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1. Introduction
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MIMO Background
• MIMO is an integral part of our engineering community today.

• It came to practice in the 60s as an accepted tool in laboratory

settings (possibly somewhat developed before.)

• Most recently, the SAVIAC MIMO Recommended Practice

Committee has begun discussing how to standardize best practices

for MIMO experiments, which could become a guideline or

standard, as there currently is none, which can make it difficult to

establish what makes a good experiment. 11- SHOCK
AND

VIBRATION
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Challenges in Dynamics Testing

• Aerodynamics

Good data is an essential foundation to any experiment. An
understanding of how to accurately and efficiently perform MIMO
tests improves the design, safety, operations, and durability of

dynamic systems.

• Automotive
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Experimental Determination of Input Loads
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2. Methodology
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Two primary case studies are examined, each investigating a critical
step in the MIMO process.
• First is the manner of actuating the member, as this changes the

dynamic properties.
• Second is the inversion process used to derive inputs from

measured outputs.
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Experimental and Simulation Approaches

Input Signals E>

\ Experimental work: Actuator Effects
• To investigate the effects of actuator

attachment on data collection, three
experiments were run with three
different actuator scenarios.

• Transfer functions were found for
each case, and these were used to
compare dynamic properties.

Dynamic
System

Transfer
Functions

Simulation work: Inversion Proce

Output Signals
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utput Randomized 

• A virtual two input two output
experiment was simulated

• Artificial error was added to the
measured output

• The effects of the error in the input
estimation was quantified.
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Transfer Function Calculation

Transfer functions (TRFs) relate the input at one location to the output at another. This

function was generated from the test data using the equation (frequency domain):

TF
cpsd(In,Out)

asd(In)

where

• TF = Transfer Function of one output with respect to one input,

• In = Measured Input Signal,

• Out = Measured Output Signal,

• cpsd = Cross-power spectral density of two variables,

• asd = Auto-spectral density of a variable.
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Example of a MIMO System

A two input by three output MIMO system in matrix form:

[TF1,1

T F2,1

T F3,1

T FA,B

Input A

Output A

T F1,2 Output 1
[Input 11 _

Output 2TF2,2 

2 
* Input 2

Output 3TF3, 

= Transfer Function of output A with respect to input B,

= Input signal A in power spectral density domain,

= Output signal A in power spectral density domain,

* denotes matrix multiplication.
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Input Signals

MIMO Inversion

Dynamic
System

Output Si anal c.• >

TRF
Inver sions <1

Measured
Response

Inferring inputs to a system based upon measured responses is done with the
following example equation:

ri ,
[In]2x1 = [TF]3x2

+ 
kilid3x1

In = Input Signal Matrix,

TF = Transfer Function Matrix,

Out = Output Signal Matrix,

+ denotes the Moore-Penrose Pseudo-Inverse of a matrix
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3. Actuation Method
Test
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• The tests performed all examine a steel cantilever beam affixed to the ground.
• The acceleration response is measured at the tip.
• Input is applied from the 1/3rd mark.
• Transfer functions relating these two locations used to quantify dynamic properties.
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Actuation Connection to Specimen

Objective: To quantify how the addition of the
actuator stinger changes the system's dynamic

properties.
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Actuator Setups

To investigate actuator
impact, TRFs were
generated by:

• Striking with an
impact hammer

• Striking with an
impact hammer
while the beam was
restrained by an
exciter at that
location

• Actuating the beam
via the exciter.

•
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Actuator Attachment Effects
Beam is Free
Beam is Connected to Stinger
Beam is Actuated by Stinger

0

io Magnitude of stinger-excited
test not comparable.
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Frequency (Hz)

• Applying the
stinger
dampened
system and
shifted peaks.

• Peak shifts
were more
pronounced
when the
exciter ran, and
the fourth
mode was
removed.
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Actuator Attachment Effects
Mode Frequencies (Hz)
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• Attaching the stinger clustered
modes in toward around 30 Hz.

• This trend was emphasized when the
actuator excited the beam.

• The third mode's absence could then
be due to converging with the second
mode based on experimental data.
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• Attaching the stinger generally increased
the damping of the modes.

• For modes 1 and 2 the actuator exciting
the beam brought damping down.

• Conversely, modes 4 and 5 were
increased.

• Once more, the third mode is a point of
interest.
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Actuation Method Test Conclusions

Input Signals

Z\ ,
nipeciance/

 , k

 ,I\
dilator ‘‘„, Dynamic

Sy stem

MIMO

Inversion

Output Signals

• The manner of actuating a structure can have pronounced effects
on determining its dynamic properties.

• It is important to understand how the system is changed by simply
trying to induce a vibration, and how that impact results.

• Future stages of this research will collect experimental data using a
3D camera to better quantify the effect of the actuator.
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4. MIMO Inversion Test
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Virtual Model
Output Signal
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• The system was modeled
as a free Euler-Bernoulli
cantilever beam.

• Inputs were placed at 1/3rd
and 2/3rd the height.

• Output responses were
taken at the middle and tip
of the beam.

• Band limited white noise
between 0 and 200 Hz was
generated as input.
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MIMO Inversion Test Methods
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• To control all factors, this test was performed virtually modeling
a simple cantilever beam.

• Transfer Functions were derived from the state space model of
a two input- two output system.

• An input was generated, and an artificial error was injected into
the resultant output. From this, the MIMO inversion process
was performed.

SOIRMONG ISmilab



Artificial Error Generation

• To estimate an artificial error, a case study was performed with
Linear Variable Differential Transformer (LVDT) sensors, as
representative of general sensor error.

• A digital micrometer and voltmeter were used to calibrate two
LVDT sensors, and compare the manufacturer-given sensitivity
of the instrument with the measured ratio of displacement to
voltage.
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Testing Sensor Accuracy

himal LVDT
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• The micrometer used in measuring sensitivity had a precision of
0.001 mm, while the voltmeter had a precision of 0.01 V,
resulting in a maximum calculation error of 0.1%.
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Accuracy of LVDTs

Sensitivity of LVDT 1 Sensitivity of LVDT 2
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• The measured sensitivities were 64.32 and 63.74 mV/mm,
while the manufacturer-given sensitivities were 65.42 and 65.21
mV/mm respectively.

• This is roughly 1% deviation from the manufacturer
specifications.
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1% Alteration

This error of 1% was then used as the error artificially injected
into the virtual MIMO experiment, which modeled the system
shown, a cantilever beam with inputs at 1 and 213rds the height
respectively, and outputs at the middle and tip of the beam.
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Error Application
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Three error cases were examined
• Sensor overestimates signal (Output increased by 1%).
• Sensor underestimates signal (Output decreased by 1%).
• Noise in signal (Output increased or decreased by up to 1%

at each frequency).
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MIMO Inversion Overall Error Results

Error is calculated as the following:

Error = log(
Estimated Signal\
Measured Signal)

Error of Estimated Input

1/3rd Height Input 2/3rd Height Input

Sensor Underestimates
0.0044 0.0044

Sensor Overestimates 0.0043 0.0043

Sensor Randomly

Perturbed
0.0135 0.0142

• The table shows the average absolute error of the estimated
input for each case. Estimating the input with no signal
alteration had no errors.
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MIMO Inversion Estimation
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• The graph
depicts the
inputs as under
each condition
in PSD.

• Constant errors
remain linear,
with a 1%
deviation in
estimated input
per 1%
deviation in
output.
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MIMO Inversion Test Conclusions
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• Errors resulting from the MIMO Inversion process tend to be
proportional to the errors in the data used.

• For well-scaled Transfer Function Matrices, no additional error is
introduced.

• Calibrating equipment regularly can help limit error propagation and
help enhance experiment design.

• Future direction of this research includes parametric study of the
different methods in the input estimation
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5. Conclusions
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Conclusions
• The manner of actuating a structure can have pronounced

effects on its dynamic properties. Understanding this effect on

an intended test can help improve experiment design,

• A knowledge of mode shapes can help in predicting these

effects.

• Calibration of equipment can help maintain accuracy and

understand sensor limitations, leading to the design of better

tests.

• Error in MIMO inversion is proportional to error in data used.

Ii0112?1,2E-grNG ISmilab



Acknowledgements

Any Questions?

It11122E-grNG ISmilab


