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:Some Kokkos Stats Since 2015
• 18 Releases Since 2016

• Only 5 since December 2017

• 50 Contributors

• 17 with more than 10 commits

• 11 with more than 10k lines touched

• 1345 Issues of which 1134 were resolved

• 305 bug reports

• 381 enhancement requests

• 129 Feature Requests

• 766 pull requests

• 15k messages on kokkosteam.slack.com (Started in 2017)



: Kokkos SIMD

• SIMD Support for diverse architectures

• Based on ISO C++ TS

• simd<double,ABI>

• ABI are things like "AVX", "AVX512", "NEON", "SVE"

• Differentiate storage SIMD type from temporary

• Allow storage of 32 consecutive values

• Load 1 value per CUDA thread on GPU

• For now: https://github....om/kokkos/simd-math 

• Will move into core Kokkos soon though.



Containers: ScatterView Sandia
National
Labmatodes

• Encapsulates common design pattern in reduction algorithms using either data
duplication and/or atomics

• Data duplication is often faster on the host, but too memory expensive on
GPUs.

• Atomics are faster on GPUs, but extremely slow on the host

ScatterView<Datatype

[, Layout, ExecSpace, Reduce0p, DupMode, ContribMode]

ReduceOp: ScatterSum, ScatterProd, ScatterMax, ScatterMin

DupMode: ScatterNonDuplicated, ScatterDuplicated

ContribMode: ScatterNonAtomic, ScatterAtomic



Containers: ScatterView (cont'd)

ScatterViewdouble, LayoutRight, Cuda, ScatterSum, sv(...);

Viewdouble, LayoutRight, Cuda>

parallel_for(n, [=](int i){
auto scatter access = sv.access();

int k = foo(i);

double x = bar(x);

scatter access(k) += x;

});

contribute(v, sv);



: UniqueToken Sandia
National
Labmatodes

• Generates a unique ordinal based on the concurrency of the ExecutionSpace

• Can be used to index into resources that are restricted by the amount of
concurrency available

• Ordinals can be local to a single kernel instance or global across all kernels

• Threads first acquire a token and then release it afterwards

• For the best performance

• Tokens should be acquired/released in as narrow of scope as possible, and

• Tokens should be released before calling a team_barrier or similar
construct
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h. Asynchronicity Semantics
• ParallelReduce/Scan

double result;
// parallel_for is always synchronous
parallel_for("AsynchronousFor",N,F);
// parallel_reduce with Scalar as result is synchronous
parallel_reduce("synchronoussum",N,Fr,result);
// parallel_reduce with Reducer constructed from scalar is synchronous
parallel_reduce("synchronousmax",N,Fr,max<double>(result));
// parallel_reduce with any type of view as result is asynchronous
Kokkos::view<double,cudaHostRinnedspace> result_v("R");
parallel_reduce("Asynchronoussum",N,Fr,result_v);
// Even with unmanaged view, and wrapped into Reducer
Kokkos::view<double,Hostspace> result_hv(&result);
parallel_reduce("Asynchronousmax",N,Fr,max<double>(result_hv));
// scans without total result argument are asynchronous
parallel_scan("Asynchronousscan",N,Fs);
// scans with total result argument same rules as parallel_reduce
parallel_scan("synchronousscanTotal",N,Fs,result);
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: CUDA Stream lnterop

• Initial step to full coarse grained tasking

• Discuss in more detail in future directions

• For now: make Kokkos dispatch use user CUDA streams

• Allows for overlapping kernels: best for large work per iteration, low count

// Create two Cuda instances from streams
cudastream_t streaml,stream2;
cudastreamCreate(&streaml);
cudastreamCreate(&stream2);
kokkos::cuda cudal(streaml), cuda2(stream2);

// Run two kernels which can overlap
para11e1_for("F1",RangePolicy<Kokkos::cuda>(cudal,N),F1);
para11e1_for("F2",RangePolicy<kokkos::cuda>(cuda2,N),F2);
fence();



DOE Machine Announcements flodh
Mod

• Now publicly announced that DOE is buying both AMD and Intel GPUs

• Argonne: Cray with Intel Xeon + Intel Xe Compute

• ORNL: Cray with AMD CPUs + AMD GPUs

• NERSC: Cray with AMD CPUs + NVIDIA GPUs

• Have been planning for this eventuality:

• Kokkos ECP project extended and refocused to include developers at

Argonne, Oak Ridge, and Lawrence Berkeley - staffing is in place

• HIP backend for AMD: main development at ORNL

The current ROCm backend is based on a compiler which is now deprecated ...

• SYCL for Intel: main development at ANL

• OpenMPTarget for AMD, Intel and NVIDIA, lead at Sandia



OpenMP-Target Backend

• With Clang mainline we got a working compiler

• Only "officially" supported compiler right now

• Adding IBM XL, AMD aomp, Intel, NVIDIA and GCC as soon as we can verify

them

• Testing in place

• Basic capabilities are working:

• RangePolicy, MDRangePolicy

• Data Movement

• parallel_for/reduce

• Performance pretty spotty



: HIP Backend
CUDA/ HIP Status

• Restart of the AMD work we previously did

• Work lead by ORNL 1000u)
• Basic capabilities are in place CC10 800

• RangePolicy, MDRangePolicy
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: OneAPI Backend
• Tools

• DPC++ (OneAPI/SYCL compiler from Intel based on clang)

Need OneAPI extensions to implement Kokkos

— Unnamed lambda support

— Primitives for host vs. device memory

• NEO Driver

Weird bugs: Couldn't pass pointers in a struct to device

• Longer term (may be years from now)

Intel OneAPI extensions proposed for SYCL

• Early days

• Parallel_for

• USMMemory space Rank 1

• Functionality testing on Gen 9 hardware



: Feature Timeline

Feature o_
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Modern CMake wants a clean separation of
'building' and 'using' libraries

■ CMake 3 (first "modern" version) released June 2014

■ Clean separation of building and using (targets and properties) has been recommended method since

release

■ All options should be applied specifically to TARGETS (libs, exes)

■ No more directly modifying CMAKE_CXX_FLAGS

■ No more global setting include directories and compiler flags

■ Your compiler/linker flags should be specific and exact to an individual library

■ All include directories and compiler flags should be clearly defined as:

■ PUBLIC: Flag needed to build Kokkos and needed downstream to use Kokkos

Kokkos headers

Flags like —fopenmp or CUDA flags needed for the backend

Minimum C++ standards

■ PRIVATE: Flag only needed to build Kokkos (not needed to use)

Certain warning flags

Certain optimization flags



Pw
What should CMake look like for using Kokkos?h.
A single CMake function should populate build with alI the necessary flags to build correctly and
all the optimization/architecture flags to improve performance

find package(Kokkos REQUIRED)

add library(target ${SOURCES})

target link libranes(target PUBLIC Kokkos::kokkos)

find package(Kokkos REQUIRED)

add library(target ${SOURCES})

target link libranes(target PRIVATE Kokkos::kokkos)

KOKKOS_CHECK(

DEVICES CUDA OPENMP

OPTIONS CUDA_RELOCATABLE_DEVICE_CODE

ARCH VOLTA70

)

I need Kokkos to build — and
anyone using my API needs
Kokkos

I need Kokkos to build — but
using my API does not require
Kokkos

Assert that the Kokkos
configuration found meets
expectations

Installed Kokkos: cmake —DKokkos_ROOT=<PREFIX>

In-tree Kokkos: add_subdirectory(kokkos)



Building Kokkos
Sao
Mod
WpmNis

• cmake ${KOKKOS_SOURCE}—D{OPTION}:BOOL=ON —D{OPTION}:STRING=NAME

• Via command Line

• To get a list of options, use ccmake

• ccmake —DCMAKE_CXX_COMPILER={} ${KOKKOS_SOURCE}

BUILD_SHARED_LIBS
BUILD_TESTING
CMAKE_BUILD_TYPE
CMAKE_EXECUTABLE_FORMAT
CMAKE_INSTALL_PREFIX
CMAKE_OSX_ARCHITECTURES
CMAKE_OSX_DEPLOYMENT_TARGET
CMAKE_OSX_SYSROOT
Kokkos_ARCH_AMDAVX
Kokkos_ARCH_ARMV80
Kokkos_ARCH_ARMV81
Kokkos_ARCH_ARMV8_THUNDERX
Kokkos_ARCH_ARMV8_THUNDERX2
Kokkos_ARCH_BDW
Kokkos_ARCH_BGQ
Kokkos_ARCH_EPYC
Kokkos_ARCH_HSW
Kokkos_ARCH_KEPLER30
Kokkos_ARCH_KEPLER32
Kokkos_ARCH_KEPLER35
Kokkos_ARCH_KEPLER37
Kokkos_ARCH_KNC

Paqe 1 of 4
FF

ON

ACHO
/usr/local

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

ui d s ared raries
Press [enter] to edit option Press [d] to delete an entry
Press [c] to configure

 Press [h] for help Press [q] to quit without generating 
ress [t] to toggle advanced mode (Currently Off)



Building and using makes "smaller" interfaces between
libraries, solves transitive dependencies

Application should only know
about its direct dependencies

target_link_libraries(Ifpack2) makes C++
App depend transitively on Kokkos flags
(PUBLIC)

Automake requires collecting and
forwarding, e.g.
KokkosKernels CXX FLAGS =

$(LOCAL_CXX_FLAGS) +
$(Kokkos_CXX_FLAGS)

target_link_libraries(Ifpack2_C) does not
make C App depend transitively on
Kokkos flags (PRIVATE)



,, Kokkos Tools
• Profiling

• New tools are coming out

Sao
Mod
liboluis

• Worked with NVIDIA to get naming info into their system

• Auto Tuning

• Internal variables such as CUDA block sizes etc.

• User provided variables

• Same as profiling: will use dlopen to load external tools

• Debugging

• Extensions to enable clang debugger to use Kokkos naming information

• Static Analysis

• Discover Kokkos anti patterns via clang-tidy



Kokkos Tools Integration with 3rd Party is=

• Profiling Hooks can be subscribed to by tools, and currently have support for TAU,

Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support

• HPCToolkit also has special functionality for models like Kokkos, operating outside of

this callback system

TAU Example:
1111111111E

Name Exclusive TIME
 IfinnnlliMilinMEMINMENEMMEMIN

Inclusive TIME Calls Child Calls

. •.TAU application 0.143 96.743 1

8 2. •Comm::exchange 0.001

067
6 14

.. •Comm::exchange_halo 0.001 .94.702 6
, •Comm:.update_halo 0.004 31.347 95

1,31833402

•Kokkos::parallel_for CommMPl::halo_update_pack [device=0] 0.002 0.506 190 190
•Kokkos::parallel_for CommMPl::halo_update_self [device=0] 0.003 0.597 380 380

•Kokkos::parallel_for CommMPl::halo_update_unpack [device=0] 0.002 0.97 190 190
•MPI_Irecv0 0.001 0.001 190 0
❑ MPI_Send() 29.268 29.268 190 0

•MPI_Waito 0.001 0.001 190 0

•OpenMP_Implicit_Task 0.041 1.985 760 760
•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMR:Ta 0 0.504 190 190
•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMR:Ta 0.08 0.968 190 190
•OpenMP_Parallel_Region void Kokkos::parallel_for<Kokkos::RangePolicy<( 0.001 0.594 380 380

•OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMI 0.489 0.489 190 0

•OpenMP_Sync_Region_Barrier parallel jor<Kokkos::RangePolicy<CommMF 0.875 0.875 190 0

•OpenMP_Sync_Region_Barrier void Kokkos::parallel_for<Kokkos::RangePol 0.58 0.58 380 0



Kokkos Tools Static Analysis
• clang-tidy passes for Kokkos semantics

• Under active development, requests welcome

• IDE integration

Sao
Mod
WpmNis

Kokkos::parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& {

int a 0;

Kokkos::parallel_for(TTR(t, 1), [&](int i) { Lambda capture modifies reference capture variable 'a' that is a local
a += 1;
cv() += 1;

});
});

Kokkos::parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& {

int b = 0;
auto lambda = [&](int i) { Lambda capture modifies reference capture variable 'b' that is a local

b += 1;
cv() += 1;

};
Kokkos::parallel_for(TTR(t, 1), lambda);

} ) ;



: Aligning Kokkos with the C++ Standard
• Long term goal: move capabilities from Kokkos into the ISO standard

• Concentrate on facilities we really need to optimize with compiler

Move accepted features
to legacy support

t

Kokkos Legacy
a

Implemented legacy
capabilities in terms of
new C++ features

rm. Kokkoluslill

C++ Backport Ammob-

Propose for C++

t

C++ Standard

J

flodh
IOW
liboluis

Back port to compilers we got



C++ Features in the Works Sandia
Ikdional
Lobotomies

• First success: atomic_ref<T> in C++20

• Provides atomics with all capabilities of atomics in Kokkos

• atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

• Next thing: Kokkos::View => std::mdspan

• Provides customization points which allow all things we can do with

Kokkos::View

• Better design of internals though! => Easier to write custom layouts.

• Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks

• We hope will land early in the cycle for C++23 (i.e. early in 2020)

• Production reference implementation: https://github.com/kokkos/mdspan 

• Also C++23: Executors and Basic Linear Algebra: https://github.com/kokkos/stdblas 



Li n ks
■ https://github.com/kokkos Kokkos Github Organization

nsadaliabond
• Kokkos: Core library, Containers, Algorithms

• Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)

• Kokkos-Tools: Profiling and Debugging

• Kokkos-MiniApps: MiniApp repository and links

• Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

• https://cs.sandia.gov Publications (search for 'Kokkosi)

• Many Presentations on Kokkos and its use in libraries and apps

• http://on-demand-gtc.gputechconf.com Recorded Talks

• Presentations with Audio and some with Video

• https://KoKKosteam.slacK.cor Slack channel for user support




