
PRESENTED BY

Siva Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh Dang,
Ellingwood, Brian Kelley, Kyungjoo Kim, Christian Trott, Jeremia
Wilke

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and_

Solutions

Sandia
_

Engineering S of S LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAN D2020-XXXXXX

SAND2020-1452C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Kokkos Ecosystem for Performance Portability

Kokkos

Tools

Debugging

Profiling

Tuning

ASC-IC/ATDM Applications

Kokkos EcoSystem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution
Parallel Data
Structures

Kokkos

Support

Documentation

Tutorials

Bootcamps

App support

*em I

Oil 11111

Multi-Core Many-Core CPU + GPU

Kokkos Core: parallel

patterns and data structures;
supports several execution
and memory spaces

Kokkos Kernels:
performance portable BLAS;

sparse, dense and graph
algorithms

Kokkos Tools: debugging and
profiling support

Write-once using Kokkos for
portable performance on different
architectures

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

3 Focus of Kokkos Kernels

Deliver portable sparse/dense linear algebra and graph kernels
o These are the kernels that are in 80% of time for most applications

o Key problems: Kernels might need different algorithms/implementations to get the best
performance

o Ninja programming needs in addition to Kokkos

o Users of the kernels do not need to be ninja programmers

Focus on performance of the kernels on all the platforms of interest to DOE

Deliver robust software ecosystem for other software technology projects and
applications
o Production software capabilities that give high performance, portable and turn-key

o Tested on number of configurations nightly (architectures, compilers, debug/optimized,
programming model backend, complex/real, ordinal types...)

o Larger release/integration testing with Trilinos and applications

o Kokkos Support, github issues, tutorials, hackathons, user group meetings (planned)

Kokkos Kernels delivers portable, high-performance kernels in a robust software
ecosystem

Mach

4 ECP Applications

SPARC: state-of-the-art hypersonic unsteady hybrid structured/unstructured finite volume CFD code

High performance line solvers; batched BLAS on CPUs and GPUs

• Actively researching scalable multigrid methods for hypersonic regime

• Time-stepping methods, Uncertainty quantification methods

• Performance-portable programming models

EMPIRE: next-gen unstructured-mesh FEM PIC/multifluid plasma simulation code

• Scalable solvers for electrostatic and electromagnetic systems for Trinity and Sierra architectures

• Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods

• Performance-portable programming models

• Non-linear solvers, discretization, and automatic differentiation approaches

Exawind: next-gen wind simulation code

• Scalable solvers for Trinity and Sierra architectures

• Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods

• Performance-portable programming models

Kokkos Kernels integrated into ECP applications in an agile manner at all stages from
understanding requirements, designing kernels and evaluating them.

5 New Features in Kokkos Kernels 3.0

Sparse Linear Algebra

VCIuster Gauss-Seidel

✓ Sparse ILU factorization

✓ Sparse triangular solves

for sparse L and U

✓ Sparse triangular solves

for supernodal L and U

✓ Structured sparse matrix

vector multiply

Portable Vectorization

✓ Support ARM platforms

✓ Improved application

1 performance on CPU,

1 KNL, GPU and ARM

✓ Portable SIMD primitive

Dense Linear Algebra
✓ Faster kernels for

orthogonalization

✓ Complex support for

dense LU factorization

Vlnterfaces to vendor

libraries

VMore BLAS and LAPACK

support with Kokkos

\ views

c--
Team Level Kernels

✓ Team level sorting utilities

✓ Team level DFS

✓ More team level BLAS

and LAPACK support

r- Graph Algorithms

VDistance-2 graph coloring

VFaster distance-1 graph

coloring

VBalanced distance-1

coloring

VBalanced "well shaped"

graph clustering

VRCM ordering for

\ preconditioners

I
Softwa re

VCMake support

VETI changes to allow ETI

file generation at compile

time

✓ Improved testing

✓ Increased robustness .}

M

Kokkos Kernels is rapidly growing to support the needs of computational science
applications.

6 Distance-2 Coloring, Cluster Gauss-Seidel
Brian Kelley

• Distance-2 graph coloring: vertices 2 hops apart can't share a color.
• Equivalent to coloring GGT, or G2 if symmetric (the 3 test graphs below are)
• New asymptotically faster algorithm is 0(V6y), rather than 0(V62y)

• 6 = degree, y = #colors
• y and 6 are constant given a PDE matrix structure (e.g. 27-point stencil)

• Speeds up MueLu multigrid aggregation on V100 GPU by up to 8.5x
• Aggregation no longer a bottleneck in setup on GPU

Sequential

Graph:

af_shell7

cfdl

msc04515

L
505K

70.7K

4.5K

INew Kokkos Old Kokkos ColPack Zoltan (no MPI)

Time (sec) Slowdown factor vs. new Kokkos algorithm

34.8 0.0223 24x

25.8

21.6

0.0025

0.000129

12.7x 20.4x

76x 22.3x 17.8x

18.2x 25.2x 19.3x

1 New Kokkos Old Kokkos

af_shell7 1.28 2.0x

cfdl 0.115 2.2x

msc04515 0.00534 10.4x

Measured with Intel Xeon W-2155 (Skylake)
and Nvidia Quadro P2000.

Work on parallel version is ongoing.

7 Cluster Gauss-Seidel
• One Gauss-Seidel iteration: for i = 1...m, xi = D1-1(bi - <Ai:, x>)

• Order matters: update to xi affects xi+k later
• KokkosKernels has had parallel multicolor Gauss-Seidel (MTSGS) for several years

• Colors vertices, and applies G-S over each color set in parallel

Rationale: if i is not adjacent to j, then the old value of xi can be used in xi's update. This
works because xi does not appear directly in xi's update formula.

• But if there is a path from i to j, then updating xi would still have a (small) effect on xi in
classical GS, inducing error in the parallel version.

New cluster GS: coarsens graph into "clusters", and colors coarsened graph
• Each color still processed in parallel
• Average path between vertices updated in parallel is much longer, reducing error
• Same parallelism (in principle), but significantly higher preconditioner quality than MTSGS
• Work in progress: have demonstrated superior preconditioning, but slow

• Reduced preconditioned CG iterations by 19% (to within 1% of sequential GS) on
af_shell7, compared to MTSGS

• But, apply time is still 3-4x slower than MTSGS and Chebyshev iterations.
• It should be possible to close the gap by improving load balance and clustering quality.

8 Structured Sparse Matrix-Vector (SpMV) kernel

Implements: y=a*y+13*A*x

with A a CrsMatrix representing an operator
discretized on a structured grid.

Stencils implemented:
• 5/9pt stencil (2D FD/FE Laplace)
• 7/27pt stencil (3D FD/FE Laplace)

Top (resp. bottom) figures shows the speedup
obtained compared with generic SpMV
implementation for 2D (resp. 3D) stencils.

Further improvements can be obtained for
Multiphysics problems.
Additional optimizations are investigated for 27pt
stencil.

3.0

2.5

o_
7 2.0

1.0

0.5
104 105 106

number of unknowns

2D Laplacian (5pt: solid, 9pt: dashed)

4.0

3.5

3.0
0_

2.5

LI 2 . 0

▪ 1.5

1.0

0.5
104

3D Laplacian (7pt: solid , 27pt: dashed)

107

105 106 107 108

number of unknowns

9 Improving linear solvers strong scaling on Summit for ExaWind

Test problem:
• 5kmx5kmx1km atmospheric boundary layer
• 20m resolution (i.e. -3.2M nodes)
• Momentum solved with GMRES+Gauss-Seidel
• Continuity solved with GMRES+SA-AMG

Figure shows:
• Top: time for a single linear solver setup and apply for

the momentum equation (left) and the continuity
equation (right)

• Bottom: the total time associated with solving the
momentum equation, the continuity equation and the
total simulation time

101

10
o

10-1

10
-2

10°

Momentum

0-0 setup

m—s apply

104

10
,

7

Observations:
• All assembly and linear solvers are performed on GPU ~ 102
• Momentum solver strong scales almost linearly
• Continuity solver scaling still requires improvement but

of GPUs

101

10°

10-1

-2

10
110

10°

Total

Continuity

of GPUs
101

•—• Momentum

•—• Continuity

•—• Total Sim.

cost per iteration is low 101 0

• Overall simulation time is scaling very well on Summit
10

of GPUs
101

1 0 Sparse-triangular solve in Kokkos-kernels

Motivations
• Some distributed-memory solvers (e.g., DD) relies on the sparse-triangular solves as local solver

• Some of them use local direct solver (e.g., SuperLU, Cholmod, Techos)

• We could have 0(105) of triangular solves per factorization

Supernode-based sparse-triangular solve with level-set scheduling
• Interfaced with SuperLU & Cholmod

• Batched-team or device-level Kokkos-kernels at each level of scheduling

• Option to call SpMV at each level
(i.e., triangular inverse as the product of partitioned inverses)

DAG Merge Invert- SpMV- Merge Invert
offdiag DAG offdia

L-solve (CS4) 3.54x 4.24x 5.311(3.03x 6.59x 14.11x

U-solve (CSC) 4.00x 4.98x 4.87x 4.39x 8.30x 13.17x

-- Speedups over CuSparse for A_20x20x20_electricity (n=27,783) on P100 --

4.5

4

2

1.5

Ainterior

0

X

P

0

0 gemv-based

X spmv-based

0

x

2.5 3 3.5 4 4.5

Matrix size

5 5.5

x 104

11 I BlockTridiagonal Solver Performance on ARM

• A portable vectorization approach for next generation computing platforms was developed for
block tridiagonal solver for SPARC (Sandia reactive flow solver).

• Pack multiple blocks into a compact (interleaved) data format for efficient vectorization.

• Demonstrated scalable performance for Intel Xeon and NVIDIA GPU architectures where
exploiting wide vector units are essential for performance.

A' A"

Or A*"

Block A of TO and T1 is packed and
elements are aligned to its vector lane

To ET1
00 00

To ET1
01 01

\
\

I -
A'. Br

I

6" A"'

lo
g2
 T
i
m
e
 p
e
r
 T
i
m
e
 S
t
e
p
 [
s]

—2

—3

—4

—5

Linear Equation Solver

A—A ATS-1/HSW, 1 thread (FY19 start)
*All ATS-1/HSW, 1 thread

WM ATS-1/KNL, 8 threads (FY19 start)

M—M ATS-1/KNL, 4 threads

— ATS-2N100 (FY19 start)
FYI ATS-2N100

', '1, 4, ti°

Number of Compute Nodes or GPUs

0'

Compact Data Layout for Block Tridiagonals Strong Scale of block tridiagonal solver
on Intel HSW, KNL, and NVIDIA V100

1 2 Block Tridiagonal Solver Performance on ARM

Performance Test

• 2x28 Core ARM Thunder X2, 2GHz , two 128 bit vector units.

• A cube domain 256x224x100 with block size 7 (550k block tridiagonal matrices and total 40 million unknowns).

• Some observations:

• Factorization and solve phases are performed on compact data layout; compute residual phase uses block CRS matrix format.

• A wider vector length than hardware vector units (128bits) is necessary to hide latency and improve throughput.

• Using 256 bit vector length, factorization and solve performs 3x and 2x speedup compared to a case using hardware
vector length (128bit).

• Demonstrate a portable (no code change but the vector length), vectorized and thread-scalable block line solver for ARM
architectures.

#
 F
ac

to
ri

za
ti

on
/S

ol
ve

 P
er
 S
ec

 35

30

25

20

15

10

5

0

Performance with Different Vector Length Thread Scalability (Vector Length = 4)

1
2 4

Vector Length

35
u
a)
'11, 30
(1)

u„cLocu> 2205

• 15

•C • 1 0
o
+-+

mi 5
u_
4:t

8
0

224 x 1 112 x 2 56 x 4 32 x 7 16x 14 8 x28

MPI x OpenMP

•

• # Factorization Per Sec • # Solve Per Sec # Compute Residual Per Sec • # Factorization Per Sec • # Solve Per Sec • # Compute Residual Per Sec

13 A faster GEMM implementation
• Implements C = alpha C + beta ATB for dense, tall and skinny matrices A and B

• Performs a dot product a for each entry of C

• A common use case in iterative solvers, e.g., orthogonalization with multiple vectors

• Uses two-level Kokkos parallelism

• Each thread team works on a portion of a dot-product

• Team size and number of teams are determined according to matrix sizes

• Kokkos-based GEMM is faster than cuBLAS GEMM:

Execution times of GEMM implementations in seconds
(on an NVIDIA Volta V100 GPU, A and B are of size n x s)

n

s = 3 s = 5 s = 7

cuBLAS Kokkos cuBLAS Kokkos cuBLAS Kokkos

1,000 0.02 0.03 0.02 0.03 0.03 0.04

10,000 0.07 0.04 0.07 0.03 0.11 0.05

100,000 0.17 0.04 0.18 0.07 0.21 0.11

1,000,000 2.58 0.19 2.59 0.45 3.00 0.91

10,000,000 45.68 3.08 45.62 6.81 46.40 12.03

14 I Adelus: A Dense LU Solver Package

O Performs partial pivoting LU
factorization and solves dense
linear equation systems using MPI

O Targets performance portability
with Kokkos and Kokkos Kernels

O Matrices are torus-wrap mapped
and evenly distributed onto the
processors to load balance the
computation and communication

O CUDA-aware MPI is employed
on GPU architectures when
possible

Comparison of LU solver times on GPUs and CPUs
for Sphere6 problem (27882x27882) from GEMMA

1000

1

112.3
40.1

33.2
18.9 18.0 15.4

Power9 CPU V100 GPU

• 1 node with 1 MPI Rank (left) or GPU (right)
• 4 nodes with 4 MPI Ranks (left) or GPUs (right)

4 nodes with 16 MPI Ranks (left) or GPUs (right)

15 I Adelus:Weak Scalability

70000

60000

50000

40000

30000

20000

10000

0

GFLOPS (N = 27882)

1 rank, N 4 ranks, 9 ranks, 16 ranks, 25 ranks, 36 ranks,
2N 3N 4N 5N 6N

(MPI ranks/GPUs, Unknowns)

—*—Power9 CPU —•—\/100 GPU

CI Problem size increases with the number of MPI
ranks/GPUs, such that each MPI rank/GPU holds the
same amount of matrix portion

CI GPUs are —4x faster than CPUs. Scalability needs further
improvement

40

35

30

25

20

15

10

5

0

Scalability (N = 27882)

31.1

19.4

1 rank, N 4 ranks, 9 ranks, 16 ranks, 25 ranks, 36 ranks,
2N 3N 4N 5N 6N

(MPI ranks/GPUs, Unknowns)

Theoretical —*—Power9 CPU —*—V100 GPU

b
GFLOPS(ranks/GPUs,unknowns)

GFLOPS(1,1N)

where ranks/GPUs = 1, 4, 9, 16, 25, 36
unknowns = 1N, 2N, 3N, 4N, 5N, 6N

16 I ILU(k)

O Symbolic phase (on host)
constructs L and U patterns and
groups the independent rows into
levels

O Numeric phase (on host or GPU)
obtains the resulting L and U
factors by iterating sequentially
across levels

O Kokkos team policies are used to
implement hierarchical parallelism

• Each thread team is assigned
to a row in a single level

ILU(2)
4

•

- —: s 3
u
a)
ru 2
E
i= 1

0 111.1 ..__• LA ill Id MEM 1 ... —I--

fp Dubcoval helm3d01 Dubcova2 boneS01 torso3 af_shell3 ecology2

• lcore-Saad • lcore-TP1 • 8core-TP1 • 16core-TP1 • P100-TP1

2 0

. , 1 5• Threads in a team collectively (L,
t 10
E
i= 5

update elements within a
single row

O Optimization for GPU is in
progress

0 1111 ..__.

ILU(4)

ILI ILI 11.., ILI H__.
fp Dubcoval helm3d01 Dubcova2 boneS01 torso3 af_shell3 ecology2

• lcore-Saad • lcore-TP1 • 8core-TP1 • 16core-TP1 • P100-TP1

FUTURE DIRECTIONS/
GOALS

18 I Future Directions (New Features)

Support machine learning needs of ECP applications
Batched linear algebra

Portable convolution kernels

- Needs of the ExaLearn project

Support new preconditioners and linear algebra kernels
Smoothers for linear solvers

Support for new linear algebra kernels (fused kernels)

Support a SIMD data type

Support new graph kernels for analytics applications
Linear algebra based graph kernels

Multithreaded, portable GraphBLAS

