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2 Capability and Performance on Next-Generation Hardware
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• MPI inter- and intranode parallelism
• High processor clock speed
• High memory per processor

• MPI internode parallelism
• Threading intranode parallelism
• Low processor clock speed
• Low memory per processor
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H. C. Edwards, C. R. Trott, and D. Sunderland, "Kokkos: Enabling manycore performance portability through polymorphic memory access patterns," Journal of Parallel and Distributed Computing, 74 (2014),
pp. 3202-3216.



3 I Outline

•Overview of Method of Moments

Radar cross section use case and how it relates to our work

•Field levels near an object and some complications

Primary use case: Coupling into high quality factor cavities



Method of Moments



5 I Method of Moments (MoM) brief overview

Through the equivalence principle, we consider the current on an objects
boundary instead of the field around and inside the object. For electric
field E, magnetic field H, electric current J, and magnetic current M,

E = —icop.(LJ) — (xM)

H = —itoe(LM) — (ICJ)

LX = [1 + —k12 VV •] f G(r,r')X(r')dr'

ICX = Vx f G(r,r')X(r')dr'

G(r) =
e-ikr

 ,r = lr — 7-'14n-r

Taking the first equation, but leaving off M, gives the electric field integral
equation (EFIE). Representing J with a basis fn, testing with a function
fm from the set of basis functions, and moving the derivatives off G, its
discrete form Z is

Zmii = ff.ffn[ico,ifin•fn— i 

e 
-ikr

'
coEl

V • finV • fnl 
4Tcr

fn(r) =

tn  n+

2At i'n'
fn „—
2A 7, jn
0

r E Tr,-

r E Tr-
otherwise

1

1



1 Convergence and scaling for a sphere
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Analytic reference solution for surface current given by
scattering solution to Maxwell's equations.
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ie Matrix requires O(N2) memory to store, calculating its entries
is memory bound at the cache level, and O(N3) computation

to solve via LU factorization.

1
R. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, NY, 1961.



Radar cross section



8 I What is radar cross section?

The radar cross section
(RCS) of an object is

a = lim 47R2 1—E7 2
R—>op Ei

where El and Es are the
incident and scattered
electric fields, respectively.

Less formally, the RCS is
= n-a2 where a is the

radius of the sphere with
the same RCS.

Polarization

Frequency

(Far-Field)

Equivalent

(Monostatic)

Target, size, shape,
material, orientation

Scattering
Direction
(Bistatic)

Figure by MIT OCW.

A. E. Fuhs, Radar Cross Section Lectures, Naval Postgraduate School, Monterey, CA, 1983, https://apps.dtic.mil/dtic/tr/fulltext/u2/a125576.pdf.



9 Monostatic RCS for the cone-sphere EMCC object

Electromagnetic Code Consortium (EMCC) data
are a standard way to compare. However,

The data lack information on the experiment setup
to reproduce all results nicely, i.e., one can get
agreement with the cone-sphere's 9 GHz data, but
not the 869 MHz data (below).

180'

135°

225°

90°

45.

The data lack error bars associated with taking data
from experiment so that the data can be compared
with error bars due to running a simulation.

We need our own experiment data for our use case
of interest

Aside: Performing this simulation with a finite element
method (FEM) program required many more elements,

but provides many frequencies via a Fourier transform
and has a sparse matrix; whether superior to MoM is

case dependent.
Langston et al., Massively Parallel Frequency Domai2rillectromagnetic Simulation Codes, Appl. Comput. Electrom. Symposium, 2018.
A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, "Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs," IEEE Antennas Propaq., 35 (1993), pp. 84-89.

— EMCC experiment

— FEKO simulation

— EIGER simulation

GEMMA simulation



Near field



11 I PEC sphere scattering

For the EFIE, the near field is computed without the

test integral:

Etotal = Einc E scattered

where

E scattered (r)

kolulfn(e)

n fn

e-iklr-r'l
  • fn(e)  
coE1 4Thlr —

For a 1 m PEC sphere illuminated by a 377 V/m

excitation at 4.77 MHz from above, the scattered near

field is given on the right.

V/m
3.549e+02

t200

-A 00

.50

3.791e+01

1
.

1



12  High accuracy integration via a radial angular transformation
The EFIE's £ operator has a weak 0 (1/r) singularity while the
MFIE's IC operator has a strong 0(1/r2) singularity.

LX = [1+ —kl,VV •] f G(r,r')X(r')dr'

ICX = Vx f G(r,r')X(r')dr'

e-ikr

G(r) = 4rcr ' r = Ir — r, 1

For L, we use a radial angular transformation where the source
triangle variables of integration become similar to polar coordinates

(PA 0):

f G (r,r')X(r')dr' =
f e-ikr r

j 4n-r 
X (r , u) 

cosh u
drdu ,

u = ln tan-1(0/2)

For I C , in addition to a radial angular transformation, we subtract
the first term of the integrand's Taylor series. This is similar to

f —er dr = f 
er-1 

dr — f 1 dr where
The3 subtriangles used in the
radial angular transformation when

r r r

er — l (1 + r + r2 + — ) — 1 r + r2 + — the singularity is interior and
exterior to the triangle.r r r

M. A. Khayat and R. D. Wilton, "An Improved Tansformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials," IEEE Antennas
Wirel. Propag. Lett., 7 (2008), pp. 377 - 380.



1 3 I Near field for airplane intakes

Top right: Direct solve by LU
factorization.
Bottom right: Solve by adaptive cross
approximation (ACA).

While intake fields are much higher than
incident fields, fast methods can often
obtain qualitatively good results for this
near field calculation.

o f

Re{ Escatt} 1 GHz Direct Solve Magnitude
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Cavity problem



r
1 5 

Thin PEC hollow sphere at a
higher frequency than the PEC
sphere

Top:
• Solid sphere

• 4.77 MHz excitation from
above, magnitude 1 V/m

Bottom left:
• Hollow sphere

• 130 MHz excitation from
above, magnitude 1 V/m

Bottom right:
• Hollow sphere

• 130 MHz excitation from
below, magnitude 1 V/m

V/m
0.9414

i0.1006

V/m
— 1.395

1 0.2749



16 Electromagnetic radiation (EMR) coupling to high Q cavities
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Shielding effectiveness is defined by
SE = 20 logio (interior field / exterior field)
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S. Campione et al., Preliminary Survey on the Effectiveness of an Electromagnetic Dampener to Improve System Shielding Effectiveness, Sandia Technical Report SAND2018-10548, 2018.



17 I Slot subcell model for capturing coupling into a cavity accurately

In free space, the thin slot equation is:

1 ( d 2
HZ (a,z) — ,AYc

2 
In,— = —H17 (z),I,,„ = —2V

4 dz 

H z = magnetic field
/in = current
V = voltage

a = equivalent radius
Yc, YL capture gaskets and wall loss
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18 Cavity comparison with analytic and experiment
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Response for centered slot vs
19 slightly off-center slot
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S. Campione et al., Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes, in review.



Slot Depth (inches)

20 Dealing with uncertainties

Dakota is a Sandia code that facilitates the
exploration of parameter spaces for uncertainty
quantification, optimization, and other purposes.

Right: Slot parameter sweeps using EIGER and the
unmatched formulation.

Below: Future automated runs using Gemma with
parameter sweeps.  

Dakota-aware
executable

launches jobs

20
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B. M. Adams, "Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis:
Version 6.0 Theory Manual," Sandia Technical Report SAND2014-4253, 2014.
S. Campione et al., Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes, in review.



21 I Weak scalability for Adelus, A Dense LU Solver Package
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22 I How to guarantee these capabilities after each source code change?
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on local and HPC resources for each use case.

VVtest is a Sandia-developed set of scripts that
automate the testing of complex simulation runs, like
those required for verification, validation, and
uncertainty quantification.
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23

Thank you!
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26  Depiction of surface current on a boundary between regions

ij

Recall that the EFIE is
1M MI .....

•

i le-tikr
Zm,n = [1:(0111fm • fn v • finv' • fn 

4Thrfm fn (I) E 1 

with basis functions

n 

2At

fn(r) 
Pn 

r E TT+,

 p; r E T,n7 "j
0 otherwise

n
11
..

s
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27 I Maxwell's Equations in the Frequency Domain

rFaraday : V x E jw13

Ampere — Maxwell : V x H= J jwD

Electric Gauss : V • D = p

Magnetic Gauss : V • B

Constitutive relations:

D = cE F : perinitivity [F/m]

B = pH p, : permeability [11/m]

J = o-E a : conductivity [S/m]

Magnetic field

exp(jcot) time harmonic convention

E : electric field [V/m]

H : magnetic field [A/m]

D : electric flux density [C/m2]

B : magnetic flux density [T = Wb/m2]

J : electric current density [A/m2]

p : volume charge density [C/m3]

Vector & Scalar Potentials:

E — jwA — V(I)

B V x A

Lorentz Gauge:

V • A = — jwq/(1)
Electric field Direction



28 I Magnetic Vector & Scalar Potentials and Green's Function

Wave Equations:

V2A W2pE.A.

v24) w21164-)

For a linear homogeneous, unbounded medium:

A

(i)

pJ(ri)g(rIr')dvi

p(e)
g(r1r

,
)dv

,

17 6

Free-Space Green's Function:

g(ilr )

Radiation condition enforced



29 I Integral Equations (Boundary Element Method — BEM)

hxample of an electric field integral equation (EFIE-9 for metallic scatterer:

Enforcing the boundary condition at the surface:

where,

Escat

X (Einc Escat = 0

g(rIr') =
t (Js(r1)g(rIri) c.021-peV/ • Js(i1Vg(rIr')) ds' 471-1r —

results in the following integral equation:

(Js(lig(r1r1)
1

+ 2 VI • Js(11Vg(rIr')
/iE

1
L Ps} = 11 x Einc

ds' =  nxEinc
i1 

cA)tt

e—jklr—r'l



30  Method of Moments (MoM)

Numerical solution of integral equation:

L {Js} =  . x Einc

Discretize the scatterer

Expand unknown in a set of basis functions.

n.

Test integral equation with basis functions.

fr,(r) = 

1  n 

2A,t Pn

2A
b
p—n r E TriT

r E Tr-t

otherwise

fri, • L {Js} cis =  I fin • Einc)ds
3w

Z I V Divergence-conforming Rao-Wilton-Glisson
(RWG) basis functions

1



31 I EIGER Formulation

Test with basis functions (Galerkin method)

Integral equation becomes a matrix equation:

Z N><NI NxIll VAix111
Nis the total number of current unknowns

Mis the number of independent excitations

Note that the matrix Zis, in general, dense and complex valued.
AT2 double complex matrix entries

Eiger.—1=1),.



32 1

Monostatic RCS results (1.57 GHz)
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