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Tensors 2=

= N-way array used to represent multi-relationship data

&éb

= E.g., word frequencies in Amazon product rankings:

user

= Canonical Polyadic (CP) tensor decomposition
= Approximate tensor as a sum of rank-1 tensors
= Discovers dominant relationships in data
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x(i, j, k) = m(i, j, k) Zazl (4, De(k, 1)




CP via Alternating Least-Squares (ALS) (@&

= CP minimization problem
= This assumes Gaussian model for tensor, resulting in least-squares

n;vitn X —M|% st. M=ajobyoci+---+arobgocg

= Solve via alternating linear least squares
= Fix all but one term, solve linear least squares problem, iterate

Using... Repeat until convergence... Repeat until convergence...
. T2
My = ACoB)” | | MrIXm —ACoB, A=Xy(CeB)(C'CxB'B)!
T T
M2y = B(C o A)T = mfi;n X2y — B(C o A)T j: = B= T)C(Q)(C’ ©A)CCxA A)T
_ i C =X3(BoA)(B"BxATA)
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& MTTKRP

= Matricized Tensor Times Khatri-Rao Product (MTTKRP):
= Most expensive part of CP-ALS

V=X5A0B) = v(i.)= Y  a(ijka@bkl), I=1,....R
(i,5,k) EN' ()




GenTen : Software for Generalized =,

Laboratories

Canonical Polyadic Tensor Decompositions

= New software package Genten developed at SNL
= E. Phipps, T. Kolda, D. Dunlavy, G. Ballard, T. Plantenga
= Based on C++ port of Matlab Tensor Toolbox
= Publicly available at https://gitlab.com/tensors/genten

= Implements full CP-ALS algorithm for sparse (and dense) | =
tensors, as well as GCP algorithm for sparse tensors

" Incorporates shared memory parallelism for g
emerging manycore hardware using Kokkos
=  Multicore CPUs via OpenMP, pThreads o

-----

=  GPUs via Nvidia Cuda (Intel and AMD coming soon) e

™ pertormance

= Intel Xeon Phi (a.k.a. KNC/KNL) via OpenMP e

xxxxxxxxx

3 months ago

= |Implements parallelism for all performance-critical
operations

=  MTTKRP, tensor inner product, norms, ...
= Can use optimized third-party libraries (MKL, cuBLAS, ...)
= Natively handles data transfers between CPU, GPU memory

= Callable from Matlab Tensor Toolbox!



What is Kokkos? (i

LAMMPS CIVIFINE
Albany SPARC

SIERRA

Drekar Applications & Libraries

Kokkos

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

H.C. Edwards, C. Trott, et al., https://github.com/kokkos/kokkos




Genten CP-ALS Performance™ ) 2=,

= Synthetic data tensor (double precision)

= 30K x 40K x 50K, 10M non-zeros, R = 128 (perf_CpAlsRandomKtensor performance test in Genten)
= 10 CP-ALS iterations

= Architectures
= HSW (OpenMP): Intel Xeon E5-2698v3 CPU, 2.3 GHz, 2 sockets, 16 cores/socket, 2 threads/core
= KNL (OpenMP): Intel Xeon Phi 7250, 68 cores (using up to 64), 4 threads/core, 16 GB HBM in cache mode
= K80 (Cuda): Nvidia Kepler K80 GPU, 12 GB GDDR5
= P100 (Cuda): Nvidia Pascal P100 GPU, 16 GB HBM
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*E. Phipps and T. Kolda, Software for Sparse Tensor Decomposition on Emerging Computing
Architectures, SIAM SISC, vol. 41 (3), 2019, (https://doi.org/10.1137/18M1210691).




Performance on Real Tensors ) S,

= Look at Genten MTTKRP performance on several tensors from the FROSTT
collection
= Shaden Smith et al, https://frost.io
= Fixed 10 iterations of CP-ALS
= R =16 for all tests

Name Order Dimensions Nonzeros
LBNL 5 1.6K 1 4.2K [0 1.6K [ 4.2K [] 868K 1.7M
Uber 4 183024 1 1.1K [ 1.7K 13M
Enron 4 6.0K [] 5.7K [ 244K 1 1.2K 54M
VAST 5 165K 1 11K [0 2 1 100 [0 89 26M
NELL2 3 12K 1 9.1K [0 29K 7™
Delicious3 3 532K 1 17M [ 2.5M 140M

= Compare GenTen MTTKRP to SPLATT on HSW/KNL and ParTI! on GPU

=  SPLATT: Shaden Smith et al, http://glaros.dtc.umn.edu/gkhome/splatt/overview
= Compressed Sparse Fiber (CSF) storage format (Smith and Karypis, 2015)
= Use default 2 CSF modes, with and without tiling
= ParTl!: J. Li et al, https://github.com/hpcgarage/ParTlI
= Only works with order-3 and order-4 tensors
= Requires double-precision atomics (no K80)




GenTen Speedup for Best MTTKRP =
Algorithm

Bl SPLATT HSW
I SPLATT KNL
s ParTi! P100




Review of Generalized CP (GCP)* ) e,

= Standard CP optimization problem
min - F(%,M) = [|X ~ M|z = Z(Xi -

s.t. M:[[A,B,C]]:alobloc1+---+aRobRocR

= (QObijective function derived through maximum likelihood estimation
assuming the data tensor (X) entries are i.i.d. Gaussian:

1

X,'—m,'2 20’2
27T(72€( 2/(20%)

Xj ~ N(x,-|m,-,a) =

L(M|X) = H N(xi|mi, o) =

i — m)2
—log L(M|X) = Z (( ' 22 ) + % Iog(27rc72)> ~ Z(Xi — m;)?

/ /

"Hong, Kolda, Duersch. Generalized Canonical Polyadic Tensor Decomposition. SIAM Review, 2019.




Review of Generalized CP (GCP)* i

= Generalize to other types of data through arbitrary loss
function:

_. M
f(xi, mi) = p(xile (m;)) st. M=[A B,C]

| |

% ~ p(xil0)) min  F(X, M) = Z f (x;, m;)

loss function link function
Distribution | Link function Loss function Constraints
N(p,0) m=p (z—m)? z,meR
Gamma(k,o) | m = ko z/(m+e)+loglm+te) | 2>0,m>0
Poisson(A) m=A m — x log(m-+e) zeN,m>0
m = log A e — xm zeN,meR
Bernoulli(p) | m=p/(1—p) log(m+1)—zlog(m+e) | € {0,1},m>0
m=log(p/(1—p)) | log(1+e™) —zm zre{0,1}, meR

"Hong, Kolda, Duersch. Generalized Canonical Polyadic Tensor Decomposition. SIAM Review, 2019.
————



Fitting GCP Model UL

n;vltn F(X, M) fo,,m, st. M=[A,...,Ad]
= Lose the least-squares structure underlying ALS-type algorithms. Instead
pursue gradient-based optimization approach.

=  Define tensor Y such that

_ , of
y(i .o yid) = yi = (’9_m(Xi’ m;)

= Then gradient of objective function given by

OF
Gy = A, 1d(k)(:‘\d OO A1 ©A 1O+ © A;) +— MTTKRP!
k

= Unfortunately, Y is in general dense, even when X is sparse, making
standard optimization infeasible. Instead, employ Stochastic Gradient
Descent (SGD) where Y is only randomly sampled




Sampling for SGD’ =,

¥ Vi, €L
= Givenindexset (), define Y : y; = WiYi, /
0, I &
= SGD theory only requires E[Y] =Y
= Uniform sampling J

- : : n
=  Sample s indices uniformly with replacement: }71. =5 - — Vi, nd — H N
= Will miss nonzeros if X is very sparse P

= Stratified sampling
= Sample p nonzeros and g nonzeros uniformly with replacement
= Requires searching X for each sample to determine if zero or nonzero
~ N x
. pi'F'Yia i € Qp,
yi = , N =nnz(X)

~  nd=N

Gi- g Yi» 1€8;

= Semi-stratified sampling
= Sample p nonzeros and q “zeros” uniformly with replacement
= Correct for sampled zeros that were really nonzeros

~ ~ d .

. Pi'%'(Yi—Ci)+qi°%°Ci7 i€ Qny Of

Yi = B d ] 3 Ci — a_(oa mi)
Gi - 5 Vi i€, mn

"Kolda, Hong, Duersch. Stochastic Gradients for Large-Scale Tensor Decomposition. arXiv 1906.01687, 2019.
————



7| Netora

Performance Considerations

= Even for semi-stratified we use stratified for estimating objective
function

= Stratified sampling requires efficient way of determining whether a
given sample corresponds to a zero or nonzero

= Sort tensor indices lexicographically and do binary search

= O(log(N)) search, no increase in storage
= Qversample Y tensor, sort, and do bulk search

= Construct hash-map with tensor indices as keys

= O(1) search but O(N) increase in storage
= Use Kokkos::UnorderedMap for parallel, lock-free map construction

= For gradient evaluation, explicitly construct sampled Y tensor and

pass to MTTKRP
= Allows use of highly optimized MTTKRP kernels from CP-ALS




GCP-SGD (ADAM) Algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

14:
15:
16:
17:

function GcpApam(X, {Ak}kzly___yd, K, T)

for k=1,...,d do
Gi, M, V| < zero matrix of size ny X r

Y¢ < SAMPLEFOROBJECTIVE(X)
F + CoMPUTEOBJECTIVE(Yr, {Ax})
while F > TOLERANCE and at most & iterations do
Save copies of {Ai}, {M}, {Vi}, F
for T iterations do
Yg < SAMPLEFORGRADIENT(X)
{Gk} +— MTTKRP(Y,, {Ax})
{Ak} {Mi}. { Vi} <
ADAM({ Gk}, { A}, { My}, { Vi})
{Ar} < CrLip({Ax})

F + CoMPUTOBJIECTIVE(Yr, {Ai})

if ﬁ > 'Eold then
Restore saved copied of {A}, {Vi}, {Vi}, F
Increase learning rate




Comparing Sampling Approaches

Laboratories
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Improving Gradient Computation @&

= |dea: For semi-stratified, fuse sampling

1: function FUSEDUPDATE(X, {Ak}, {Gk}, {Mk}, {Vi})
and MTTKRP kernels 2 paralle.:l for j.: 1,...,sdo .
= Avoid explicit construction of sampled tensor | A SEjf)ISTRATIFIEDSAMPLE(x’J )
=  Compute MTTKRP in all modes simultaneously | s Gilik: 1) +a Gilin,2) + y - Tlic Ai(ij, )

= Currently restricted to atomics for MTTKRP
factor matrix update

=  Should work well for GPU

o

{Ac}. AMi} {Vi}
ApAM({Gk}, {Ak}, {M}, {Vi})
{Ai} + Cruip({Ak})

® A

: function SPARSEARRAYUPDATE(X, {Ax}, {Mk}, {Vi})

d . for k=1,....d do
. What abOUt arChIteCtures WIthOUt faSt (:'k < zero matrix of size s x r > Sample MTTKRPs

atomics: “Spa rse Array" Ry < zero vector of size s > Row keys

1
2
3
4:
= Put MTTKRP contribution for each nonzero in 5:  parallel for j=1,...,sdo
Y in a separate row of temporary buffer along | © Yy lfyes g 4~ SEMISTRATIRIEDS AMPLA(K, F)
with row index (no thread contention) ' boF Jo= Le.as @ 00
9

. . . Ri(j) < ik
=  Reduce entries with the same row index

Gi(J.:) <y - TLj 2k A 2) > MTTKRP
(parallel reduce-by-key) ;. for k=1 . . ndo

= Perform ADAM update and clip with only the 11: Ry, Gy, tx + PARALLELREDUCEBYKEY(Ry, Gy)
nonzero rows 12: parallel for j =1,...,t, do
= Should work well when # samples << mode o " Rk(fﬂ)ﬂ N
length | Ui 2) Mici. 2), Vielie,2)) =
15: ADAM(Gk(J, .), Ak(lk7 .), Mk(lk, .), Vk(lk, ))
16: Ak(ik, :) — CLIP(Ak(ik, ))




GCP-SGD Performance Comparison @&

Total SGD Time
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GenTen Speedup over Matlab TTB

HSW CPU

K80 GPU

GenTen

GCP-SGD speedup over serial state-of-the-art code
(Chicago crime data tensor)

62.6

P100 GPU

Sandia
National
Laboratories
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Summary & Conclusions UL

New software package Genten
= Publicly available at https://gitlab.com/tensors/genten
= POC: Eric Phipps, etphipp@sandia.gov

= Built on Kokkos for shared-memory parallelism and high performance,
portable to emerging parallel architectures

=  Supports traditional CP-ALS as well as new GCP-SGD method

= (Callable directly from Matlab Tensor Toolbox through GenTen-Matlab
MEX interface

= Enables high productivity and analysis power of the Matlab Tensor Toolbox
accelerated by fast architectures such as GPUs!

=  Future Work
= |nvestigate number of gradient samples vs. MTTKRP algorithms
= Continue to improve sampling/gradient kernels
= Sparse array approach motives asynchronous SGD (a la HogWild!)
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Total MTTKRP Time per Nonzero
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Tensor Sorting Cost UL

= Permutation method requires N sorting operations
= Sort tensor coordinates for each mode
= Small, but not inconsequential cost

= Sorting methods used
= OpenMP: Parallel stable sort from Intel
= Cuda: Thrust stable sort

Sorting time divided by avg. (permuted) CP-ALS iteration time

Architecture LBNL Uber Enron VAST NELL2 Delicious

HSW 0.6 4.3 0.2 5.3 6.2 4.0
KNL 1.0 5.5 8.6 1.3 7.6 4.9
K80 1.1 3.0 3.3 3.3 2.6 —
P100 0.5 1.3 4.2 3.6 4.6 —




SGD-ADAM Convergence with Varying
Sample Sizes

le?7
2.30-
30 T —— s=1000
—— s=10000
—e— s$=100000
2.25 -
2.20 -
ot
(1)}
v
L 2,15
2.10 -
2.05 -
1 1 1 1
0 20 40 60

I 1
80 100
Epoch




MTTKRP i

= Sparse tensors stored in coordinate (COO) format

= List of nonzero values and coordinates (subscripts)

X eR™™ R=4

C=X5A0B) = ckl)= >  a(i,jkalDb(l), 1=1,...,R
(ijk)eN(DC)

X.subs  X.vals C




Serial MTTKRP Algorithm ) B,

Spt X; “ s . .
Ktonoor o, Matricized Tensor Times Khatri-Rao Product
FacMatrix v; (MTTKRP)
const int nnz = X.nnz(); = Factor matrices stored row-wise (Kokkos::LayoutRight)
for (int i=0; i<nnz; ++i)
{ V=X U"e  -oUueoU"'o---0U")
double *tmp = new double[R];
ouble tmp = new doublel Wim ) = Y @t (i) et e, DU () - (i, )
const size_t k = X.subscript(i,n); 1EN(X)

const double x_val = X.value(i);
for (intj=0;j <R; +4j)
tmpl[j] = x_val;

for (intm =0; m <N; m++){
if (m!=n){
const double *row = u[m].rowptr(X.subscript(i,m));
for (intj = 0; j < R; +4j)
tmpfj] *= row[j];
}
}

for (intj = 0; j < R; ++j)
v.entry(k,j) += tmp[jl;

delete [] tmp;
}



Flat Parallelism Over Tensor Non-zeros Mgz,

typedef Kokkos::RangePolicy<ExecSpace> Policy;

const int nnz = X.nnz();

Policy policy(0,nnz);

Kokkos::parallel_for( policy,
KOKKOS_LAMBDA(constint i)

{

double *tmp = new double[R];

const size,_t k = X.subscript(i,n) Parallelize MTTKRP over tensor non-zeros

const double x_val = X.value(i);

for(intj=0;j <R; +4j)
tmpl[j] = x_val,

for (intm =0; m < N; m++){
if (m!=n){
const double *row = u[m].rowptr(X.subscript(i,m));
for (intj = 0; j < R; +4j)
tmpl[j] *= row[j];

} Multiple threads writing to same row

/ of V requires atomic update (not the
only way to do it)

}

for (intj = 0; j < R; ++4j)
Kokkos::atomic_add(&v.entry(k,j), tmpl[j]);

delete [] tmp;
)k




Flat Parallelism Over Tensor Non-zeros Mgz,

typedef Kokkos::RangePolicy<ExecSpace> Policy; Improvements in MTTKRP implementation:
t int = X. : .
e nnz() = Thread teams to process in parallel:
olicy policy(0,nnz);
Kokkos::parallel_for( policy, = Tensor non-zeros
KOKKOS_LAMBDA(const int i) =  Factor matrix columns

{

Sl "tmp =g dagaielR; = Thread-scalable mechanism for tmp buffer

const size_t k = X.subscript(i,n); . Kokkos Scratch-pad memory (MTTKRP-A)
const double x_val = X.value(i); = Thread-local, compile-time polymorphic arrays
(MTTKRP-B)

for (intj = 0; j < R; ++j)
tmp(j] = x_val; = Blocking on R for better cache

for (int m = 0: m < N: m++){ performance, occupancy

if (m!=n){
const double *row = u[m].rowptr(X.subscript(i,m)); = Alternatives to atomics

for(inFJ*i OJJfB; ) » Thread privatization buffers
tmp(j] *= row(j];

}
}

for (intj=0;j <R; +4j)
Kokkos::atomic_add(&v.entry(k,j), tmpl[j]);

delete [] tmp;
b:;



Permuted MTTKRP Inspired by COO ..,
Mat-Vec

= Poorly structured tensors result in high atomic contention
=  COO sparse matrix-vector product leverages sorting by increasing row-index

=  Apply this to coordinate-based sparse tensor format
= Don’t want multiple copies of tensor with different sortings
= |nstead, compute permutation array p so that X.subscript(p(:,n),n) is increasing
= Each thread only writes when row index X.subscript(p(:,n),n) changes
= Substantially reduces number of atomic updates and improves their locality

X.perm X.subs X.vals
2|2
416
34
5|5
111
6|3




MTTKRP Percentage of Peak Bandwidth @ Ex.

. . . NNZ
GB/s = ((NR + 3) x sizeof (Real) + N X s:zeof(OrdlnaI)) X
HSW KNL
80
200 —— MTTKRP-A
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= MTTKRP-A: Kokkos scratch-pad arrays = MTTKRP-C: Permutation-based MTTKRP

= MTTKRP-B: Compile-time polymorphic arrays



