This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 1452C

(L CONGEEN

PRESENTED BY

Siva Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh Dang, Nathan

Ellingwood, Brian Kelley, Kyungjoo Kim, Christian Trott, Jeremiah
Wilke ,

— — Qi

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.
SAND2020-XXXXXX

2 | Kokkos Ecosystem for Performance Portability

s

N

ASC-IC/ATDM Applications

-

\

P,

ﬂ

<

Kokkos Trilinos
Tools
Kokkos EcoSystem
[
Debugging Kokkos Kernels
peoliling \[Linear Algebra Kernels] [Graph Kernels
- > 4
TR Kokkos Core
4 Parallel Parallel Data
/ L Execution Structures

&

—
h

Kokkos
Support

~

Documentation

Tutorials

Bootcamps

App support

CPU + GPU

Kokkos Core: parallel
patterns and data structures;
supports several execution
and memory spaces

Kokkos Kernels:
performance portable BLAS;
sparse, dense and graph
algorithms

Kokkos Tools: debugging and
profiling support

Write-once using Kokkos for
portable performance on different
architectures

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

;3 | Focus of Kokkos Kernels

Deliver portable sparse/dense linear algebra and graph kernels
° These are the kernels that are in 80% of time for most applications

> Key problems: Kernels might need different algorithms/implementations to get the best
performance

> Ninja programming needs in addition to Kokkos
> Users of the kernels do not need to be ninja programmers

> Focus on performance of the kernels on all the platforms of interest to DOE

Deliver robust software ecosystem for other software technology projects and
applications
° Production software capabilities that give high performance, portable and turn-key

° Tested on number of configurations nightly (architectures, compilers, debug/optimized,
programming model backend, complex/real, ordinal types...)

° Larger release/integration testing with Trilinos and applications

> Kokkos Support, github issues, tutorials, hackathons, user group meetings (planned)

Kokkos Kernels delivers portable, high-performance kernels in a robust software
ecosystem

4 | ECP Applications

SPARC: state-of-the-art hypersonic unsteady hybrid structured/unstructured finite volume CFD code
> High performance line solvers; batched BLAS on CPUs and GPUs

° Actively researching scalable multigrid methods for hypersonic regime
° Time-stepping methods, Uncertainty quantification methods

° Performance-portable programming models

EMPIRE: next-gen unstructured-mesh FEM PIC/multifluid plasma simulation code

> Scalable solvers for electrostatic and electromagnetic systems for Trinity and Sierra architectures

° Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods
o Performance-portable programming models

> Non-linear solvers, discretization, and automatic differentiation approaches

Exawind: next-gen wind simulation code
° Scalable solvers for Trinity and Sierra architectures
° Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods

° Performance-portable programming models

Kokkos Kernels integrated into ECP applications in an agile manner at all stages from
understanding requirements, designing kernels and evaluating them.

5

/ Sparse Linear Algebra \
v'Cluster Gauss-Seidel
v’ Sparse ILU factorization
v’ Sparse triangular solves
for sparse Land U
v’ Sparse triangular solves
for supernodal L and U
v’ Structured sparse matrix
vector multiply

New Features in Kokkos Kernels 3.0

/ Dense Linear Algebra \

v’ Faster kernels for
orthogonalization

v' Complex support for
dense LU factorization

v'Interfaces to vendor
libraries

v'"More BLAS and LAPACK
support with Kokkos

- /

Portable Vectorization
v’ Support ARM platforms
v Improved application
performance on CPU,
KNL, GPU and ARM
v’ Portable SIMD primitive

\ J

views

Team Level Kernels
v’ Team level sorting utilities
v’ Team level DFS
v" More team level BLAS

/ Graph Algorithms \

v'Distance-2 graph coloring

v'Faster distance-1 graph
coloring

v'Balanced distance-1
coloring

v'Balanced “well shaped”
graph clustering

v'"RCM ordering for

and LAPACK support
. J

\ preconditioners)
4)

Software
v'CMake support
v'ETI changes to allow ETI
file generation at compile
time

v Improved testing
\ Increased robustness)

Kokkos Kernels is rapidly growing to support the needs of computational science

applications.

¢ I Distance-2 Coloring, Cluster Gauss-Seidel
Brian Kelley

« Distance-2 graph coloring: vertices < 2 hops apart can’t share a color.
« Equivalent to coloring GGT, or G2 if symmetric (the 3 test graphs below are)
« New asymptotically faster algorithm is O(V8y), rather than O(Vé2y)

« § =degree, y = #colors

« y and § are constant given a PDE matrix structure (e.g. 27-point stencil)
» Speeds up MuelLu multigrid aggregation on V100 GPU by up to 8.5x

« Aggregation no longer a bottleneck in setup on GPU

_ New Kokkos | Old Kokkos | ColPack | Zoltan (no MPI)

Graph: Time (sec) Slowdown factor vs. new Kokkos algorithm
af_shell7 505K 34.8 0.0223 24x 12.7x 20.4x

cfd1 70.7K 25.8 0.0025 76X 22.3x 17.8x

msc04515 4.5K 21.6 0.000129 18.2x 25.2x 19.3x
Measured with Intel Xeon W-2155 (Skylake)
af_shell7 1.28 2.0x and Nvidia Quadro P2000.

cfd1 0.115 2.2x

msc04515 0.00534 10.4x Work on parallel version is ongoing.

7 | Cluster Gauss-Seidel

« One Gauss-Seidel iteration: for i = 1..m, x; = D;"'(b; - <A;., x>)
« Order matters: update to x; affects x,, later

» KokkosKernels has had parallel multicolor Gauss-Seidel (MTSGS) for several years
» Colors vertices, and applies G-S over each color set in parallel

Rationale: if i is not adjacent to j, then the old value of x; can be used in x;’s update. This
works because x; does not appear directly in x;’s update formula.

* But if there is a path from i to j, then updating x; would still have a (small) effect on x; in
classical GS, inducing error in the parallel version.

New cluster GS: coarsens graph into “clusters”, and colors coarsened graph
» Each color still processed in parallel
» Average path between vertices updated in parallel is much longer, reducing error
« Same parallelism (in principle), but significantly higher preconditioner quality than MTSGS
« Work in progress: have demonstrated superior preconditioning, but slow
* Reduced preconditioned CG iterations by 19% (to within 1% of sequential GS) on
af_shell7, compared to MTSGS
« But, apply time is still 3-4x slower than MTSGS and Chebyshev iterations.
» |t should be possible to close the gap by improving load balance and clustering quality.

Implements: y=a*y+B*A*X

with A a CrsMatrix representing an operator
discretized on a structured grid.

Stencils implemented:
« 5/9pt stencil (2D FD/FE Laplace)
« 7/27pt stencil (3D FD/FE Laplace)

Top (resp. bottom) figures shows the speedup
obtained compared with generic SpMV
implementation for 2D (resp. 3D) stencils.

Further improvements can be obtained for
Multiphysics problems.

Additional optimizations are investigated for 27pt
stencil.

s | Structured Sparse Matrix-Vector (SpMV) kernel

2D Laplacian (5pt: solid, 9pt: dashed)

10° 10° 1
number of unknowns

07

3D Laplacian (7pt: solid , 27pt: dashed)

10° 10° 107
number of unknowns

108

9 I Improving linear solvers strong scaling on Summit for ExaWind

Test problem:
« 5kmx5kmx1km atmospheric boundary layer

» 20m resolution (i.e. ~3.2M nodes) 1 e] 0 =y

* Momentum solved with GMRES+Gauss-Seidel \\‘ _ T
* Continuity solved with GMRES+SA-AMG : 180k — | 100f -
Figure shows: £ T

« Top: time for a single linear solver setup and apply for

"_10_‘

the momentum equation (left) and the continuity

equation (right) 107 5
« Bottom: the total time associated with solving the

e—e setup ! -
=—a apply
-2
. 10 .
10" 10° 10
of GPUs Total # of GPUs

momentum equation, the continuity equation and the
total simulation time

Observations:

» All assembly and linear solvers are performed on GPU

* Momentum solver strong scales almost linearly

» Continuity solver scaling still requires improvement but

Time [s]

e—e Momentum
e—e (Continuity

P ——

cost per iteration is low 0100
» Overall simulation time is scaling very well on Summit

of GPUs

10

10 | Sparse-triangular solve in Kokkos-kernels

Motivations

* Some distributed-memory solvers (e.g., DD) relies on the sparse-triangular solves as local solver
* Some of them use local direct solver (e.g;, SuperLU, Cholmod, Techos)

* We could have 0(105) of triangular solves per factorization

Supernode-based sparse-triangular solve with level-set scheduling

* Interfaced with SuperLU & Cholmod

* Batched-team or device-level Kokkos-kernels at each level of scheduling

* Option to call SpMV at each level

(i.e., triangular inverse as the product of partitioned inverses)

SpMV-

DAG
L-solve (CSC) 3.54x 4.24x 5.31 3.03x
U-solve (CSC) 4.00x 4.98x 4.87x 4.39x

-- Speedups over CuSparse for A_20x20x20_electricity (n=27,783) on P100 --

Merge

6.59x
8.30x

Ainterior
4-5 T T
(0 gemv-based
X spmv-based
4t |
o
o
©
335
3 a
2 O
-8 25¢ X
- O X
) M x %
2 L
0 X
1.5 ' ‘ '
2.5 3.5 4 4.5 5 5.5
Matrix size x10*

11 | Block Tridiagonal Solver Performance on ARM

* A portable vectorization approach for next generation computing platforms was developed for
block tridiagonal solver for SPARC (Sandia reactive flow solver).

* Pack multiple blocks into a compact (interleaved) data format for efficient vectorization.,

* Demonstrated scalable performance for Intel Xeon and NVIDIA GPU architectures where
exploiting wide vector units are essential for performance.

Block A of TO and T1 is packed and
elements are aligned to its vector lane

To T4 To Tq . ..
Hoo Loo|Hot Mot

Compact Data Layout for Block Tridiagonals

logs Time per Time Step [s]

Linear Equation Solver

A—A ATS-1/HSW, 1 thread (FY19 start)

!] ! @@ ATS-1/HSW, 1 thread

------ SN I g ATS-1/KNL, 8 threads (FY19 start) [
: : : : Bl ATS-1/KNL, 4 threads

*—k ATS-2/V100 (FY19 start)

V-V ATS-2/V100

Number of Compute Nodes or GPUs

Strong Scale of block tridiagonal solver
on Intel HSW, KNL, and NVIDIA V100

2 | Block Tridiagonal Solver Performance on ARM

* Performance Test
¢ 2x28 Core ARM Thunder X2, 2GHz , two 128 bit vector units.

* A cube domain 256x224x100 with block size 7 (550k block tridiagonal matrices and total 40 million unknowns).

* Some observations:
* Factorization and solve phases are performed on compact data layout; compute residual phase uses block CRS matrix format.

* A wider vector length than hardware vector units (128bits) is necessary to hide latency and improve throughput.

* Using 256 bit vector length, factorization and solve performs 3x and 2x speedup compared to a case using hardware
vector length (128bit).

* Demonstrate a portable (no code change but the vector length), vectorized and thread-scalable block line solver for ARM
architectures.

Performance with Different Vector Length Thread Scalability (Vector Length = 4)

35 35
O |9}
Q (]
<L 30 2 30
& &
o 25 o 25
= =
A 20 A 20
S =
215 215
R S
T 10 T 10
2 2
& 5 & 5
L L
H 0 = 0

2 4 8 24x1 112x2 56x4 32x7 16x14 8x28
Vector Length MPI x OpenMP

m # Factorization Per Sec m# Solve Per Sec m# Compute Residual Per Sec m # Factorization Per Sec m# Solve Per Sec m# Compute Residual Per Sec

13 1 A faster GEMM implementation
* Implements C = alpha C + beta ATB for dense, tall and skinny matrices A and B

* Performs a dot product a for each entry of C

* A common use case 1n iterative solvers, e.g., orthogonalization with multiple vectors

* Uses two-level Kokkos parallelism

* Each thread team works on a portion of a dot-product

* Team size and number of teams are determined according to matrix sizes

e Kokkos-based GEMM is faster than cuBILAS GEMM:

Execution times of GEMM implementations in seconds
(on an NVIDIA Volta V100 GPU, A and B are of size n x §)
e s 5=/
n cuBLAS Kokkos CUBLAS Kokkos CUBLAS Kokkos

1,000 0.02 0.03 0.02 0.03 0.03 0.04
10,000 0.07 0.04 0.07 0.03 0.11 0.05
100,000 0.17 0.04 0.18 0.07 0.21 0.11
1,000,000 2.58 0.19 2.59 0.45 3.00 0.91
10,000,000 45.68 3.08 45.62 6.81 46.40 12.03

14 | Adelus: A Dense LU Solver Package

0 L Comparison of LU solver times on GPUs and CPUs
vetiphing partal pivoting LU for Sphere6 problem (27882x27882) from GEMMA

factorization and solves dense
linear equation systems using MPI 1000

J Targets performance portability

112.3
with Kokkos and Kokkos Kernels

J Matrices ate torus-wrap mapped
and evenly distributed onto the
processors to load balance the

L 40.1
33.2
P I I
d CUDA-aware MPI is employed 1

18.9 18.0 15.4

on GPU architectures when Power9 CPU V100 GPU
possible

Total Time (seconds)

computation and communication

®m 1 node with 1 MPI Rank (left) or GPU (right)
B 4 nodes with 4 MPI Ranks (left) or GPUs (right)
® 4 nodes with 16 MPI Ranks (left) or GPUs (right)

15 | Adelus: Weak Scalability

GFLOPS (N = 27882) Scalability (N = 27882)
70000 40
64,992 36_
60000 35 A
31.1
50000 Al
25
40000
30000 20 14
15
20000
15,916 10
10000 5
0 0
1 rank, N 4 ranks, 9 ranks, 16 ranks, 25 ranks, 36 ranks, 1 rank, N 4ranks, 9ranks, 16ranks, 25 ranks, 36 ranks,
2N 3N 4N 5N 6N 2N 3N 4N 5N 6N
(MPI ranks/GPUs, Unknowns) (MPI ranks/GPUs, Unknowns)
-e-Power9 CPU -e-V100 GPU -8-Theoretical -@-Power9 CPU --V100 GPU
(1 Problem size increases with the number of MPI S GFLOPS(ranks/GPUs,unknowns)
ranks/GPUs, such that each MPI rank/GPU holds the GFLOPS(1,1N)

same amount of matrix portion

where ranks/GPUs = 1, 4, 9, 16, 25, 36

O GPU ~4x faster than CPUs. Scalabili ds furth
s are ~4x faster than s. Scalability needs further unknowns = 1N, 2N, 3N. 4N, 5N, 6N

improvement

| ILU (k)

J Symbolic phase (on host)
constructs L. and U patterns and
groups the independent rows into
levels

d Numeric phase (on host or GPU)
obtains the resulting I. and U
factors by iterating sequentially
across levels

d Kokkos team policies are used to
implement hierarchical parallelism

= FEach thread team is assigned
to a row in a single level

" Threads in a team collectively
update elements within a
single row

d Optimization for GPU is in
progress

ILU(2)
4
S
3
0)2
|_
0 IIII mu__N III-. III-I lll E=l II-I W —
Dubcoval helm3d01 Dubcova2z boneS01 torso3 af_shell3 ecology2
m1core-Saad m1core-TP1 m8core-TP1 m16core-TP1 mP100-TP1
ILU(4)
20
<15
A
é’10
= gl il 0. |
0 IIII mn__ N I III .II Ill II__- fffff
fp Dubcoval helm3d01 Dubcova2 boneSO1 torso3 af_shell3 ecology2
m1core-Saad m®m1core-TP1 m8core-TP1 m16core-TP1 mP100-TP1

FUTURE DIRECTIONS/
GOALS

8 | Future Directions (New Features)

Support machine learning needs of ECP applications
° Batched linear algebra
o Portable convolution kernels

> Needs of the Exal.earn project

Support new preconditioners and linear algebra kernels
> Smoothers for linear solvers

°> Support for new linear algebra kernels (fused kernels)
Support a SIMD data type

Support new graph kernels for analytics applications
° Linear algebra based graph kernels

> Multithreaded, portable GraphBLAS

