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Tensors
• N-way array used to represent multi-relationship data

• E.g., word frequencies in Amazon product rankings: 4§6
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• Canonical Polyadic (CP) tensor decomposition
• Approximate tensor as a sum of rank-1 tensors

• Discovers dominant relationships in data
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CP via Alternating Least-Squares (ALS)
• CP minimization problem

• This assumes Gaussian model for tensor, resulting in least-squares

min 11X M112F s.t. M = al b1 C1 + • • • + aR bR c'R

• Solve via alternating linear least squares
• Fix all but one term, solve linear least squares problem, iterate

Using...

M(i) = A(C 0 B)T

M(2) = B (C A)T

M(3) = C (B A)T

Repeat until convergence...

min X(1) — A(C O B)T
A

min X(2) — B (C O A)T
B

min X(3) — C (B O A)T
c

2F

2F

2F
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Repeat until convergence...

A = X(1)(CED B)(CT C * BT B)1-

B = X (2)(C ® A)(CT C * AT A)t

C = X (3)(B ® A)(BT B * AT A)t

MTTKRP

• Matricized Tensor Times Khatri-Rao Product (MTTKRP):
• Most expensive part of CP-ALS

v = x(3)(A O B)  > v (i , 1) = x(i, j,k)a(j,l)b(k,l), l= 1, . . . , R
(i,j,k)EN(X)
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GenTen : Software for Generalized Sandia
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Canonical Polyadic Tensor Decompositions

• New software package Genten developed at SNL
• E. Phipps, T. Kolda, D. Dunlavy, G. Ballard, T. Plantenga
•
•

Based on C++ port of Matlab Tensor Toolbox
Publicly available at https://gitlab.com/tensors/genten

4110 GitLab moms, a.. a, +ohs+. 4111r1E1;

• Implements full CP-ALS algorithm for sparse (and dense)
Ow*
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genten.

tensors, as well as GCP algorithm for sparse tensors
AnanAlcs

0 Repos.v Star 2 Po*

Software for generenzetl polyalic tensor decompoeltlona

0 - 0itftitlab.con.teneors/penteri. • Gk.

• Incorporates shared memory parallelism for
emerging manycore hardware using Kokkos
• Multicore CPUs via OpenMP, pThreads
• GPUs via Nvidia Cuda (Intel and AMD coming soon)
• Intel Xeon Phi (a.k.a. KNC/KNL) via OpenMP

• Implements parallelism for all performance-critical
operations
• MTTKRP, tensor inner product, norms, ...
• Can use optimized third-party libraries (MKL, cuBLAS, ...)
• Natively handles data transfers between CPU, GPU memory

• Callable from Matlab Tensor Toolbox!

• performance
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Applications & Libraries ituaillig=

Kokkos
performance portability for C++ applications

Multi-Core

F9nr r r

r W •

ihs,DDR

Many-Core APU CPU+GPU

H.C. Edwards, C. Trott, et al., https://github.com/kokkos/kokkos



Genten CP-ALS Performance*
• Synthetic data tensor (double precision)

• 30K x 40K x 50K, 10M non-zeros, R = 128 (perf_CpAlsRandomKtensor performance test in Genten)

• 10 CP-ALS iterations

• Architectures
• HSW (OpenMP): Intel Xeon E5-2698v3 CPU, 2.3 GHz, 2 sockets, 16 cores/socket, 2 threads/core

• KNL (OpenMP): Intel Xeon Phi 7250, 68 cores (using up to 64), 4 threads/core, 16 GB HBM in cache mode

• K80 (Cuda): Nvidia Kepler K80 GPU, 12 GB GDDR5

• P100 (Cuda): Nvidia Pascal P100 GPU, 16 GB HBM
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*E. Phipps and T. Kolda, Software for Sparse Tensor Decomposition on Emerging Computing
Architectures, SIAM SISC, vol. 41 (3), 2019, (https:/...org/10.1137/18M121069' ).
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Performance on Real Tensors
• Look at Genten MTTKRP performance on several tensors from the FROSTT

collection
• Shaden Smith et al, https://frost.io 

• Fixed 10 iterations of CP-ALS
• R =16 for all tests

Name Order Dimensions Nonzeros

LBNL 5 1.6K L 4.2K E 1.6K E 4.2K E 868K 1.7M
Uber 4 183 E 24 E 1.1K E 1.7K 13M
Enron 4 6.0K E 5.7K E 244K E 1.2K 54M
VAST 5 165K E 11K E 2 CI 100 E 89 26M
NELL2 3 12K E 9.1K E 29K 77M

Delicious3 3 532K CI 17M E 2.5M 140M

• Compare GenTen MTTKRP to SPLATT on HSW/KNL and ParTI! on GPU
• SPLATT: Shaden Smith et al, http://glaros.dtc.umn.edu/gkhome/splatt/overview

Compressed Sparse Fiber (CSF) storage format (Smith and Karypis, 2015)

Use default 2 CSF modes, with and without tiling

• ParTl!: J. Li et al, ittps://gitnub.com/npcgarage/Nari i 
Only works with order-3 and order-4 tensors

Requires double-precision atomics (no K80)
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GenTen Speedup for Best MTTKRP

Algorithm

1 1
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Review of Generalized CP (GCP)*

• Standard CP optimization problem:

min F(X,M) = X — M 12F = >3x; — /7-02

s.t. M = B, = o 111 c1+ • • • + aR bR cR

d1

C1

+ + • • • +
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• Objective function derived through maximum likelihood estimation
assuming the data tensor (X) entries are i.i.d. Gaussian:

Xi 
,,,i_mi)2/(2a2,

 >)  — N(xilmi,a) = 270_2e

L(M1X)

— log L(M1X) =

= 11 N(xilmi) a)  

(xi mi)2

2a2

1
—
2 
log(27a2)) — 

m ) 2

*Hong, Kolda, Duersch. Generalized Canonical Polyadic Tensor Decomposition. SIAM Review, 2019.
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Review of Generalized CP (GCP)*

• Generalize to other types of data through arbitrary loss
function:

p(461i)

mi) = p(xilf 1(mi))

1
loss function

1
link function

min F(X, M) = y,f(x;, mi)

s.t. M = 11A, B, C1

Distribution Li ion ion

NC47 a) (x-m)2 x,

(k,a) xl(m+f) + log(m+E) x > 0, 0

Poisson(A) — x log(m+e) xEN,m>0

log A - XM x E N, m E R

Bernoulli(p) =1)/(1-11) log(m+1)—xlog(m+e) x E 0,1 ,

log(p/ (1 — p)) log(1+e xm xE{0,1},mER

*Hong, Kolda, Duersch. Generalized Canonical Polyadic Tensor Decomposition. SIAM Review, 2019.
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Fitting GCP Model

min F(X,M) f (xi, mi) s.t. M = Ilk, • . . 'AA

• Lose the least-squares structure underlying ALS-type algorithms. Instead

pursue gradient-based optimization approach.

• Define tensor Y such that
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Of 
y(ii,• • • ,id) = yi = 

Om
(xi, mi)

• Then gradient of objective function given by

O
Gk = 

F 
= (k)(Ad • • • 0 Ak+i 0 Ak-1 0 • • • 0 A1) MTTKRP!

OAk

• Unfortunately, Y is in general dense, even when X is sparse, making
standard optimization infeasible. Instead, employ Stochastic Gradient
Descent (SGD) where Y is only randomly sampled
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Sampling for SGD*
• Given index set S2, define : 5i; = wiy" E

0, i c2

=• SGD theory only requires

• Uniform sampling
• Sample s indices uniformly with replacement:

• Will miss nonzeros if X is very sparse
= §i •

nd

• yi, nd fink

• Stratified sampling
• Sample p nonzeros and q nonzeros uniformly with replacement

• Requires searching X for each sample to determine if zero or nonzero

5%i
N 

• Yi, E Qnz

nd—N yi, Qz

N = nnz(X)

• Semi-stratified sampling
• Sample p nonzeros and q "zeros" uniformly with replacement

• Correct for sampled zeros that were really nonzeros

nd
Qnz• (yi ci) • Ci, Of
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52i = =  (0, mi)
nd Omq qi • — • Yi, E Qz

*Kolda, Hong, Duersch. Stochastic Gradients for Large-Scale Tensor Decomposition. arXiv 1906.01687, 2019.
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Performance Considerations

• Even for semi-stratified we use stratified for estimating objective
function
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• Stratified sampling requires efficient way of determining whether a
given sample corresponds to a zero or nonzero
• Sort tensor indices lexicographically and do binary search

i O(log(N)) search, no increase in storage
I Oversample Y tensor, sort, and do bulk search

• Construct hash-map with tensor indices as keys
0(1) search but O(N) increase in storage
Use Kokkos::UnorderedMap for parallel, lock-free map construction

• For gradient evaluation, explicitly construct sampled Y tensor and
pass to MTTKRP
• Allows use of highly optimized MTTKRP kernels from CP-ALS

12



GCP-SGD (ADAM) Algorithm
1: function GcPADAM(X, {Ak}k=1 d, K, 7)

2: for k = 1, . . . , d do
3: Gk, Mk, Vk zero matrix of size nk x r

4: SAMPLEFOROBJECTIVE(X)

5: F COMPUTEOBJECTIVEM, {Ak})
6: while f > TOLERANCE and at most h., iterations do
7: Save copies of {Ak}, {Mk}, {Vk},
8: for T iterations do
9: g SAMPLEFORGRADIENT(X)

10: {GO VITTKR g, {Ak})

11: {Ak}, {Mk}, flikt

12: ADAM({ GO, {Ak}, {Mk}, fvkl)
13: {Ak} CLIP({Ak})

14: COMPUTOBJECTIV0f, {Aid)

15: if f > Fold then
16: Restore saved copied of {Ak}, {Vk}, {Vk},
17: Increase learning rate

Sandia
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Comparing Sampling Approaches
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• Chicago Crime Tensor (frostt.io)

• 6186 x 24 x 77 x 32, -533k nonzeros,
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Improving Gradient Computation

• Idea: For semi-stratified, fuse sampling
and MTTKRP kernels
• Avoid explicit construction of sampled tensor
• Compute MTTKRP in all modes simultaneously
• Currently restricted to atomics for MTTKRP

factor matrix update
• Should work well for GPU

• What about architectures without fast
atomics: "Sparse Array"
• Put MTTKRP contribution for each nonzero in

Y in a separate row of temporary buffer along
with row index (no thread contention)

• Reduce entries with the same row index
(parallel reduce-by-key)

• Perform ADAM update and clip with only the
nonzero rows

• Should work well when # samples « mode
length
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1:

2:

3:

4:

5:

function FUSEDUPDATE(X, {Ak}, {Gk}, {Mk}, {Vk})
parallel for j = 1, , s do

Y, • • • , SEMISTRATIFIEDSAMPLE(Xj)

for k = 1, , d do

Gk(ik,:) Gk(ik,:) + Y • rijk Aj(ij, :)
6: {A}. IVIJ
7: ADAM({ GO, {Ak}, {Mk}, {Vk})
8: {Ak} CLIP({Ak})

1:

2:

3:

4:

5:

6:

7:

8:

9:

function SPARSEARRAYUPDATE(X,

for k = 1, . . . d do

Gk <— zero matrix of size s x

Rk zero vector of size s

parallel for j = 1, , s do

Y,   SEMISTRATIFIEDSAMPLE(Xj)

for k = 1, , d do
Rk(j) ik

ak(j,:) *flik :)

10: for k = 1, n do
11: Rk, Gk, tk PARALLELREDUCEBYKEY(Rk, Gk)

12: parallel for j = 1, , tk do
13: ik Rk(1)

14: Ak(ik):), :), Vk(ik,:))

15: ADAM(GkU, :), Ak(ik, :), Mk(ik,:), Vk(ik,:))
16: Ak(ik,:) CLIP(Ak(ik, •))

{Ak}, {Mk}, {Vk})

r N Sample MTTKRPs

> Row keys

> MTTKRP
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GCP-SGD Performance Comparison
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GenTen Speedup over Matlab TTB
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Summary & Conclusions

■ New software package Genten
■ Publicly available at https://gitlab.com/tensors/genten 
■ POC: Eric Phipps, etphipp@sandia.gov 

■ Built on Kokkos for shared-memory parallelism and high performance,
portable to emerging parallel architectures

■ Supports traditional CP-ALS as well as new GCP-SGD method

■ Callable directly from Matlab Tensor Toolbox through GenTen-Matlab
MEX interface

■ Enables high productivity and analysis power of the Matlab Tensor Toolbox
accelerated by fast architectures such as GPUs!

■ Future Work
■ Investigate number of gradient samples vs. MTTKRP algorithms

■ Continue to improve sampling/gradient kernels

■ Sparse array approach motives asynchronous SGD (a la HogWild!)

Sandia
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Total MTTKRP Time per Nonzero
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Tensor Sorting Cost

■ Permutation method requires N sorting operations

■ Sort tensor coordinates for each mode

■ Small, but not inconsequential cost

■ Sorting methods used

■ OpenMP: Parallel stable sort from Intel

■ Cuda: Thrust stable sort

Sorting time divided by avg. (permuted) CP-ALS iteration time

Architecture LBNL Uher Enron VAST NELL2 Delicious

HSW 0.6 4.3 9.2 5.3 6.2 4.0
KNL 1.0 5.5 8.6 1.3 7.6 4.9
K80 1.1 3.0 3.3 3.3 2.6
P100 0.5 1.3 4.2 3.6 4.6
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SGD-ADAM Convergence with Varying

Sample Sizes

le7

0
1 1 1
20 40 60

Epoch

►
80 100

Sandia
National
Laboratories



MTTKRP

• Sparse tensors stored in coordinate (COO) format
• List of nonzero values and coordinates (subscripts)

x c -.3x7x4 R = 4

Sandia
National
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C = X (3)(A o B)   k, 1) = x(i, = 1, . . . , R
(i,j,k)E.Ai(x)

X.subs

3 6 2

1 1 4

2 7 3

1 4 4

2 5 1

3 1 2

X.vals

x

A

O

B
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Serial MTTKRP Algorithm

Sptensor X;

Ktensor u;

FacMatrix v;

const int nnz = X.nnz();

for (int i=0; i<nnz; ++i)

{

double *tmp = new double[R];

const size t k = X.subscript(i,n);

const double x_val = X.value(i);

for (int j = 0; j < R; ++j)

tmp[j] = x_val;

Sandia
National
Laboratories

Matricized Tensor Times Khatri-Rao Product

(MTTKRP)

• Factor matrices stored row-wise (Kokkos::LayoutRight)

V = X(n) (u-N 0 un+1 0 Li-n-1 u-1)

v = xiu1(ii • • • • Un—1 (in 1, Oun+l(in+1, 0 • • • UN(iN,

iE.Ai(X)

for (int m = 0; m < N; m++)

if (m != n) {

const double *row = u[m].rowptr(X.subscript(i,m));

for (int j = 0; j < R; ++j)

tmp[j]*= row[j];

}
}

for (int j = 0; j < R; ++j)

v.entry(k,j) += tmp[j];

delete [] tmp;

}

25



Flat Parallelism Over Tensor Non-zeros

typedef Kokkos::RangePolicy<ExecSpace> Policy;

const int nnz = X.nnz();

Policy policy(0,nnz);

Kokkos::parallel for( policy,

KOKKOS_LAMBDA(const int i)

{

double *tmp = new double[R];

const size t k = X.subscript(i,n);

const double x_val = X.value(i);

for (int j = 0; j < R; ++j)

tmp[j] = x_val;

for (int m = 0; m < N; m++)

if (m != n) {

const double *row = u[m].rowptr(X.subscript(i,m));

for (int j = 0; j < R; ++j)

tmp[j]*= row[j];

}
}

for (int j = 0; j < R; ++j)

Kokkos::atomic_add(&v.entry(k,j), tmp[j]);

delete [] tmp;

});

Sandia
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Parallelize MTTKRP over tensor non-zeros

Multiple threads writing to same row
of V requires atomic update (not the
only way to do it)
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Flat Parallelism Over Tensor Non-zeros

typedef Kokkos::RangePolicy<ExecSpace> Policy;

const int nnz = X.nnz();

Policy policy(0,nnz);

Kokkos::parallel for( policy,

KOKKOS_LAMBDA(const int i)

{

double *tmp = new double[R];

const size t k = X.subscript(i,n);

const double x_val = X.value(i);

for (int j = 0; j < R; ++j)

tmp[j] = x_val;

for (int m = 0; m < N; m++)

if (m != n) {

const double *row = u[m].rowptr(X.subscript(i,m));

for (int j = 0; j < R; ++j)

tmp[j]*= row[j];

}
}

for (int j = 0; j < R; ++j)

Kokkos::atomic_add(&v.entry(k,j), tmp[j]);

delete [] tmp;

});

Sandia
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Improvements in MTTKRP implementation:
■ Thread teams to process in parallel:

■ Tensor non-zeros
■ Factor matrix columns

■ Thread-scalable mechanism for tmp buffer
■ Kokkos scratch-pad memory (MTTKRP-A)

■ Thread-local, compile-time polymorphic arrays
(MTTKRP-B)

■ Blocking on R for better cache
performance, occupancy

■ Alternatives to atomics
■ Thread privatization buffers

27



Permuted MTTKRP Inspired by COO

Mat-Vec
• Poorly structured tensors result in high atomic contention

• COO sparse matrix-vector product leverages sorting by increasing row-index

• Apply this to coordinate-based sparse tensor format
• Don't want multiple copies of tensor with different sortings
• Instead, compute permutation array p so that X.subscript(p(:,n),n) is increasing
• Each thread only writes when row index X.subscript(p(:,n),n) changes
• Substantially reduces number of atomic updates and improves their locality

X.perm

2 2 5

4 6 1

3 4 6

5 5 3

1 1 2

6 3 4

X.subs X.vals

3 6 2

1 1 4

2 7 3

1 4 4

2 5 1

3 1 2

x

A

®

B c
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MTTKRP Percentage of Peak Bandwidth
NNZ

GB/s = ((NR + 3) x sizeof(Real) + N x sizeof(Ordinal)) x
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• MTTKRP-A: Kokkos scratch-pad arrays

• MTTKRP-B: Compile-time polymorphic arrays

40—
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R
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• MTTKRP-C: Permutation-based MTTKRP
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