This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

T ra
EXPSCALE ComPUTING PROJECT ECP Tut Orial: ASC
Getting Started with Containers on HPC

Shane Canon’, Sameer Shende?, Andrew J. Younge®

'Lawrence Berkeley National Lab 2University of Oregon
scanon@lbl.gov sameer@cs.uoregon.edu

3Sandia National Labs
ajyoung@sandia.gov

‘Nersc [ @ JEeeN

. A U.S. DEPARTMENT OF Off
exasca I eprOJ eCt (@) rg Sandia National Laboratoriesis amultimission |aboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned

Sandia
National
Laboratories

subsidiary of Honeywell Internationa Inc., for the U.S. Department of Energy’s National Nuclear Security Adm inistration under contract DE-NA0003525. C|ence



Outline

* 14:00 — 14:30 Introduction to Containers in HPC (Younge)

* 14:30- 15:00 How to build your first Docker container (Canon)

* 15:00 — 15:30 How to deploy a container on a supercomputer (Canon)
« 15:30 — 15:45 Best Practices (Canon)

* 16:00 — 16:30 -- Break —

* 16:30 — 17:00 Running an HPC app on the E4S container (Shende)
*17:00 - 17:30 How to build a Singularity container image (Younge)
*17:30 - 18:00 Success Stories & Summary (Canon)

PPPPPPP

> Link: tinyurl.com/sc19tut \=




Introduction to
Containers in HPC

=
— \
\ EXASCARLE
) COMPUTING
\ PROJECT
—



What are Containers

* A lightweight collection of executable software that encapsulates everything
needed to run a single specific task

— Minus the OS kernel
— Based on Linux only

* Processes and all user-level software is isolated
 Creates a portable™ software ecosystem

 Think chroot on steroids

* Docker most common tool today
— Available on all major platforms
— Widely used in industry

NN
— Integrated container registry via Dockerhub dOC kQ r



5 Hypervisors and Containers
* Type 1 hypervisors insert layer below host OS

* Type 2 hypervisors work as or within the host OS

» Containers do not abstract hardware, instead provide “enhanced chroot” to

create isolated environment

 Location of abstraction can have impact on performance

« All enable custom software stacks on existing hardware

App

App

Type 1 Hypervisor Type 2 Hypervisor Containers

—

’~ \
\ J EXASCALE
COMPUTING

— \(\.— ) PROJECT



6 Background

» Abstracting hardware and software resources has had profound impact on
computing

* Virtual Machines to Cloud computing in the past decade
— Early implementations limited by performance
— HPC on clouds: FutureGrid, Magellan, Chameleon Cloud, Hobbes, etc
— Some initial successes, but not always straightforward

» OS-level virtualization a bit different
— User level code packaged in container, can then be transported
— Single OS kernel shared across containers and provides isolation
— Cgroups traditionally multiplexes hardware resources
— Performance is good, but OS flexibility is limited

T

’. \
\ ) EXASCALE
) COMPUTING

PROJECT

: \




Containers in Cloud Industry

« Containers are used to create large-scale loosely coupled services

« Each container runs just 1 user process — “micro-services”

3 httpd containers, 2 DBs, 1 logger, etc

» Scaling achieved through load balancers and service provisioning

« Jam many containers on hosts for increased system utilization

* Helps with dev-ops issues

Same software environment for developing and deploying

Only images changes are pushed to production, not whole new image (CoW).

Develop on laptop, push to production servers

Interact with github similar to developer code bases

Upload images to "hub” or “repository” whereby they can just be pulled and provisioned

P

=
§ EXASCALE
) —) COMPUTING

PROJECT

\



Containers

« Containers are gaining popularity for software management of distributed
systems

* Enable way for developers to specify software ecosystem

« US DOE High Performance Computing (HPC) resources need to support
emerging software stacks

— Applicable to DevOps problems seen with large HPC codes today
— Support new frameworks & cloud platform services

* But HPC systems are very dissimilar from cloud infrastructure
— MPI-based bulk synchronous parallel workloads are common
— Scale-out to thousands of nodes
— Performance is paramount

T

’. \
\ EXASCALE

—) COMPUTING
PROJECT

\



Container features in HPC

BYOE - Bring-Your-Own-Environment

= Developers define the operating environment and system libraries in which their application runs.

Composability
= Developers explicitly define how their software environment is composed of modular components as
container images,

= Enable reproducible environments that can potentially span different architectures.

Portability

= Containers can be rebuilt, layered, or shared across multiple different computing systems
= Potentially from laptops to clouds to advanced supercomputing resources.

Version Control Integration
= Containers integrate with revision control systems like Git

= |nclude not only build manifests but also with complete container images using container registries like
Docker Hub.

P

\
\ EXASCALE

—) COMPUTING
PROJECT

\



10

Container features not wanted in HPC

 Overhead
— HPC applications cannot incur significant overhead from containers

 Micro-Services
— Micro-services container methodology does not apply to HPC workloads
— 1 application per node with multiple processes or threads per container

 On-node Partitioning
— On-node partitioning with cgroups is not necessary (yet?)

 Root Operation
— Containers allow root-level access control to users
— In supercomputers this is unnecessary and a significant security risk for facilities

e Commodity Networking
— Containers and their network control mechanisms are built around commodity networking (TCP/IP)
— Supercomputers utilize custom interconnects w/ OS kernel bypass operations

T

’. \
\ EXASCALE

—) COMPUTING
PROJECT

\



HPC Containers

= Docker not good fit for running HPC workloads
= Security issues
= Can't allow root on shared resources
= Lack of HPC architecture support

= No batch integration

-
docker

= Assumes local resources

= Assumes commodity TCP/IP
= Many different container options in HPC

Shifter Singularity Charliecloud

(e
\S)

000

o

»
<

SHIFTER

Charliecloud

11

EEEEEEEE
CCCCCCCCC
PPPPPPP



12

Developing Container Vision

= Support software dev and testing on laptops
= Working builds that then can run on supercomputers
= Dev time on supercomputers is expensive
= May also leverage VM/binary translation
= Let developers specify how to build the env AND app
= |Import and run container on target platform
= Many containers, but can have different code “branches”
= Not bound to vendor and sysadmin software

= Focus on Interoperability
= Provide containerized services coupled with simulations
= Developing mechanisms to support services
= Performance matters
= \Want to manage permutations of architectures and compilers

= Ensure container implementations on HPC are performant
= Keep features to support future complete workflows

T

—y \
\)

\

) EXASCALE
COMPUTING
PROJECT



13

This tutorial will show you:

* How to build your first Docker container.
* How to run a Docker container on a supercomputer with Shifter.
« How to build your first Singularity container.

« How to use the Extreme-scale Scientific Software Stack (E4S) container image.
— And a bit about Spack

 And maybe some best practices and lessons learned.

PPPPPPP




14

Tutorial Link

tinyurl.com/ecp20tut

https://supercontainers.qgithub.io/ecp2020-tutorial/

PPPPPPP




Tutorial Training Accounts

1. EC2 instance login
2. Cori training account




ECP

Questions?

Next: learn how to work with your first container!

. ;y «,,“:‘. U.S. DEPARTMENT OF Office of N VS-%A
exascaleproject.org NV ENERGY Science Na,,-,,na,més“wmdm,«m;;?\w




