Unclassified Unlimited Release Christian R. Trott, - Center for Computing Research
D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, J. Ciesko,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt, R. Gayatri, J. Madsen Sandia National Laboratories/NM
@u- m Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2020-XXXX C

~ Kokkos Development Team
Ckokkos

P Sandia
» Los Alamos National AI’gOﬂ ne °
NATIONAL LABORATORY I.aboratories NATIONAL LABORATORY

EST.1943

¥ OAK RIDGE 8

National Laboratory

BERKELEY LAB \:0‘0 CSCS

Kokkos Core: C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, J. Ciesko,
H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Wilke, D. Arndt, R. Gayatri, J. Madsen
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova

Kokkos Kernels: S. Rajamanickam, N. Ellingwood, K. Kim, C.R. Trott, V. Dang, L. Berger,
Kokkos Tools: D. Poliakoff, S. Haommond, C.R. Trott, D. Ibanez, S. Moore
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

~ Some Kokkos Stats Since 2015 i

= 18 Releases Since 2016

= Only 5 since December 2017
50 Contributors

= 17 with more than 10 commits

= 11 with more than 10k lines touched

1345 Issues of which 1134 were resolved
= 305 bug reports
= 381 enhancement requests
= 129 Feature Requests

766 pull requests

15k messages on kokkosteam.slack.com (Started in 2017)

~ Kokkos SIMD ®

= S|IMD Support for diverse architectures
= Based on ISO C++ TS
= simd<double,ABI>
= ABI are things like “AVX”, “AVX512”, “NEON”, "SVE”
= Differentiate storage SIMD type from temporary
= Allow storage of 32 consecutive values
= Load 1 value per CUDA thread on GPU
* For now: https://github.com/kokkos/simd-math

= Will move into core Kokkos soon though.

” Containers: ScatterView i

= Encapsulates common design pattern in reduction algorithms using either data
duplication and/or atomics
= Data duplication is often faster on the host, but too memory expensive on
GPUs.
= Atomics are faster on GPUs, but extremely slow on the host

ScatterView<Datatype
[, Layout, ExecSpace, ReduceOp, DupMode, ContribMode]
>
ReduceOp: ScatterSum, ScatterProd, ScatterMax, ScatterMin
DupMode: ScatterNonDuplicated, ScatterDuplicated
ContribMode: ScatterNonAtomic, ScatterAtomic

” Containers: ScatterView (cont’d) =n

ScatterView<double, LayoutRight, Cuda, ScatterSum, ..> sv(..);
View<double, LayoutRight, Cuda> v(..);

parallel for(n, [=](int i){
auto scatter _access = sv.access();
int k = foo(i);
double x = bar(x);
scatter_access(k) += x;

})s

contribute(v, sv);

~ UniqueToken i

= Generates a unique ordinal based on the concurrency of the ExecutionSpace

= Can be used to index into resources that are restricted by the amount of
concurrency available

= Ordinals can be local to a single kernel instance or global across all kernels
= Threads first acquire a token and then release it afterwards
= For the best performance
= Tokens should be acquired/released in as narrow of scope as possible, and

= Tokens should be released before calling a team_barrier or similar
construct

~ Asynchronicity Semantics M

ParallelReduce/Scan 2 Dot Products
double result;

// parallel_for is always Synchronous N=100k
parallel_for("AsynchronousFor",N,F); 50
// parallel_reduce with Scalar as result is Synchronous

parallel_reduce("SynchronousSum"”,N,Fr,result); 2
// parallel_reduce with Reducer constructed from scalar is synchronous 40
parallel_reduce("Synchronousmax",N,Fr,Max<double>(result)); 35
// parallel_reduce with any type of view as result is asynchronous %)
— : oy . S5 30
Kokkos: :view<double,CudaHostPinnedSpace> result_v('R"); =
parallel_reduce("AsynchronousSum",N,Fr,result_v); o 29
// Even with unmanaged view, and wrapped into Reducer £ 20
Kokkos: :view<double,HostSpace> result_hv(&result); =
parallel_reduce("Asynchronousmax" ,N,Fr,Max<double>(result_hv)); 15
// Scans without total result argument are asynchronous 10
parallel_scan("AsynchronousScan",N,Fs); 5
// Scans with total result argument same rules as parallel_reduce 3

parallel_scan("SynchronousScanTotal",N,Fs,result);
m Scalar mView

~ CUDA Stream Interop i

= |nitial step to full coarse grained tasking
= Discuss in more detail in future directions
= For now: make Kokkos dispatch use user CUDA streams
= Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudaStream_t streaml,stream?;
cudaStreamCreate(&streaml) ;
cudaStreamCreate(&stream?2) ;

Kokkos::Cuda cudal(streaml), cuda2(stream?2);

// Run two kernels which can overlap
parallel_for("F1",RangePolicy<Kokkos: :Cuda>(cudal,N),Fl);
parallel_for("F2",RangePolicy<Kokkos: :Cuda>(cuda2,N),F2);
fence();

~ DOE Machine Announcements i

= Now publicly announced that DOE is buying both AMD and Intel GPUs
= Argonne: Cray with Intel Xeon + Intel Xe Compute
= ORNL: Cray with AMD CPUs + AMD GPUs
= NERSC: Cray with AMD CPUs + NVIDIA GPUs

= Have been planning for this eventuality:

= Kokkos ECP project extended and refocused to include developers at
Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

= HIP backend for AMD: main development at ORNL
= The current ROCm backend is based on a compiler which is now deprecated ...

= SYCL for Intel: main development at ANL
= OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia

~ OpenMP-Target Backend @

= With Clang mainline we got a working compiler
= Only “officially” supported compiler right now

= Adding IBM XL, AMD aomp, Intel, NVIDIA and GCC as soon as we can verify
them

= Testing in place

= Basic capabilities are working:
= RangePolicy, MDRangePolicy
= Data Movement
= parallel_for/reduce

= Performance pretty spotty

~ HIP Backend

= Restart of the AMD work we previously did
= Work lead by ORNL
= Basic capabilities are in place
= RangePolicy, MDRangePolicy
= Data Movement
= parallel_for/reduce
= Tests can be enabled
= Performance Ok-ish so far

CUDA// HIP Status
Update

1000
800
600
400
200

Bandwidth in GB/s

0

784

568

CUDA V100 HIP MI60

m ADD

mDOT

~ OneAPI Backend i

= Tools

= DPC++ (OneAPI/SYCL compiler from Intel based on clang)
= Need OneAPI extensions to implement Kokkos

— Unnamed lambda support
— Primitives for host vs. device memory

= NEO Driver

= Weird bugs: Couldn’t pass pointers in a struct to device

= Longer term (may be years from now)
= Intel OneAPI extensions proposed for SYCL

= Early days
= Parallel_for
= USMMemory space Rank 1
= Functionality testing on Gen 9 hardware

Py s - Sandia
.. Feature Timeline ()

=

5 &
MemorySpace X X X
parallel_for RangePolicy X X X
parallel_for MDRrangePolicy X 03/20 X
parallel_reduce RP X 02/20 X
parallel_reduce MDRP 05/20 Q4 20 05/20
Reducers X Q4 20 X
parallel_for TP 03/20 03/20
parallel_reduce TP 06/20 06/20

atomics 03/20 04/20

Modern CMake wants a clean separation of
‘building” and ‘using’ libraries

F

= CMake 3 (first “modern” version) released June 2014

= (Clean separation of building and using (targets and properties) has been recommended method since
release

= All options should be applied specifically to TARGETS (libs, exes)

= No more directly modifying CMAKE_CXX_FLAGS

= No more global setting include directories and compiler flags

= Your compiler/linker flags should be specific and exact to an individual library
= Allinclude directories and compiler flags should be clearly defined as:

= PUBLIC: Flag needed to build Kokkos and needed downstream to use Kokkos
= Kokkos headers
= Flags like —-fopenmp or CUDA flags needed for the backend
= Minimum C++ standards
= PRIVATE: Flag only needed to build Kokkos (not needed to use)
= Certain warning flags
= Certain optimization flags

: What should CMake look like for using Kokkos? L=

A single CMake function should populate build with all the necessary flags to build correctly and
all the optimization/architecture flags to improve performance

find_package(Kokkos REQUIRED) | need Kokkos to build — and
add_library(target ${SOURCES})) anyane Using my AR neads

Kokkos
target_link_libraries(target PUBLIC Kokkos::kokkos)
find_package(Kokkos REQUIRED) | need Kokkos to build — but
add_library(target ${SOURCES})) &S'L‘E my APl does not require
okkos
target_link_libraries(target PRIVATE Kokkos::kokkos)
KOKKOS_CHECK(Assert that the Kokkos
DEVICES CUDA OPENMP configuration found meets
OPTIONS CUDA_RELOCATABLE_DEVICE_CODE expectations

ARCH VOLTAT70

)
Installed Kokkos: cmake —-DKokkos_ ROOT=<PREFIX>

In-tree Kokkos: add_subdirectory(kokkos)

Py

s Building Kokkos

= cmake S{KOKKOS_ SOURCE}—-D{OPTION}:BOOL=0ON —D{OPTION}:STRING=NAME
= Via command Line

= To get a list of options, use ccmake
= ccmake —DCMAKE_CXX_COMPILER={} S{KOKKOS_SOURCE}

Page 1 of 4

BUILD_SHARED_LIBS
BUILD_TESTING
CMAKE_BUILD_TYPE
CMAKE_EXECUTABLE_FORMAT
CMAKE_INSTALL_PREFIX
CMAKE_OSX_ARCHITECTURES
CMAKE_OSX_DEPLOYMENT_TARGET
CMAKE_O0SX_SYSROOT
Kokkos_ARCH_AMDAVX
Kokkos_ARCH_ARMV80
Kokkos_ARCH_ARMV81
Kokkos_ARCH_ARMV8_THUNDERX
Kokkos_ARCH_ARMV8_THUNDERX2
Kokkos_ARCH_BDW
Kokkos_ARCH_BGQ
Kokkos_ARCH_EPYC
Kokkos_ARCH_HSW
Kokkos_ARCH_KEPLER30
Kokkos_ARCH_KEPLER32
Kokkos_ARCH_KEPLER35
Kokkos_ARCH_KEPLER37
Kokkos_ARCH_KNC

BUILD_SHARED_LIBS: Build shared libraries
Press [enter] to edit option Press [d] to delete an entry
Press [c] to configure

-— e Press n] for help Press [g] to quit without generating e
Press [t] to toggle advanced mode (Currently Off)

® Building and using makes “smaller” interfaces between
™ libraries, solves transitive dependencies

PUBLIC

Application should only know
about its direct dependencies

target_link_libraries(Ifpack2) makes C++
App depend transitively on Kokkos flags
(PUBLIC)

Automake requires collecting and

forwarding, e.g.

KokkosKernels CXX FLAGS =
$(LOCAL_CXX_FLAGS) +
$(Kokkos CXX_FLAGS)

target_link_libraries(lfpack2_C) does not
make C App depend transitively on
Kokkos flags (PRIVATE)

~ Kokkos Tools i

= Profiling

= New tools are coming out

= Worked with NVIDIA to get naming info into their system
= Auto Tuning

" |nternal variables such as CUDA block sizes etc.

= User provided variables

= Same as profiling: will use dlopen to load external tools
= Debugging

= Extensions to enable clang debugger to use Kokkos naming information
= Static Analysis

= Discover Kokkos anti patterns via clang-tidy

~ Kokkos Tools Integration with 37 Party @

= Profiling Hooks can be subscribed to by tools, and currently have support for TAU,
Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support

= HPCToolkit also has special functionality for models like Kokkos, operating outside of
this callback system

TAU Example:

IEEDERENENEREANRRANE] | (0 DENNENEERNEEONERERERENANN NN RRENERRNNREE NN NERENENRNNENANRNENERNNNRRNENENEENE
Name2 Exclusive TIME Inclusive TIME Calls Child Calls
» B.TAU application 0.143 96.743 :L 832
» BComm::exchange 0.001 0.967 6 142
» @BComm::exchange_halo 0.001 4.702 6 184
8 |Comm::update_halo} 0.004 31.347 95 1,330
W Kokkos::parallel_for CommMPI::halo_update_pack [device=0] 0.002 0.506 190 190
W Kokkos::parallel_for CommMPI::halo_update_self [device=0] 0.003 0.597 380 380
BKokkos::parallel_for CommMPI::halo_update_unpack [device=0] 0.002 0.97 190 190
BMPI_lrecv() 0.001 0.001 190 0
EMPI_Send() 29.268 29.268 190 0
BMPI_Wait() 0.001 0.001 190 0
B OpenMP_Implicit_Task 0.041 1.985 760 760
B OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMPI::Ta 0 0.504 190 190
B OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMPI::Ta 0.08 0.968 190 190
B OpenMP_Parallel_Region void Kokkos::parallel_for<Kokkos::RangePolicy<t 0.001 0.594 380 380
B OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommM¥ 0.489 0.489 190 0
B OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMF 0.875 0.875 190 0
B OpenMP_Sync_Region_Barrier void Kokkos::parallel_for<Kokkos::RangePol 0.58 0.58 380 0

~ Kokkos Tools Static Analysis

= clang-tidy passes for Kokkos semantics
= Under active development, requests welcome

= |DE integration

Kokkos :: parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {

int a = 0;

Kokkos :: parallel_for(TTR(t, 1), [&8](int i) { Lambda capture modifies reference capture variable 'a' that is a local
a += 1;
cv() += 1;
)5
)7

Kokkos :: parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
int b = 1)

auto lambda = [&§](int i) { Lambda capture modifies reference capture variable 'b' that is a local
b += 1;
cv() += 1;
i
Kokkos :: parallel_for(TTR(t, 1), lambda);
)iz

= Aligning Kokkos with the C++ Standard Mg,

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

Move accepted features

to legacy support Propose for C++

Kokkos Legacy C++ Standard

Implemented legacy
capabilities in terms of Back port to compilers we got
new C++ features C++ Backport

_ C++ Features in the Works @®

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Production reference implementation: https://github.com/kokkos/mdspan
= Also C++23: Executors and Basic Linear Algebra: https://github.com/kokkos/stdblas

~ Links i

= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
Kokkos-Tools: Profiling and Debugging

Kokkos-MiniApps: MiniApp repository and links

Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for ‘Kokkos’)

Many Presentations on Kokkos and its use in libraries and apps

= http://on-demand-gtc.gputechconf.com Recorded Talks

Presentations with Audio and some with Video

= https://kokkosteam.slack.com Slack channel for user support

