%
(see new results from Harvard and Wisconsin)

M. Saffman, J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 202001

Dressed-Rydberg Q 1 | 1

approach ENABLES Q01 " Qo1 r Lo

this protocol ‘ | -/-\ A ‘ | — 99.50
Ry(n/2)Us(r/2)  Ro(m)  Ux(/2)Ry(n/2)

See our new theory work: A. Mitra, ..., G.B., |. Deutsch, Robust Mglmer-S@grensen gate for
neutral atoms using rapid adiabatic Rydberg dressing, arXiv:1911.04045 (2019)
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=] Parazzoli,...,G.B., Phys. Rev. Lett. 109, 230401 (2012)

Matter wave control at the z
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Building fringe one atom at a time

N =1 * 1 atom per phase through interferometer.

Counts

040 O 000 O
Omn 1= 27

\

Scan laser phase

Parazzoli, et al., “Observation of free-space single-atom matterwave interference”, Phys. Rev. Lett. 109, 230401 (2012) 24




Building fringe one atom at a time
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* 2 atoms per phase through interferometer.

Parazzoli, et al., “Observation of free-space single-atom matterwave interference”, Phys. Rev. Lett. 109, 230401 (2012) 25




Building fringe one atom at a time
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Force resolution of a single atom interferometer
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Force resolution of a single atom interferometer
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The Ideal Atom Interferometer

N entangled atoms Pulse sequence Measure Parity
0 /2(¢) N
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As N grows:

Parity oscillates faster

(IT) = cosOpn
Oy = NK - aT?
= N¢

Parity

Theory by Constantin Brif
&
Brandon Ruzic
Sandia National Laboratories
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Imperfect Initial State Preparation

Random initial Uncertainty in
initial phase

state fraction
\ / 2-atom Al with 11.0% state-prep noise

Analytic result when p + 02/2 < 1 oo — el
‘ LA
<H>%(1—p—02/2)COS@N 0.50 - et
2 _ 0.25 A
@N:NKaT :N¢ T 0.001
—0.25 A
Visibility is reduced i
p+02/2 ~ (.11 for two atoms ~0.75 1
—1.00 A

Phase Shift (rad.)

Metrological advantage is only linearly sensitive to entanglement imperfection
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Random Doppler Shift

Atoms start in optical tweezers

Initial momentum spread

e Each run randomly samples a
momentum distribution

- doppler shift

— detuning error in pulses

1000
500
Max. useful -
number of — =
atoms 100
50

Theory by Constantin Brif & Brandon Ruzic
Sandia National Laboratories

P = Pvib & |¢spin> <¢Spin‘

— 1204.62 kHZ / Vigap

© calculations

3

i 10
Trap Frequency (kHz)
x Temperature

50
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Summary

 Sandia is a significant player in the development of atom
interferometer technique and instrumentation

* Entangled atom interferometer for > 1000 atoms appears
feasible with our current approach

* Doppler broadening is the dominant limitation

* Phase resolution performance of GHZ state with 100 atoms
is already comparable to typical LPAI results (10 mrad/shot)



Sandia-OU-UNM Team

.
A

J. Lee, Y-Y. Jau, M. Martin, G.B.

|.Deutsch (UNM)

Not pictured
e Adrian Orozco

* Will Kendal

* Constantin Brif
* Brandon Ruzic

* Peter Schwindt
e Bethany Little

* Matthew Chow : > ,
® Anupam Mitra L. Parazzoli, G. B., A. Hankin, A. Ferdinand, J. Chou, G. Burns

33




