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2 I Quantum Sensors & Metrology

What Makes a Sensor Quantum?’ Quantum metrology [..] uses quantum effects to enhance precision

. beyond that possible through classical approaches. 3
1. Use of a quantum object/system 3 b S pp

2. Use of quantum coherence
3.

Metrologically useful quantum states have a lot in common with those useful for
quantum computing.

« Crucial: tunable interaction between particles?

« High fidelity/low error

* Increase N (# of particles)

Some requirements are different Quantum Metrology with Strongly Interacting Spin Systems

Hengyun Zhou'*, Joonhee Choi'***, Soonwon Choi”, Renate VLandigl, Alexander
M. Douglas!, Junichi Isoya®, Fedor Jelezko®, Shinobu Onoda®, Hitoshi Sumiya’,
Paola Cappellaro®, Helena S. Knowles!, Hongkun Park'® and Mikhail D. Lukin®'

[1] Degen et al.,(2017). Rev Mod Phys, 89(3), 035002; [2] Pezze, et al. (2018) [3] Nature.com



3 | Parameter Estimation with Quantum States

state
“The goal of quantitative experiments in physics is to determine a reparation ' - estimation
set of parameters to some level of confidence.” ! ' ) ‘
Highest confidence corresponds to estimated 6 with the smallest uncertainty A6. (2)
2The lower bound: ].
, 0Qcr =
Quantum Cramer-Rao A/ FQ Quantum Fisher information
bound
If (i.e. Abqger < Absq ): examples:
 sufficient for entanglement Spin-squeezed
» necessary and sufficient for metrologically useful entangled states. GHZ
NOON
In the absence of noise: AQHL — 1/N Heisenberg Limit

1 1
— < A0 < —
NS <

VN

[1] Braunstein, et al. (1996) ; [2] Pezzé, et al. (2018)
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Applications

Laboratory system ’

Precision Fundamental physics:
measurements * Measuring the fine-structure constant

* Measuring the gravitational constant
* Testing the equivalence principle

* Searching for dark matter/energy

Atom Interferometry

* Detecting gravitational waves

e
Metrology:
* Gravity reference for the
. . . . Kibble balance
Atom interferometry 1s a maturing technology with many m
applications
> Most accurate measurement to date of the fine structure constant, Transportable Goophyics:
¢ Monitoring magma flows

\4/—/'\ * Measuring groundwater
* Mapping of tectonic

a=1/137.035999046(27)
- structure

> Low frequency (0.1-10 Hz) gravitational-wave measurements
° Spring-mass gravimeter takes up to 10 min per measurement poing

Autonomous Space:

operation * Fundamental physics
¢ Gravity-based Earth
observation

’ Robust Civil engineering:

tems d * Reducing risk in

Challenggs

“quantum compass”
° Matterwave interferometers are sensitive to

( 0 Force (acceleration)

|22 Selected for a Viewpoint in Physics
PRL 11

Hyl Development of compact cold-atom sensors

inte . ; ; ;
for inertial navigation
Publi
B. Battelier™*, B. Barrett®?, L. Fouché®, L. Chichet?, L. Antoni-Micollier®, H. Port
ez Napolitano®, J. Lautier®’, A. Landragin®, and P. Bouyer®




¢ | Atom Interferometry: History

__Lmeterlong,
g ||| magnetirally

" ln ".lauﬁg.h d'using
; I_'l‘ﬁ'\la_l'g inpldsses

s
e . ot

Stanford atom interferometer gravimeter
Steven Chu, 1990’s

Kasevich & Chu, PRL 1991

NIST F-1 atomic fountain clock

Superb gyroscopes and gravity
gradiometers demonstrated as well



7 | Atom Interferometry: History

[ o S

L meterlong,
| | “magnetirally
|| Swell shaeldeds
foriite

" land'laurichpd'using
¥ I_iﬁ\% nplasses
ey I}

Stanford atom interferometer gravimeter
Steven Chu, 1990’s

Kasevich & Chu, PRL 1991

Wavepacket separation

54 cm

Mark Kasevich, 2010’s

Y

(image credit: Kasevich group website)
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s I Atom Interferometry 101 B;

_________ A
Wavefunction
Counter-propagating beams drive w2 component receives
Raman transitions Wiy % a momentum kick K
- /2 pulse splits the wave function ) |§  from lasers
(spatially separated superposition lweg
of ground states)
o 1 pulse sends back 1
W) = ﬁ(@ + le))

Vo) = Je) /
\ | Rabi O§cillations

0 2 4 6 8 10 12
Time (us)



o I Atom Interferometry 101

Raman beams

. : lgravity
Counter-propagating beams drive 938 nm

Raman transitions laser , dichroic
, , Trapping laser  mirror,.
o /2 pulse splits the wave function
(superposition)

fluorescence

o lse sends back
i fibre-coupled

o /2 recombines/interferes to APD
> Mach-Zehnder equivalent \

wavepacket trajectory

The two paths acquire a phase
difference

o=k (aT?—2(0 x Q)T?)

\V)

Position (um)
N O M

Measure phase by measuring the
atomic state:

APD signal (a.u.)

o

1 0 200 400 600
P|F:3> — 5(1 — COS ¢) Time (ms)

|
|
|
L

Parazzoli,...,G.B., Phys. Rev. Lett. 109, 230401 (2012)



Atom Interferometry 101

Counter-propagating beams drive
Raman transitions

o /2 pulse splits the wave function
(superposition)

o 1 pulse sends back
o /2 recombines/interferes
> Mach-Zehnder equivalent

The two paths acquire a phase
difference

o=k (aT?—2(0 x Q)T?)

Measure phase by measuring the
atomic state:

1
Plp=3) = 5(1 — Cos @)

2 (V)

Force R@s

1; @ 25}

27
10 JEE

dipole traps

W, = 1.2 pm
D
Q.
OOOU%
oOOOq
)OOcD&
“LJDOOO .

3.2x 1027 N % single-atom
interferometer

Meas. #

Parazzoli, et al., Phys. Rev. Lett. 109, 230401 (2012) I



11 I Atom Interferometry: Sensitivity

Measuremlent Limit'/,_gb —K.aT? Going Beyond the SQL
Plp=3) = 9 (1 —cosg); Metrologically useful quantum states? ‘
, write in terms of parity: Entangled state’-2 Spin-squeezed state
(I) = cos™ ¢ [ A
N - N
_ o) % ool
=)ol =R gl —le)leD@ 2
a=1 a=1 IﬁﬁZi "
Uncertainty: _1'0_0 . \(11>*>\(().1f)\p[141‘/\xZ*()Zl;()A()Z é |
Relative phase offset (¢) of n/2 pulse (rad)
Ap = — 21 ) = (0O + e yen
o(1I) /0
‘ < >/ ¢’ XSmaller N vLarge N I
, 1 VHigh fidelity X Low fidelity
minAg = —\/N gj:r?tirri Limit XFragile, but achievable?2
? optimal states ?

[1] Y.-Y. Jau, G.B., I.D., et al., Nat Phys. 12 (2016) ; [2] A. Omran, M.D. Lukin et al., Science 365 (2019); [3] Wineland, et al., PRA 46 (1992)



2 I Atom Interferometry: Sensitivity

I
Measuremlent Limit*/,_qb —K.aT? Going Beyond the SQL
P|F:3> — 5(1 — c089) y Entangled state ‘
write in terms of parity: 1| & A ]
’ |¢>zn - T = |gv pa>a + |67 Po + hK>o¢
(II) = cos™ ¢ V2 o@ gg |
N N N entangled atoms in GHZ state
=)ot = X)(19) (9l —le){el) oy (TI) = cos(N )
a=1 a=1
Uncertainty: A — i Heisenberg |
Ad = AN | N Limit
O(1L) /09| |
min A b = 1 Stardard Next: how to entangle neutral atom spins...
¢ \/ﬁ Quantum Limit |

Y.-Y. Jau, G.B., I.D., et al., Nature Phys. 12, 71-74 (2016)
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14 | Entanglement of Neutral Atom Spins

* _valence electron

Couple to Rydberg orbitals for interactions

ground

Rydberg

An example of the radial wavefunctions of a Cs atom at n = 100:
= X 10'5
o 8 T T T T T T T T I
S 1008, ,
% %‘ . 5 . 1 S - 100P, , |]
3 Q4 ——— 100P,, [
zeo (g 100D,,,
2 |
g o —— 100D,
© ] ] ] 1
o ; 12 14 1.6 18 2

Radius (um)

» Excite valence electron to Rydberg state—nearly ionized
« Atom becomes highly polarizable—strong interactions



15 | Entanglement of Neutral Atom Spins

Rydberg Excitation

§
*R
W

Parameter scaling

-

van der Waals {J mn“
Lifetime T OC T°

DC polarizability o (0) oc n” !
Even the presence of another atom can
cause a massive response >> 10 MHz

Induced Electric Dipole-Dipole Interaction
ocl/7°

Rydberg Dressing
1
[¥) = alg) + Blr)

- Retain interaction while preserving longer
lifetimes

- Blockade effect in dressed eigenstates
o Expected/Measured lifetime: 120 ps?/??

Entanglement demonstrations

« Madison: Phys. Rev. Lett. 104, 010503 (2010)

« Paris: Phys. Rev. Lett. 104, 010502 (2010)

Rydberg Dressing

« Sandia: Y.-Y. Jau, et al., Nat. Phys 12, 71-74 (2016)
« Mitra, et al., arXiv:1911.04045 (2019)

[1] Johnson and Rolston, Phys Rev A 82 (2010)



| Entanglement of Neutral Atom Spins H = Zh@) W4 +Z o @ o)

b c =1 'L#] I
------------ | 0O - e s s e e s e e
J = 1 5
o) | st
o e
10, 02 n —200 - @’ /
S - - i ‘4
V20 2 e
mw ® . / Atoms closer
3 N -400 - ; ’
2 z _f*
o
o+ 1.0p/A2 s 5 ;
% L — T T Rt I %,’ Q/21 = 4.4 MHz, A /21 = 4 MHz
?1;) = resonance J I— »}' m Exp. - - - - Calc.
L
5 05} -8004 Q/21 =43 MHz, A /21 =13 MHz
2'meW "
QQ i T T % Exp.=~==-Cale.
0.0 - 3 -1,000 — T T T T T T T T T
1,7) ot phot? - Mg = 1 2 3 4 5 6 7 8 9 10
transition) FERENEY Giiset U R (um)
Spin-flip Raman spectroscopy Interaction as a function of interatomic distance
Blockade reveals the blockade
effect J 5(0) 0
7 = 22115 1,0)+Ho,1))/v2 ~ UL1—10,0))
Y.-Y. Jau, ..., I.D., G.B., Nature Phys. 12 (2016) I



17 I Rydberg Dressing Sequence to Generate a GHZ state

/2 ] T

] n/2
11) +(00
Input state |00)_j_|A Al_l—_,,l ) +100)  Entangled
= f V2 output state
T T

1 N N
) = NG 92 19, Pa)a + gg e, P + hK>a]

|

Momentum is inherently part of the state after
this prep with counter-propagating fields, and is
fundamental to our atom interferometer protocol

l9,p) + |e, p + RK)

9, P)



Progress Entangling Neutral Atoms

Atom  Method Bell fidelity Post selected fidelity  Year and reference
®Rb  Blockade, simultaneous addressing (0.46) 0.75 2009 [35]
8Rb  Blockade, separate addressing (0.48) 0.58 2009 [33]
®’Rb  Blockade, separate addressing 0.58 0.71 2010 [34]
Cs Blockade, separate addressing 0.73 0.79 2015 [10]
Cs Dressing, simultaneous addressing 0.60 0.81 2015 [11]
Rb  Local spin exchange (0.44) 0.63 2015 [31]

M. Saffman, J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 202001

Single Qubit | Bell State Fidelity | Year | Reference
fidelity

0.9983 (14) 2015 T Xia,.. M Saffman, et al.

0.9944 (84) 2016 Y. Wang,.. DS Weiss, et al.

0.9994 2019  T-Y Wu,.. DS Weiss, et al.
0.86(2) 2019  TM Graham, ... M Saffman et al.

0.950(2) [97.4(3)] 2019  H Levine, ... VV, HP, MD Lukin et al.

Also:

20-atom GHZ state with F>=
0.542(18)
A. Omran et al. (2019)

Xu, Victoria, et al. "Probing
gravity by holding atoms for
20 seconds.” Science 366.6466
(2019): 745-749.

New theory work: A. Mitra, ..., |. Deutsch, et al. Robust Malmer-Sarensen gate for neutral atoms
using rapid adiabatic Rydberg dressing, arXiv:1911.04045 (2019) — 99.5% gate fidelity predicted



19 I Summary So Far:

Al + Entanglement = Quantum Metrology (Heisenberg Scaling)
> Rydberg Dressing provides entangling mechanism
o GHZ state input to an atom interferometer

Next: What happens to the sensitivity in the presence of realistic conditions?
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Modeling error for interferometry with entangled atoms

B. P. Ruzic, C. Brif, and G. W. Biedermann, in process, (2020)




21 I Summary: The IDEAL Atom Interferometer

N entangled atoms Pulse sequence Measure Parity

lg...gi + |e...éel

2 T

hjl=Pee+ng_Peg_Pge

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Phase Shift (rad.)

Parity oscillates faster

hili = COS [ pn

Iy = NK -aT?
— N§D
A — L Heisenberg
¢ = N Limit

B. P. Ruzic, C. Brif, and G. W. Biedermann, in process, (2020)

()

|
|
|



2 | Error |:Imperfect Initial State Preparation

Add a random relative phase and an admixture of a noise state: ‘

phase y is peaked around zero p=(1—p)l)| + pl){]

with standard deviationg_____// e random state
'1 N ' N | 19 1
VG [@ 9. Pa)a + €7 Q) le, pa + hK>a] ® [COS ( ) |9, Pa)a + €% sin ( ) e, Pa + AK)y ]
a=1 a=1

2-atom Al with 11.0% state-prep noise

A 1 1.00 - — |deal
~ 0.75 ¥ Numar
R s 8 |
0.25 A
% 0.00 -
- —0.25 A I
—0.50 A
« For two-atom Bell state fidelity of 0.89, p+02/2=0.11 ~0.75 -
« For two-atom Bell state fidelity of 0.95, p+02/2~0.05 ~1.00 - ‘
* Metrological advantage is only linearly sensitive 0 1 2 3 2 5 6

to entanglement imperfection B. P. Ruzic, C. Brif, and G. W, Biedermann, in process, (2020) |



23 I Error 2: Laser Intensity Fluctuations

Raman Laser Intensity Fluctuations lead to random pulse-area errors A = Ag + 0A

Average over random variable § A with standard deviation 0 = £ A

1
N(1 — 3= N¢2)

Phase uncertainty AQ ~ Error scales with N

—~ -4 ;
3 1.x10 o £22.x10°3 In our exp3er1ment )
g —— §=1.x1073 §~ 107" — 10
= _ — 1IN
5 3 x10-51 Heisenberg scaling
2 continues to at least
- 5}
% N =~ 10
o
o 1.x107°
1.x10% 3.x10* 1.x10°

Number of Entangled Atoms

B. P. Ruzic, C. Brif, and G. W. Biedermann, in process, (2020)



24 | Error 3:Initial Momentum Distribution

Atoms start in optical tweezers 0 = Pvib & Wspin> <¢Spin‘

Each run randomly samples a
momentum distribution
N

- d ' in pulses

0.5

0/2

Phase Uncertainty (rad.)

1 2 3 4 5 6 7

Number of Entangled Atoms

Interferometer with
one atom

1000
500

100
50

Max. useful
number of
atoms

At 7.5 kHz, significant
metrological

atoms

\\ —— 1204.62 kHz / Viap
\ @ calculations

advantage for 150+ |

5 10 50
Trap Frequency (kHz)

x Temperature

\i\
e
=0 .

B. P. Ruzic, C. Brif, and G. W. Biedermann, in process, (2020)



s | Error Modeling Summary

Modeled Error Sources:
1. Imperfect Initial State Preparation
2. Laser intensity fluctuations

3. Initial momentum distribution (random Doppler shift)

o # 3 is the dominant source of error as the number of entangled atoms is increased
o Even with error, significant metrological advantage expected with hundreds of atoms
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Experiment Overview

Faraday Cage

UV Laser

Rydberg laser Raman laser
Tweezers  (into page) (out of page)

Lens
N\
;
Xéé 7 Electrodes (2 of 8)

Raman Lasers

J. Lee, G.B., I.D,, et al.,Phys. Rev. A. 95, 041801(R), (2017) |
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28 | Apparatus Tune-up (/Overhaul) 20N,
EHIE I
O.. ﬁ,.
4
*+Co *e
. ..'VS} 4.
> New trapping lens (and chamber) '.4,’(/0.7,

> More stable "9&"
o Better collection efficiency , i

o Worked with Optical Engineer (Bill Sweat) D’ f[

at Sandia National Labs L

0.45 NA
20.0 mm Working distance

Corrected for chamber glass .
thickness with additional lenses



29 | Apparatus Tune-up

> New trapping lens (and chamber)
> More stable
o Better collection efficiency
o Worked with Optical Engineer (Bill Sweat)
at Sandia National Labs

- New EMCCD

> Photometrics Evolve 512 Delta
o Higher quantum efficiency
> More easily scalable

|
Quantum Efficiency Curve
100%
90%
80% 7
0%
&% -
50%
a0% H
0%

QE>60% at 850 nm

Dark Current ~0.003 e-/pixel/sec I



Apparatus Tune-up

> New trapping lens (and chamber)
> More stable
- Better collection efficiency
o Worked with Optical Engineer (Bill Sweat)
at Sandia National Labs

- New EMCCD

> Photometrics Evolve 512 Delta
o Higher quantum efficiency
> More easily scalable

> New Control System

o Collaboration with ion trapping group at Sandia
o Capable hardware and software allows better integration

and gives more scope for the future

z!!xlwuf‘\fﬂl @/ ""—_MI
’

“:M* 0:39:_; ;j:‘ =C }4 —

" A L i ‘i’ u.::_m_s.w L A r - 5 T e Gm e

M:i‘ ,1 lll hl |l ”M“ Ll ‘|” }H ‘ i ['\“’l“ = =i |

— FE zsi

o r il B None| =

‘ None‘ """"""
. None%
L] pylonControl / lonControl ‘
Available on GitHub! (unsupported)



Dipole Power = 0.20, Trap Frequency = 34.38 kHz

1 1
31 | Direct Trap Frequency Measurement
2 0.9 Fit
%OB‘
A Release & Recapture 2x  (g) 2
— _— gorit a0
Cooling = 1 J/ \\ 1 . '
beams =t I T U S W AN LA
> g R " \ " .
of - Bost 1 "\ 4 | f [ W AN
y Tor 1 SO B R T
A At = 04r O Y / \ _
0 — 2 TR \ AT
Optical " ft ) |
tweezers *K > - S
ff > "0 10 20 30 40 50 60 70 80 90 100

Time(us)

0 5t, o, t
YRP Sortais,... Grangier PRA (2007) 0.95

Dipole Power = 0.03, Trap Frequency = 11.48 kHz

S A% L
 Trap phase class is selected in ot t /o / o \ /
« Frequency is measured via 0t, 2 oo . \ - R
* Probability is maximized when atoms in g v / \ /
trap have made one complete cycle g‘ \ ' -
We plan to use a similar technique for delta-kick cooling. oo om0 Timigus) 0 o w0 w0
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33 | Plans for Future Work

- Demonstrate measurement enhancement with entangled interferometer

«  Optimal control with deep learning
*  Sub-doppler cooling
«  Raman beam pulse shaping
«  Optimal entanglement creation

- Explore larger array configuration, building on work already done at Sandia.



14 | Outlook: Large Arrays

Averaged over many exposures

Spatial light modulator allows
arbitrary patterns

Large systems > 100

Ring lattice Triangular lattice
Spatial Light Modulator
(SLM) generates phase lens f Image plane (CCD)
pattern ) '
— Rearrange
> B Traps at-will
P (x,y)

Data and image credit: Michael Martin, Sandia (now at LANL) 34



15 | Summary

- We have demonstrated entanglement between neutral atoms via Rydberg dressing
- We have demonstrated an atom interferometer with this same platform

> Theory predictions show that there should be a significant metrological advantage
to using entangled atoms in an interferometer, even with modeling of significant
error

o Significant experimental updates are in progress, and we look forward to sharing the
results soon!



36 | Thank You
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Bethany Little
| Matthew Chow

"

Sandia Theory
Brandon Ruzic
Constantin Brif

Constantin Brandon

This has been a team effort over many years!

Longtime Lead & Continuing
Advisor/Collaborator
Grant Biedermann (OU)

Collaborators
Alberto Marino (OU)
Jongmin Lee (SNL)
Yuan-Yu Jau (SNL)
Jonathan Bainbridge (SNL, UNM)
lvan Deutsch (UNM)

Peter Schwindt (SNL)

Mike Martin (LANL)

We welcome discussion & collaboration!




Extra Slides: Error Theory




Increasing the Atom Number

Heisenberg scaling breaks 500 *\_
down near e —— 4755.65 kHz / Virap

N* = 01/77 200 \ ©® calculations
Parameter 7] scales & 100 (n) =0 \
linearly with Virap
50
X Vtrap

Fit to calculations of N ™ 20

N* ~4755.86 kHz/Vipap 10 20 50 100 200

Trap Frequency (kHz)
A trap frequency of 10 kHz is feasible

N* ~ 476 at (n) = (

Entanglement enhancement starts to slow down at 27 dB beyond SQL




Random Doppler Shift

No analytic result for A¢
requires numerical analysis

We found

A ~ L

N(1 —=nN)
when NN < 1

(same form as for laser intensity error) —1-0L

— <n>=0.0
— <n>=1.6235

‘\

b = 100 Kz
T =10 pK

0.0

—

5
o
= 0.5) — <n>=50 . /] grows with <7’L>
&= - <n>=4.0
LC) — <n>=3.0
o
8 — <n>=2.0
8 0.2 — <n>=1.0 Wyib = 300 kHz
o — <n>=0.0 «— T =20
1 2 3 4 5 6 7

Number of Entangled Atoms

0.5 1.0 1.5
Phase Shift (rad.)

Deviation from Heisenberg scaling
becomes significant around

nN =~ 0.1 or N*=0.1/n

Even for (n) =0
vyib = 100 kHz N* =0.1/n ~ 48
vo, = 300 kHz  N* =0.1/n ~ 16

- 39

_E

39



Random Doppler Shift

Atoms start in optical tweezers

P = Pvib & ‘¢Spin> <¢Spin‘

Thermal state, described by the average vibrational level

Pvib = ZPn|n><n|
n=0

_ )"
T
(n) = [exp(hwyip /kpT) — 1]7!

Initial momentum spread

« each run randomly samples a
momentum distribution

—> doppler shift

—> detuning error in pulses

60 = —hpK/m

a) Rydberg laser Raman laser

Tweezers  (into page) (out of page)

Lens
b

x% i Electrodes (2 of 8)

40




Extra Slides - Rydberg




Rydberg excitation laser

4. Cesium energy levels
g

3.9

2.5

1.5

Excitation energy from ground state (eV)
N
I

o
(6]
T

y | |
o) 1(P) 2(D)
Orbital angular momentum quantum number

Phys. Rev. A 89, 033416 (2014)




Extra Slides: Experiment




Single atom control of 2 atoms

dipole trap
laser (938 nm)

APD signal (a.u.)

0 200 400 600
time {ms)
atom 1
background APD

gold knife

dipole traps

Normalized frequency
[e)
=)
~

atom
e w,= 1.2 um
0.02
0.00 L oo D (e,
00 0.5 1.0 1.5 20 25 3.0 35 bandpass filter APD
APD signal (arb. units) 852 nm PerkinElmer

atom 4
to APD




