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Sandia's New Medium-Duty Diesel Research Engine
and what we’re going to do with it

With the generous support of Ford Motor Company, Sandia National Laboratories has constructed a new medium-duty diesel research engine.
The engine features a combustion system that very closely mimics current production hardware. All of the engine’s auxiliary systems have been
successfully commissioned and the engine will be put into operation this month.

Previous research within this project has produced the hypothesis that improved vortex formation will improve peak thermal efficiency and
reduce pollutant formation. A dimpled, stepped-lip (DSL) piston design has been conceived to achieve this goal. 1D and 3D models will be created
for the new engine to support the development of a DSL-like piston. Experiments with a metal version of this piston will provide a direct test for
the hypothesis described above.

Experiments in the small-bore engine indicate that the pilot and main injections may act as critical sources of unburned hydrocarbon emissions
during catalyst heating operation. Furthermore, oxygenate blendstocks that either increase or decrease the fuel mixture’s reactivity do not
appear to enhance the heat-release characteristics of very late post injections. However, the most recent CFD simulation results show a strong
sensitivity of the heat-release of late post injections to cetane number. The new research platform provides an opportunity to improve the
certainty of boundary conditions for simulations, as well as to expand upon previous experimental findings in a continuously fired engine.

Sandia is working to build on in-house materials science expertise and capabilities to create the foundations of a thermal barrier coating
research program. This includes customization of the medium-duty diesel engine to provide in-situ, in-operando piston surface temperature
and/or heat flux measurements via an advanced telemetry system. These capabilities will be used to provide foundational understanding of
coating property impacts on diesel combustion processes.
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Objectives of medium-duty diesel research

* Provide scientific understanding needed to achieve further improvements in
efficiency and reductions in emissions

* Bowl geometry designs to improve mixing — can the state-of-the-art be improved?
e Catalyst heating operation — critical for getting efficient, compliant engines to market
* Heat transfer reductions — how much is possible?
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Outline

* Sandia’s new medium-duty diesel engine

e Research plans



Sandia’s Medium-Duty Diesel Engine

* Single-cylinder research engine
e Combustion system: Ford 6.7L Scorpion

Bore 99 mm
Stroke 108 mm
Compression ratio  16.2:1
Valves/cylinder 4

Injector 8-hole piezo

Piston bowl shape  Stepped-lip
Max speed 2000 rpm
Max rail pressure 2000 bar

Lubrication system  Dry sump
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Sandia’s Medium-Duty Diesel Engine

Cast aluminum cylinder head

Custom deck adapter
facilitates conversion to
optical engine

Reconfigurable, belt-driven
Lanchester balancing box
(15t and 2" order)




=T

Sandia’s Medium-Duty Diesel Engine

Engine after dry-fit test

Adjustable exhaust
back pressure

Control of intake flow
rate, composition, and =
temperature

Measurement of
coolant temperatures
and flow rates

Dry sump lubrication
system with electrically
driven, five-stage pump




Current status

* Engine assembly essentially complete

* Phasing operations complete
* Crank angle encoder
e Cam shaft
e Balancing box

* All auxiliary systems passed initial testing
e Lubrication

Coolant

Crankcase ventilation

Fuel

* Dyno

 Break-in procedure to commence next week
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Research plans

* Bowl geometry impacts on efficiency and emissions
* Fundamental understanding of catalyst heating operation
* Thermal barrier coating research

e Continued optical measurements
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Bowl geometry impacts on efficiency and emissions
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e Small difference in rate of mixing
controlled heat-release

* Modest soot reduction

e Weak vortex in squish region

» Faster, more efficient combustion
e Substantial soot reduction

Observation: faster, more efficient mixing-controlled heat-release rates
correlate with stronger vortex action.

Hypothesis: promoting vortex formation at near-TDC injection timings may be
able to improve peak efficiency and air utilization.
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CFD simulations provide understanding of turbulent flow
evolution in the stepped-lip combustion chamber

3D RANS-CFD simulations (FRESCO)
* Flow, liquid, and spray penetration validated using optical measurements

 Results indicate sensitivity of squish region vortex formation to injection timing 2>
consistent with experiments

* Analysis of results provides understanding of turbulent flow evolution in the squish region
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A dimpled, stepped-lip piston is predicted to promote vortex

formation
Dimpled, stepped-lip (DSL) piston Toroidal vorticity: mass averaged over all nodes
e Simulations indicate that the contained within the stoichiometric isosurface
larger space in the squish region and plotted as a function of crank angle

supports vortex formation

* Lower impingement position
effectively deflects upper portion
of spray along step surface
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L] JERREE This metric captures the global evolution of
vorticity, as well as sensitivities to injection
timing and bowl geometry

For more detail, see Busch, S., Perini, F., Kurtz, E., “Effects
of Stepped-lip Combustion System Design and Operating %

B Parameters on Turbulent Flow Evolution in a Diesel CW a

Engine”, SAE International Journal of Engines, in press.



Next steps

* Experiments and simulations have thus far all been done
on the small-bore diesel engine (decommissioned)
* A DSL-like piston will be developed using CFD
simulations of the new medium-duty diesel engine
e Generation of 1D model for BCs and 3D mesh for CFD will
begin soon
* The integrated vorticity metric will be used for a limited
optimization study before a hardware version of the
piston is created

Implementation in
medium-duty
diesel engine

Vorticity-focused
optimization strategy

Design development, CFD
validation and optimization for
medium-duty diesel engine
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Catalyst heating operation: insights from exhaust emissions data

e Addition of even a small post injection typically decreases UHC emissions,
particularly as the main injection quantity increases

* Implication: the pilot and main mixtures are significant sources of unburned
hydrocarbons in catalyst heating operation
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Insight into pollutant formation mechanisms during catalyst
heating operation

 17.00 CADATDOC CertDiesel
* IR signal observed in the bowl between spray plumes 2-5

— Consistent with un- or partially-burned fuel: C-H stretch
— Potential source of unburned hydrocarbons

— Hypothesis: over-lean mixture in the bowl fails to react to
completion and acts as a source of unburned hydrocarbons
* Late post injections may not interact with the bowl contents and

may not help oxidize partially burned fuel
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Oxygenate additives decrease UHC emissions, but ignition

of late post injections seems insensitive to CN

* Oxygenated additives can significantly reduce total hydrocarbon emissions

— Ethers do this more effectively than 1-octanol

* Oxygenated additives affect the ignition and combustion of the pilot and
main injections, but the impact on the post combustion depends on post

injection timing

— The combustion of late post injections is not significantly affected by post timing
— Preliminary evidence: oxygenate additives may not promote ignition of late posts
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Predicted fuel reactivity effects on ignition of late
post injections don’t match experimental findings

Approach: sector mesh-based simulations
using FRESCO to provide insight into
ignition process of late post injections
1D model of small-bore engine not well
calibrated for catalyst heating operation

— Large uncertainty in T

— Requires adjustment of BCs
Simulations appear to overpredict the
sensitivity of heat-release to cetane
number

— Oxygenate study: heat-release of late posts

insensitive to CN over a range of 42.5 - 56.1

Thorough characterization of the new
engine will improve certainty of boundary
conditions

— Are the simulations failing to include
important physics?
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Next steps

Characterization of boundary conditions
— Calibrate GT-Power model to provide more reliable CFD inputs

Development of catalyst heating strategies in the new engine
— Variation of pilot injection(s) and the impact on exhaust emissions
— Quantification of exhaust enthalpy and injection strategy calibration impacts

CoOptima

— Verify and expand upon effects of oxygenate blendstocks; isolate cetane number
effects from oxygen effects

* Hexyl hexanoate (HH: CN = 40) and dibutoxymethane (DBM: CN = 70)

Development of optical engine hardware

— Improved understanding of ignition and pollutant formation processes (as well as
spray-wall interactions and vortex formation for the bowl geometry study)



Thermal barrier coating (TBC) research

* Many applications of TBCs to piston surfaces can be found in the
literature

* Theoretical efficiency improvement may be as high as 8% using low thermal
inertia coatings?!

* In practice, efficiency improvements are often very modest or even negative
* In-depth thermodynamic analyses into efficiency impacts are rare
e Coating durability remains a significant challenge

e Sandia is building foundational capabilities to perform TBC research

* Leverage existing materials science expertise to provide accurate,
guantitative data on thermophysical properties of coatings

* Develop medium-duty diesel engine into a TBC research platform

* Provide fundamental understanding of interactions between coating
properties and diesel combustion processes

e Inform future TBC R&D efforts

1 Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al., "Concept of %

“Temperature Swing Heat Insulation” in Combustion Chamber Walls, and f T
Appropriate Thermo-Physical Properties for Heat Insulation Coat," SAE CW
Int.J. Engines 6(1):142-149, 2013, https://doi.org/10.4271/2013-01-0274.
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Sample results: very low thermal conductivity has
been demonstrated for a potential TBC candidate

* Measured thermal conductivities are very low; near the detection limit
» Toyota’s SiRPA coating: ~0.6 W/mK?; partially stabilized zirconia: 0.4-1.2 W/mK?
e Coating development continues

* Goal: durable coatings with variable properties to inform engineering models
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1Kawaguchi, A., Iguma, H., Yamashita, H., Takada, N., Nishikawa, N., Yamashita, C., Wakisaka, Y. and Fukui, K., "Thermo-Swing Wall Insulation
Technology; - A Novel Heat Loss Reduction Approach on Engine Combustion Chamber." SAE Technical Paper 2016-01-2333, 2016, DOI:
https://doi.org/10.4271/2016-01-2333.

2Tritt, T.M., ed. Thermal Conductivity: Theory, Properties, and Applications, Kluwer Academic/Plenum Publishers, New York: 2010
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Developing capabilities for thermal barrier coating
research Voss

* Capabilities for fast measurement of
piston-surface temperatures and heat
fluxes are being developed and are
scheduled to be implemented in 2020

* Key components

» MEMS-based surface temperature
and/or heat flux sensors

* Onboard data acquisition hardware,
power receiving antennas, Bluetooth
data transmission antenna

* Magnetic resonant coupling power
transmission antennas

* Bluetooth data receiving antenna

——
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Thank you for your attention

Your questions and feedback are welcome
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