
Unclassified Unlimited Release

ja.0.2 f0.0?(4.1)
62

1. (x). f(x,O)dx =m(T(0. :011,14

Kokkos Core Status Update
Christian R. Trott, - Center for Computing Research

D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, J. Ciesko,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt, R. Gayatri, J. Madsen
Sandia National Laboratories/NM

e 1 N'Eirdry NO'S% Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2020-XXXX C

SAND2020-1507PE

: Kokkos Development Team

:kokkos

• Los Alamos
NATIONAL LABORATORY

EST 1943

ttOAK RIDGE
National Laboratory

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

frggfr

Sandia
National Argonne v‘
Laboratories NATIONAL LABORATORY

BERKELEY LAB 44 CSCS

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, J. Ciesko,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt, R. Gayatri, J. Madsen

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger,

D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

:Some Kokkos Stats Since 2015
• 18 Releases Since 2016

• Only 5 since December 2017

• 50 Contributors

• 17 with more than 10 commits

• 11 with more than 10k lines touched

• 1345 Issues of which 1134 were resolved

• 305 bug reports

• 381 enhancement requests

• 129 Feature Requests

• 766 pull requests

• 15k messages on kokkosteam.slack.com (Started in 2017)

: Kokkos SIMD

• SIMD Support for diverse architectures

• Based on ISO C++ TS

• simd<double,ABI>

• ABI are things like "AVX", "AVX512", "NEON", "SVE"

• Differentiate storage SIMD type from temporary

• Allow storage of 32 consecutive values

• Load 1 value per CUDA thread on GPU

• For now: https://github....om/kokkos/simd-math

• Will move into core Kokkos soon though.

Containers: ScatterView Sandia
National
Labmatodes

• Encapsulates common design pattern in reduction algorithms using either data
duplication and/or atomics

• Data duplication is often faster on the host, but too memory expensive on
GPUs.

• Atomics are faster on GPUs, but extremely slow on the host

ScatterView<Datatype

[, Layout, ExecSpace, Reduce0p, DupMode, ContribMode]

ReduceOp: ScatterSum, ScatterProd, ScatterMax, ScatterMin

DupMode: ScatterNonDuplicated, ScatterDuplicated

ContribMode: ScatterNonAtomic, ScatterAtomic

Containers: ScatterView (cont'd)

ScatterViewdouble, LayoutRight, Cuda, ScatterSum, sv(...);

Viewdouble, LayoutRight, Cuda>

parallel_for(n, [=](int i){
auto scatter access = sv.access();

int k = foo(i);

double x = bar(x);

scatter access(k) += x;

});

contribute(v, sv);

: UniqueToken Sandia
National
Labmatodes

• Generates a unique ordinal based on the concurrency of the ExecutionSpace

• Can be used to index into resources that are restricted by the amount of
concurrency available

• Ordinals can be local to a single kernel instance or global across all kernels

• Threads first acquire a token and then release it afterwards

• For the best performance

• Tokens should be acquired/released in as narrow of scope as possible, and

• Tokens should be released before calling a team_barrier or similar
construct

Pw

h. Asynchronicity Semantics
• ParallelReduce/Scan

double result;
// parallel_for is always synchronous
parallel_for("AsynchronousFor",N,F);
// parallel_reduce with Scalar as result is synchronous
parallel_reduce("synchronoussum",N,Fr,result);
// parallel_reduce with Reducer constructed from scalar is synchronous
parallel_reduce("synchronousmax",N,Fr,max<double>(result));
// parallel_reduce with any type of view as result is asynchronous
Kokkos::view<double,cudaHostRinnedspace> result_v("R");
parallel_reduce("Asynchronoussum",N,Fr,result_v);
// Even with unmanaged view, and wrapped into Reducer
Kokkos::view<double,Hostspace> result_hv(&result);
parallel_reduce("Asynchronousmax",N,Fr,max<double>(result_hv));
// scans without total result argument are asynchronous
parallel_scan("Asynchronousscan",N,Fs);
// scans with total result argument same rules as parallel_reduce
parallel_scan("synchronousscanTotal",N,Fs,result);

andia
NOW
limides

2 Dot Products
N=1 00k

50

45

40

35

30
c
— 25a)
.E 20
I-

15

10

5

0

• Scalar • View

: CUDA Stream lnterop

• Initial step to full coarse grained tasking

• Discuss in more detail in future directions

• For now: make Kokkos dispatch use user CUDA streams

• Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudastream_t streaml,stream2;
cudastreamCreate(&streaml);
cudastreamCreate(&stream2);
kokkos::cuda cudal(streaml), cuda2(stream2);

// Run two kernels which can overlap
para11e1_for("F1",RangePolicy<Kokkos::cuda>(cudal,N),F1);
para11e1_for("F2",RangePolicy<kokkos::cuda>(cuda2,N),F2);
fence();

DOE Machine Announcements flodh
Mod

• Now publicly announced that DOE is buying both AMD and Intel GPUs

• Argonne: Cray with Intel Xeon + Intel Xe Compute

• ORNL: Cray with AMD CPUs + AMD GPUs

• NERSC: Cray with AMD CPUs + NVIDIA GPUs

• Have been planning for this eventuality:

• Kokkos ECP project extended and refocused to include developers at

Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

• HIP backend for AMD: main development at ORNL

The current ROCm backend is based on a compiler which is now deprecated ...

• SYCL for Intel: main development at ANL

• OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

OpenMP-Target Backend

• With Clang mainline we got a working compiler

• Only "officially" supported compiler right now

• Adding IBM XL, AMD aomp, Intel, NVIDIA and GCC as soon as we can verify

them

• Testing in place

• Basic capabilities are working:

• RangePolicy, MDRangePolicy

• Data Movement

• parallel_for/reduce

• Performance pretty spotty

: HIP Backend
CUDA/ HIP Status

• Restart of the AMD work we previously did

• Work lead by ORNL 1000u)
• Basic capabilities are in place CC10 800

• RangePolicy, MDRangePolicy
• 600_

• Data Movement =

i• parallel_for/reduce :ar 400
%

• Tests can be enabled -o
c 200

• Performance Ok-ish so far co
CO

0

Update

784

492
568

ftde
bawl
lilmildes

450

CUDA V100 HIP MI60

•ADD • DOT

: OneAPI Backend
• Tools

• DPC++ (OneAPI/SYCL compiler from Intel based on clang)

Need OneAPI extensions to implement Kokkos

— Unnamed lambda support

— Primitives for host vs. device memory

• NEO Driver

Weird bugs: Couldn't pass pointers in a struct to device

• Longer term (may be years from now)

Intel OneAPI extensions proposed for SYCL

• Early days

• Parallel_for

• USMMemory space Rank 1

• Functionality testing on Gen 9 hardware

: Feature Timeline

Feature o_
I

MemorySpace

parallel for RangePolicy

x

x

x

x

x

x

parallel for MDRrangePolicy

parallel reduce RP

x 03/20 X

X 02/20 X

parallel reduce MDRP

Reducers

05/20 Q4 20 05/20

X Q4 20 X

parallel_for TP 03/20 03/20

parallel reduce TP 06/20 06/20

atomics 03/20 04/20

Modern CMake wants a clean separation of
'building' and 'using' libraries

■ CMake 3 (first "modern" version) released June 2014

■ Clean separation of building and using (targets and properties) has been recommended method since

release

■ All options should be applied specifically to TARGETS (libs, exes)

■ No more directly modifying CMAKE_CXX_FLAGS

■ No more global setting include directories and compiler flags

■ Your compiler/linker flags should be specific and exact to an individual library

■ All include directories and compiler flags should be clearly defined as:

■ PUBLIC: Flag needed to build Kokkos and needed downstream to use Kokkos

Kokkos headers

Flags like —fopenmp or CUDA flags needed for the backend

Minimum C++ standards

■ PRIVATE: Flag only needed to build Kokkos (not needed to use)

Certain warning flags

Certain optimization flags

Pw
What should CMake look like for using Kokkos?h.
A single CMake function should populate build with alI the necessary flags to build correctly and
all the optimization/architecture flags to improve performance

find package(Kokkos REQUIRED)

add library(target ${SOURCES})

target link libranes(target PUBLIC Kokkos::kokkos)

find package(Kokkos REQUIRED)

add library(target ${SOURCES})

target link libranes(target PRIVATE Kokkos::kokkos)

KOKKOS_CHECK(

DEVICES CUDA OPENMP

OPTIONS CUDA_RELOCATABLE_DEVICE_CODE

ARCH VOLTA70

)

I need Kokkos to build — and
anyone using my API needs
Kokkos

I need Kokkos to build — but
using my API does not require
Kokkos

Assert that the Kokkos
configuration found meets
expectations

Installed Kokkos: cmake —DKokkos_ROOT=<PREFIX>

In-tree Kokkos: add_subdirectory(kokkos)

Building Kokkos
Sao
Mod
WpmNis

• cmake ${KOKKOS_SOURCE}—D{OPTION}:BOOL=ON —D{OPTION}:STRING=NAME

• Via command Line

• To get a list of options, use ccmake

• ccmake —DCMAKE_CXX_COMPILER={} ${KOKKOS_SOURCE}

BUILD_SHARED_LIBS
BUILD_TESTING
CMAKE_BUILD_TYPE
CMAKE_EXECUTABLE_FORMAT
CMAKE_INSTALL_PREFIX
CMAKE_OSX_ARCHITECTURES
CMAKE_OSX_DEPLOYMENT_TARGET
CMAKE_OSX_SYSROOT
Kokkos_ARCH_AMDAVX
Kokkos_ARCH_ARMV80
Kokkos_ARCH_ARMV81
Kokkos_ARCH_ARMV8_THUNDERX
Kokkos_ARCH_ARMV8_THUNDERX2
Kokkos_ARCH_BDW
Kokkos_ARCH_BGQ
Kokkos_ARCH_EPYC
Kokkos_ARCH_HSW
Kokkos_ARCH_KEPLER30
Kokkos_ARCH_KEPLER32
Kokkos_ARCH_KEPLER35
Kokkos_ARCH_KEPLER37
Kokkos_ARCH_KNC

Paqe 1 of 4
FF

ON

ACHO
/usr/local

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

ui d s ared raries
Press [enter] to edit option Press [d] to delete an entry
Press [c] to configure

 Press [h] for help Press [q] to quit without generating
ress [t] to toggle advanced mode (Currently Off)

Building and using makes "smaller" interfaces between
libraries, solves transitive dependencies

Application should only know
about its direct dependencies

target_link_libraries(Ifpack2) makes C++
App depend transitively on Kokkos flags
(PUBLIC)

Automake requires collecting and
forwarding, e.g.
KokkosKernels CXX FLAGS =

$(LOCAL_CXX_FLAGS) +
$(Kokkos_CXX_FLAGS)

target_link_libraries(Ifpack2_C) does not
make C App depend transitively on
Kokkos flags (PRIVATE)

,, Kokkos Tools
• Profiling

• New tools are coming out

Sao
Mod
liboluis

• Worked with NVIDIA to get naming info into their system

• Auto Tuning

• Internal variables such as CUDA block sizes etc.

• User provided variables

• Same as profiling: will use dlopen to load external tools

• Debugging

• Extensions to enable clang debugger to use Kokkos naming information

• Static Analysis

• Discover Kokkos anti patterns via clang-tidy

Kokkos Tools Integration with 3rd Party is=

• Profiling Hooks can be subscribed to by tools, and currently have support for TAU,

Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support

• HPCToolkit also has special functionality for models like Kokkos, operating outside of

this callback system

TAU Example:
1111111111E

Name Exclusive TIME
 IfinnnlliMilinMEMINMENEMMEMIN

Inclusive TIME Calls Child Calls

. •.TAU application 0.143 96.743 1

8 2. •Comm::exchange 0.001

067
6 14

.. •Comm::exchange_halo 0.001 .94.702 6
, •Comm:.update_halo 0.004 31.347 95

1,31833402

•Kokkos::parallel_for CommMPl::halo_update_pack [device=0] 0.002 0.506 190 190
•Kokkos::parallel_for CommMPl::halo_update_self [device=0] 0.003 0.597 380 380

•Kokkos::parallel_for CommMPl::halo_update_unpack [device=0] 0.002 0.97 190 190
•MPI_Irecv0 0.001 0.001 190 0
❑ MPI_Send() 29.268 29.268 190 0

•MPI_Waito 0.001 0.001 190 0

•OpenMP_Implicit_Task 0.041 1.985 760 760
•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMR:Ta 0 0.504 190 190
•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMR:Ta 0.08 0.968 190 190
•OpenMP_Parallel_Region void Kokkos::parallel_for<Kokkos::RangePolicy<(0.001 0.594 380 380

•OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMI 0.489 0.489 190 0

•OpenMP_Sync_Region_Barrier parallel jor<Kokkos::RangePolicy<CommMF 0.875 0.875 190 0

•OpenMP_Sync_Region_Barrier void Kokkos::parallel_for<Kokkos::RangePol 0.58 0.58 380 0

Kokkos Tools Static Analysis
• clang-tidy passes for Kokkos semantics

• Under active development, requests welcome

• IDE integration

Sao
Mod
WpmNis

Kokkos::parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& {

int a 0;

Kokkos::parallel_for(TTR(t, 1), [&](int i) { Lambda capture modifies reference capture variable 'a' that is a local
a += 1;
cv() += 1;

});
});

Kokkos::parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& {

int b = 0;
auto lambda = [&](int i) { Lambda capture modifies reference capture variable 'b' that is a local

b += 1;
cv() += 1;

};
Kokkos::parallel_for(TTR(t, 1), lambda);

}) ;

: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

flodh
IOW
liboluis

Back port to compilers we got

C++ Features in the Works Sandia
Ikdional
Lobotomies

• First success: atomic_ref<T> in C++20

• Provides atomics with all capabilities of atomics in Kokkos

• atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

• Next thing: Kokkos::View => std::mdspan

• Provides customization points which allow all things we can do with

Kokkos::View

• Better design of internals though! => Easier to write custom layouts.

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• Production reference implementation: https://github.com/kokkos/mdspan

• Also C++23: Executors and Basic Linear Algebra: https://github.com/kokkos/stdblas

Li n ks
■ https://github.com/kokkos Kokkos Github Organization

nsadaliabond
• Kokkos: Core library, Containers, Algorithms

• Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)

• Kokkos-Tools: Profiling and Debugging

• Kokkos-MiniApps: MiniApp repository and links

• Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

• https://cs.sandia.gov Publications (search for 'Kokkosi)

• Many Presentations on Kokkos and its use in libraries and apps

• http://on-demand-gtc.gputechconf.com Recorded Talks

• Presentations with Audio and some with Video

• https://KoKKosteam.slacK.cor Slack channel for user support

