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ABSTRACT

One of the biggest impediments to discovery for large-scale scien-
tific applications is that they produce very large datasets, which
are costly to load and search in their entirety. In this paper, we
present SystemX?, which provides the following solution: users can
insert extensible, user-defined metadata attributes so that they can
rapidly determine which data subsets are "interesting" and should
be loaded for further analysis. SystemX offers generalized metadata
encoding and querying techniques; independent, portable meta-
data; scalable metadata consistency techniques; fault-tolerance as a
service; flexible system configuration; and high performance and
scalability.
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1 INTRODUCTION

One of the greatest obstacles to making discoveries from large-scale
scientific applications and large scientific instruments is that they
produce immense volumes of data that are difficult to store, manage,
and explore efficiently. Simulations such as S3D combustion [8],
XGC edge plasma fusion [16] and GTS core plasma fusion [28],
and data collection instruments such as the LSST [13] and Square
Kilometer Array Radio Telescope [10], and genome sequencing [12]
can produce datasets in the terabytes to petabytes range in a single
day. As we move towards exascale, these data volumes will continue
to increase as scientists run simulations of increasing fidelity and
deploy instruments with more sensitive sensors.

In the past, data volumes have been small enough that scientists
could load entire datasets during post-processing to search for
interesting data. However, with the large datasets being produced
today, scientists can no longer afford the wasted node hours or
the time delay associated with retrieving uninteresting data from
storage only to discard it for further analysis. Instead, scientists
need an efficient way to identify and load only the interesting data.
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Custom metadata offers a promising approach. Scientists can
perform lightweight, in-situ analysis to identify interesting features
such as a combustion event, storm cell, or area of high turbulence,
tag these events, and then, during post-processing, use this meta-
data to load only the data associated with these features. Restricting
reads to this “interesting” data can result in significant speedups,
thereby accelerating analysis and discovery. An example of this
workflow is depicted in Figure 1.

Metadata
Storage

Sulatwn Post-Processing
]

M . l Lightweight 7 p 50 TB

Analysis Data Tagged Data
Storage
Figure 1

Despite this need for a custom metadata management, existing
solutions are relatively primitive. While popular I/O libraries offer
the ability to attach metadata attributes to variables or files within
a dataset, they do not offer any technique to accelerate accessing
these attributes, such as indexing, or a way to query only a sub-
set of the attributes. With hundreds of thousands or millions of
processes all generating metadata, performing a linear-time search
across the stored metadata attributes results in a significant drag
on productivity. Further, it is not possible to attach an attribute
to a variable subset, limiting the use of these tools in HPC where
a single variable can be up to a few petabytes in size. Analysis is
accelerated by reducing the reading scope, and if a metadata tool
cannot facilitate this, it will not significantly improve productiv-
ity. Finally, these approaches embed metadata within the variable
or file, making it very costly to perform global searches since the
entire data hierarchy must be linearly traversed and searched to
retrieve the associated metadata. Other solutions have offered more
robust querying capabilities, but at the cost of usability and per-
formance. These solutions have required users to learn domain
specific languages or specialized querying languages such as SQL
and keep track of unique identifiers, or relied on non-indexed, flat
namespaces that must resort to scanning all stored metadata to be
able to provide the full range of queries that users need. Merely
providing the ability to flexibly add and query metadata is not suffi-
cient. The system must be reasonably easy to use and must ensure
the provided metadata services are high-performing and scalable.
Moreover, none of these proposed solutions offer atomic operations,
limiting their ability to be used concurrently such as in a workflow.

In this paper we introduce SystemX, which offers the custom
metadata solution that users need, and which addresses all of the

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
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concerns listed above. Through previous work [citations blinded
for review], we developed the following features, which have been
incorporated into SystemX:

e Generalized Metadata Encoding Techniques. These tech-
niques enable SystemX to encode features of different type,
scope, and datatype using a consistent queryable format.

o Generalized Metadata Querying Techniques. These tech-
niques give users an easy-to-use, scalable, optimized mecha-
nism to filter attributes based on any of their characteristics,
including their associated run, timestep or variable, feature
type, value, and logical spatial location.

¢ Independent, Portable Metadata. SystemX allows meta-
data to be loaded and explored independently of the data
without losing the connection between metadata and data
or compromising metadata portability.

One of the contributions of this paper is presenting improved
versions of the following features:

e Scalable Metadata Consistency Techniques. These tech-
niques ensure metadata consistency for any workflow with-
out compromising performance and scalability.

e Fault-Tolerance as a Service. SystemX provides fault-tolerance

as a service, allowing users to decide what trade-off of fault-
tolerance and performance best suits them.

This paper further extends our previous work by providing the
following features:

e Flexible System Configuration. SystemX allows users to
easily adjust the system based on their functionality require-
ments, available resources, and priorities.

e High Performance and Scalability. SystemX provides high
performance and scalability in each of its provided services.
In addition, SystemX allows users to further tune perfor-
mance by providing tools to identify and mitigate perfor-
mance and scalability bottlenecks.

The rest of the paper is organized as follows. In Section 2 we
will build off of the ideas presented here to develop a concrete set
of requirements for a custom metadata management system. In
Section 3 we present our custom metadata management solution
called SystemX. We discuss SystemX’s design and how it meets the
system requirements. Section 4 presents a brief overview of the
implementation of SystemX that is evaluated. Section 5 contains
the testing and evaluation information. Section 6 presents related
work, and Section 7 discusses future work.

2 SYSTEM REQUIREMENTS

In the previous section, we established that HPC scientists need
a custom metadata management solution to ease and accelerate
analysis and exploration. In this section we explore more deeply
what functionality a custom metadata management solution must
provide to meet scientist’s needs. These features include: flexible
metadata attributes; robust metadata queries; usability; indepen-
dent, portable metadata; metadata consistency; system reliability
and availability; system flexibility; and high performance and scal-
ability.

Anon.

2.1 Flexible Metadata Attributes

A robust custom metadata management solution must allow users
to store any kind of metadata, and in a way that is meaningful to
them. One aspect of this requirement is that users must be able
to associate attributes with different components of their datasets
such as an entire run, timestep, or variable or a subset of a variable.
Users should also be given complete flexibility in their attribute
type (how they name the type of feature) and in the data type of
the associated value. For example, a scientists running GTS will
need to tag a spatial area in one or more variables to indicate
the presence of a “blob” while a S3D scientists may wish to tag an
entire application run as producing a combustion event. The system
should offer a general solution by providing domain-independent
metadata management. This will ensure users can store all of their
metadata in one place.

2.2 Robust Metadata Queries

A custom metadata management solution must provide a wide
range of metadata queries to ensure that users can easily and effi-
ciently retrieve the subset of metadata attributes they are interested
in. Beyond being able retrieve attributes associated with a particular
run, timestep, or variable, users should be able to retrieve attributes
of a particular type, associated with a particular value, and in a
particular logical spatial area. For example, an LSST scientist may
wish to query for all supernova events that have occurred in the
past year or to hone in on a single image and retrieve a list of all
known objects in that image. A GTS scientist may wish to retrieve
all areas of turbulence that are located near the reactor edge. Find-
ing a way to efficiently support this wide range of queries is one of
the system’s greatest challenges.

2.3 Usability

An important requirement that is often overlooked is usability. The
system should be easy to use, minimize user burden, and allow users
to store their metadata in a way that they find meaningful. Users
should not have to learn a domain specific language or querying
language to store and retrieve their metadata. In addition, they
should not be required to remember particular identifiers to be able
to access and make sense of their metadata. Finally, users should be
shielded from the system’s implementation. Users should not have
to be familiar with the implementation to use the system correctly
or to adjust their usage of the system if the implementation changes.

2.4 Independent, Portable Metadata

For a custom metadata management system to be able to acceler-
ate scientific exploration, it must allow users to download their
metadata, explore it locally to identify what data they want to an-
alyze further, and then load only this “interesting” data. Thus, a
critical requirement is that the metadata be decoupled yet tightly
integrated with the raw data so users can quickly map from the
metadata to the associated file or bytes of data. In addition, it is
important for this metadata to be portable to other storage systems
and layouts since scientific data is often moved between storage
tiers or shared across storage systems. Users should not have to
update each piece of metadata every time the data storage changes
to be able to map from their metadata to the associated data. This
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would not only place a substantial burden on users but would also
easily result in coherence issues.

2.5 Metadata Consistency

A custom metadata management solution must provide consistency
in the face of concurrent accesses. The system might be shared by
workflow components, applications, or even users, and must have
a mechanism to ensure the integrity, accuracy, and completeness of
the stored metadata despite this simultaneous usage. Users should
be able to determine when their metadata is considered complete
and correct and when it should be made externally visible. In ad-
dition, if users discover an error with their stored metadata, they
should be able to correct it.

2.6 Reliability and Availability

A robust custom metadata management solution must offer both
reliability and availability. With any system, faults are inevitable.
However, users should be shielded from these faults whenever
possible. The system should be able to quickly recover from a wide
range of errors, guarantee the accuracy of results despite these
errors, and provide uninterrupted service. Users should also be able
to indicate a preference for more or less robust fault-tolerance since
fault-tolerance often entails a performance penalty.

2.7 System Flexibility

It is important to recognize that no one system will be optimized
for all use cases. Scientific applications can exhibit very different
characteristics and can be run on very diverse hardware. In addition,
users may have vastly different priorities when it comes to factors
such as performance and resiliency. A system should be able to
accommodate these priorities and to ensure that it gives users the
functionality they need without penalizing them for functionality
they do not need.

2.8 High Performance and Scalability

In HPC, where individual application runs can use millions of pro-
cesses, performance and scalability are essential. Core hours are a
precious resource, and any service that uses these resources and
slows down application runs must try and minimize its impact.
In addition, since a custom metadata management system’s pri-
mary goal is to accelerate discovery, any performance limitations
will detract from the system’s ability to accomplish this goal. The
system must thus offer services that perform and scale well for a
single server, and provide the ability to scale out the service to meet
demand.

3 DESIGN

In this section we present SystemX, our custom metadata manage-
ment solution, which was designed to meet the system require-
ments we laid out in the previous section (see Section 2). This
section will provide an overview of SystemX’s features and will
explain how these features tie in with the system’s contributions.
SystemX has been in development for over two years, and some
of its features have been touched on by previous work [citations
blinded for review]. These features include: developing generalized
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metadata encoding and querying techniques, and providing usabil-
ity. We have also built off of this previous work to provide scalable
metadata consistency techniques and fault-tolerance as a service.
Finally, in this paper we introduce new features of flexible system
configuration, and high performance and scalability.

3.1 Generalized Metadata Encoding Techniques

SystemX supports domain independent, extensible, user-defined
metadata using a conceptual metadata model that can be seen in
Figure 2. Users can insert basic and custom metadata for runs,
timesteps, variables, and subsets of variables, which are high-level
constructs that application scientists are accustomed to. Basic meta-
data captures the structure of a simulation output and simple infor-
mation about the various components. Custom metadata refers to
user-defined metadata attributes, which can be used to highlight
interesting features in the associated data. Users can insert meta-
data of any datatype. Each custom metadata attribute is associated
with a single tag (named label), which can be used to filter for
particular kinds of metadata attributes. Using a metadata model
that can simultaneously support domain independent and exten-
sible, user-defined metadata is one of SystemX’s more important
contributions.
Basic Metadata Custom Metadata
[ 5 [-Taa>
v

Label

Timestep — Timestep Attr Tag
v
Variable — Variable Attr

Figure 2

3.2 Generalized Metadata Querying Techniques

SystemX offers a rich, programmatic query interface that allows
users to perform a wide range of optimized queries through a set
of predefined API calls. These operations are robust, and users can
perform even more complex queries by using a series of API calls.
Users can filter attributes based on the run, timestep or variable
they are associated with, the attribute’s tag (type), the associated
particular value, and the logical spatial location of the attribute.
These queries are designed to accelerate analysis, and in particular,
global, spatial, temporal, and multi-variate analysis. Being able to
offer such a wide range of efficient, scalable metadata queries is
another important SystemX contribution.

3.3 Usability

SystemX has a strong emphasis on usability. It shields users entirely
from domain specific languages and querying languages such as
SQL, and instead provides a programmatic API. In addition, Sys-
temX does not require users to generate unique names for their
metadata, allows users to query based on meaningful concepts such
as the name of an application rather than system-generated IDs,
and provides functions so that users do not have to remember the
names or structures of their applications. This high level of usability
is an important contribution of SystemX.

Custom Metadata
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3.4 Independent, Portable Metadata

SystemX keeps the stored metadata decoupled from the associated
raw data to ensure that users can download and explore their meta-
data without having to load the associated data. Once users have
used local metadata queries to identify what data they want to ex-
plore further, SystemX allows them to map to the associated data in
a portable way. Instead of storing a direct link to a data location in
a file or object, SystemX annotates based on the location in a logical
space, such as the global simulation domain. This idea is explored in
[citation blinded for review]. Allowing users to efficiently explore
their metadata and then map to the associated data in a portable
way is one of SystemX’s most important contributions.

3.5 Scalable Metadata Consistency

SystemX offers scalable, atomic operations to help ensure the in-
tegrity, completeness, and availability of stored metadata. These
atomic operations are offered through three options for transaction
management, which are designed for different use cases.

3.5.1 Method 1. The first is a variant of the open-source DT [9, 18]
doubly distributed transactions system. The system allows users
complete flexibility in what metadata objects are grouped into a
transaction, the number of concurrent transactions, and if and
when to commit or abort a transaction. This means the same set of
metadata servers can safely be used for both the compute and post-
processing components of a workflow. However, a limitation of this
approach is that, since it stores transaction information for each
piece of metadata, adjusting the visibility of a transaction requires
scanning all stored metadata attributes in addition to updating
the visibility of each adjusted attribute. Therefore, this transaction
system will not scale well.

3.5.2 Method 2. The second transaction system maintains a sepa-
rate metadata store for each ongoing transaction and for the set of
committed transactions. This transaction method improves trans-
action scalability, since the cost of adjusting the visibility of a trans-
action is O(transaction size), and may improve write performance,
depending on the implementation, since writes are to a relatively
empty metadata store. Downsides include a temporary increase in
storage overheads, a possible decrease in transaction performance
since the metadata must be copied to the “committed” location, and
an inability to change the visibility of a transaction once it has been
committed. This system is thus best for when users want the flexi-
bility of the D?T system but with improved write performance and
scalability, and can afford the increased transaction management
cost.

3.5.3 Method 3. The third system limits the flexibility of the trans-
actions in an attempt to significantly increase transaction perfor-
mance. Limitations of the approach are that simultaneous trans-
actions may not be possible (depending on the implementation),
which limits the metadata server’s ability to serve multiple ap-
plications simultaneously. An additional limitation is that, with
many implementations, reads that must see only the committed
transactions (e.g., reads in workflows), cannot occur while a write
transaction is ongoing. Since write performance should be high,
this should be a minimal burden. However, this limited availabil-
ity might not work for all applications. Further details on these

Anon.

transaction management systems can be found in a publication
in preparation. The second and third transaction methods, which
were developed for this paper, offer solutions to the potential perfor-
mance and scalability bottleneck of the DT system, and contribute
to SystemX’s goal of offering scalable atomic operations.

3.6 Fault-Tolerance as a Service

SystemX ensures system reliability and availability through fault-
tolerance. SystemX provides flexible, scalable fault-tolerance, de-
signed to allow the user to decide what level of resiliency they wish
to use and how to respond to different failures.

3.6.1 Service Availability Discovery. SystemX deploys its metadata
servers dynamically. This allows the service to grow and shrink
with demand and provides resiliency in the face of server failures.
Since SystemX’s servers are dynamically deployed they require a
discovery mechanism. For this reason, SystemX offers a directory
service that processes can query to get a list of currently available
servers. This is very similar to the placement groups employed by
Ceph [29].

3.6.2 Durability. If, for performance reasons, the metadata is stored
in memory, the system will be vulnerable to data-loss in the event
of a hardware or software failure. To improve durability, SystemX
provides a function that allows users to checkpoint the database
to disk. Users can checkpoint the database more or less frequently
depending on their needs. SystemX offers three different check-
pointing modes, each of which is designed for a different scenario.
The first mode involves keeping all metadata in memory and check-
pointing to a single file. This is the only mode that allows servers to
have access to all metadata for answering read queries (such asin a
workflow scenario), and minimizes the need to do file compaction
(combining multiple checkpoint files to produce a smaller number
of files). The next mode keeps only non-checkpointed metadata in
memory and checkpoints to a single file. This reduces the writing
and checkpointing costs (since the database size is smaller) without
increasing the compaction overhead. This mode is thus preferable
if users do not need to perform queries across all stored metadata
and want a single checkpoint file either to serve as a signaling
mechanism or to minimize compaction costs because their parallel
file system experiences significant bottlenecks. The last method
keeps only non-checkpointed metadata in memory and produces a
separate checkpoint file per database. This further reduces check-
pointing costs but increases compaction costs and increases the
pressure on the parallel file system’s metadata server(s). This mode
is ideal if hardware failures are unlikely (meaning a checkpoint file
is unlikely to be used) or for parallel file systems with ample meta-
data servers. Further details on these checkpointing systems will
be discussed in a publication in preparation. These checkpointing
methods provide a solution to the potential scalability bottleneck
created by checkpointing, and help SystemX maintain reliability.

3.6.3 Recovery. SystemX provides return values for all of its func-
tions. This allows users to detect metadata storage related errors.
SystemX also offers functions that allows users to delete or adjust
the visibility of metadata. This allows users to decide how they
wish to respond to any errors that occur.
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3.7 Flexible System Configuration

As discussed in the requirements section, flexibility is critical to
ensuring that users have access to the functionality they need,
without having performance penalties for features they do not
need. In addition to the transaction management and checkpointing
options described above, SystemX offers four different run modes,
offering users two choices for a service mode and two choices for a
storage mode.

3.7.1 Service Modes. SystemX offers two service modes: the dedi-
cated mode and the embedded (or local) mode. The architecture for
the dedicated mode can be seen in Figure 3. The dedicated mode
performs metadata management outside of the context of the client
application(s) using a set of dedicated server processes. Users, ei-
ther directly or through a user interface such as an I/O library, call
functions from the SystemX API library. The SystemX client then
sends a message to a SystemX server, which performs the requested
metadata interaction and sends result back to the client. As dis-
cussed above in Section 3.6, the system uses a directory service to
ensure the service is discoverable. The service is visible to multiple
applications enabling simultaneous use and may or may not be part
of the storage system. In contrast, the embedded mode, also known
as the “local” mode, manages all metadata in the compute nodes
using node-local memory for metadata storage. The architecture for
the local mode can be seen in Figure 4. The SystemX client manages
all metadata locally, thus eliminating the need for message passing.

I Application I
I User Interface I
| SystemX | Storage I
A {L
v
| SystemX | | Storage |
—
o
: v ¢ v 1
@ Metadata
Storage Disk
BT
Figure 3

The dedicated mode offers a number of advantages. The dedi-
cated mode can minimize the impact on the application. The em-
bedded mode requires node-local memory and compute time that
could otherwise be used by the application whereas the dedicated
mode uses the memory of the dedicated server nodes and can use
asynchronous operations to require virtually no compute time from
the compute nodes. The dedicated mode also makes it easier to offer
workflow support since the metadata is stored outside of the com-
pute nodes, and accessing this metadata will thus not disturb the
application. In addition, when the metadata is stored in memory,
the dedicated mode offers improved durability since there are fewer
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metadata stores and thus fewer points of failure. Finally, if the re-
sults of read queries need to be globally distributed, the dedicated
mode will offer better performance since it will require broadcast-
ing the query results provided by each server, which is O(number of
servers), whereas the embedded mode will require an all-to-all for
the compute processes, which is O(number of compute processes).

The embedded mode offers a number of advantages as well. The
embedded mode should offer much higher performance for writes
and for read queries that do not need to be globally shared since
there is no need for message passing or possibility of a metadata
server bottleneck. Checkpoints may be faster as well since each pro-
cess will checkpoint a much smaller amount of metadata. However,
if these files need to be compacted to produce a reduced number of
total checkpoint files, this will reduce the performance significantly.
The embedded mode should also experience better scalability with
respect to the number of client processes. We would expect write-
performance to stay constant, the amount of available RAM to scale
linearly, and read and checkpoint performance to scale linearly or
sub-linearly (depending on the implementation). This mode thus
ensures good scalability without the dedicated resource require-
ment of the dedicated mode. Finally, the embedded mode is simpler
and less fragile because it does not require a server discovery mech-
anism or server communication mechanism. Having a directory
service introduces a single point of failure, and the reliance on the
supercomputer’s network introduces additional failure possibilities.

3.7.2 Storage Modes. SystemX offers two storage modes: in-memory
and on disk. The primary advantage of storing the metadata in mem-
ory is better expected performance since memory tends to be orders
of magnitude faster than disk. However, as we will see in the Eval-
uation Section (see Section 5), it is not always the case that both
writing and reading are faster for the in-memory case due in part
to the presence of caches. Storing on disk offers a number of advan-
tages. First, there is much greater capacity when storing on disk.
Nodes tend to have much more disk capacity than memory capacity
due to the cost of RAM (and the relative newness of NVMe devices).
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For the dedicated mode, the servers may be memory bound, and
thus a reduced storage capacity will increase the number of server
processes we must allocate, taking away resources that could oth-
erwise be used by the application. Storing on disk also offers a
significant durability advantage, since, in the event of a crash, the
in-memory store will lose all metadata that has not been check-
pointed to disk. Finally, not having to checkpoint to disk makes
the on-disk case simpler, eliminates a significant performance cost,
and provides better availability since, for the in-memory case, the
servers will be unavailable as they perform the checkpoint.

3.7.3 Conclusions. Overall, there are many pros and cons of each
run mode, as will be further highlighted in the Evaluation Section
(see Section 5). These run modes are critical to allowing SystemX to
offer scalable distributed metadata management, scaling out either
with the number of compute processes or dynamically allocated
dedicated servers. They also contribute to SystemX’s flexibility,
allowing users to decide whether to prioritize write performance
(using the local, in-memory mode), read performance (using the
dedicated, in-memory mode) or durability (using the on-disk mode).
These modes also allow users to adjust SystemX depending on
the availability of resources, such as using local mode if they have
limited access to additional node allocations or on-disk mode if
nodes have little available RAM.

3.8 High Performance and Scalability

. One of the most important components of a custom metadata
management solution is that it be high-performing and scalable.
While we have endeavoured to make all of the metadata services
described above high-performing, we discovered a few potential
scalability bottlenecks. Here we discuss our solutions to bottlenecks
related to indexing and bottlenecks experienced in the dedicated
service case, which can experience delays due to message passing
and server bottlenecks.

3.8.1 Indexing. While indices are critical to performing complex
reads efficiently, they can introduce a significant write penalty since
each write must also update the index. Indices also dramatically
increase storage overheads. In addition, many applications do not
perform significant reads and thus do not need indices until post-
processing if ever. SystemX provides users with the option to delay
the creation of indices until writing has concluded or to never
create them. These options contribute to SystemX’s flexibility and
help eliminate a large performance penalty and potential scalability
bottleneck.

3.8.2  Synchronicity. One limitation of the dedicated service mode
is that clients might spend a long time waiting for responses from
the servers. Costs include message passing, both for sending a
request and receiving a response, waiting for the server to respond
to the request, which could result in a significant delay in the
event of a server bottleneck, and time for the server to perform
the metadata interaction. This could result in a significant waste of
compute time, particularly for operations such as checkpointing the
database to disk, which merely need to inform the clients that they
were successful. For this reason, SystemX offers both synchronous
and asynchronous versions of each function. The advantage of
using the synchronous functions is that it is simpler for the user.

Anon.

The user does not have to keep track of which functions have
completed and what values she is expecting in return from each
function. The advantage of the asynchronous functions is that, for
the dedicated service mode, they offer a significant performance
increase since they allow users to overlap compute node operations
with metadata server operations. These asynchronous functions
are an important part of SystemX’s flexibility and offer a solution
to a performance bottleneck since, with hundreds or thousands of
compute processes assigned to a single metadata server, there is
often a significant server bottleneck.

3.8.3 Message Bundling. An additional potential bottleneck for the
dedicated mode case is having a large number of small messages. If
each client sends a separate write or read request, most messages
both to and from the metadata server could be under 1 KB in size.
This results in large messaging overheads and under-utilization of
network bandwidth. This is particularly problematic since, if users
minimize the resources allocated to the metadata servers, they will
likely experience a significant metadata bottleneck. SystemX offers
two solutions: message bundling for a single client and message
bundling across multiple clients. SystemX provides functions that
allow clients to bundle write requests, so that multiple pieces of
metadata can be written in a single request. SystemX also provides
functionality to allow users to perform global write or read requests,
relying on well-tuned MPI collectives. Queries can be funneled to a
subset of clients that combine the requests into a single message and
then, if necessary, distribute the results. A final optimization is that
SystemX uses RDMA for large message transfers, improving the
effective bandwidth. Message bundling is yet another component
of SystemX’s flexibility and can help relieve a metadata server
bottleneck by bundling together requests.

4 IMPLEMENTATION

SystemX uses an RDBMS backend for metadata storage. This allows
the system to offer its wide range of scalable, efficient metadata
queries. SystemX uses a set of distributed, shared-nothing servers,
that each maintain a copy of the basic metadata and a horizontal
shard of all user-defined attributes. This allows for distributed query
processing with minimal overheads (by minimizing server-side
coordination). When dedicated servers are used, by default, client
processes are distributed evenly across the available servers. This
can be adjusted by the user if they have additional information
about load balancing or if they wish to implement a metadata
distribution and querying mechanism that is optimized for their
application.

4.1 Using SystemX

An early version of SystemX is available at [blinded for review].
Once the full system has finished export review, it will be available
at the same address. SystemX’s functionality will be exposed to the
user as a C++ library.

4.2 External Libraries

Our evaluated implementation of SystemX uses SQLite 3.27.2 [1]
as the metadata storage backend, the GNU C++ compiler version
8.2.1 and OpenMPI 1.10. SQLite is chosen because it is open-source,
and because of its server-less model, dynamic type system, and
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SystemX
RAM per
Cluster | Nodes/Cores | Proc. Type oS Intercon.
Core
2.1 GHz Intel
ClusterA 1488/53,568 z RHEL 7 | Omni-Path 3.5GB
Broadwell
2.1 GHz Intel .
ClusterB 1122/40,392 RHEL 7 | Omni-Path 3.5 GB
Broadwell

Table 1: Compute Clusters used in Testing

light-weight design. Since the system will need to be installed
on clusters, having a database with a serverless architecture is
critical. Although containers offer a potential workaround, they add
complexity both to the metadata management system and for the
user’s application. SystemX uses Faodel [27] for message passing
between the clients and servers. Faodel is built upon the long stable
and performant NNTI RDMA communication layer from the Nessie
[21] RPC library from Sandia and provides asynchronous message
passing and message queuing. SystemX uses the Boost serialization
library to serialize the data passed as messages between the client
and servers and to store non-native types in SQLite.

5 EVALUATION

Our previous work [citation blinded for review] offered evidence
that metadata management can significantly accelerate data anal-
ysis with trivial storage overheads by allowing users to rapidly
identify data subsections that are of interest and load only these
areas. Here we evaluate whether SystemX offers the performance
and scalability needed for a production-oriented HPC metadata
management system.

5.1 Testing Environment

Testing is performed on the ClusterAZcapacity cluster at [insti-
tution name blinded for review] and utilizes the Lustre parallel
file system. Tests are also run on the ClusterB2capacity clusters at
[institution name blinded for review] but show similar results and
are omitted for space considerations. Information about the two
clusters can be found in Table 1.

5.2 Testing Configurations

To compare SystemX to alternatives, we evaluate the metadata man-
agement that can be implemented in HDF5. We use HDF5 version
1.10. HDF5 was chosen since it is the most frequently used I/O
library for HPC science applications [6] and thus offers a realistic
representation of the metadata management available to scientists
today. In addition, HDF5 offers superior metadata management to
other commonly used I/O systems since it offers scoped attributes
and user-defined datatypes for attributes. More details on how we
used HDF5 to provide most of SystemX’s features can be found
in [citation blinded for review].

We perform scalability tests of SystemX and the HDF5 compari-
son system using 1000, 2000, 4000, and 8000 processes for writing.
Apart from this, all tests use 8000 write processes. The dedicated
server tests use one tenth as many processes for reading (100, 200,
400, 800), 1 metadata server per 1000 write clients (1, 2, 4, 8), and
use the same number of servers for the reading phase (1, 2, 4, 8).
The embedded server tests use the same number of processes for

2Name anonymized for review
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reading (1000, 2000, 4000, and 8000) since all client processes have
a shard of the metadata. Each testing configuration is performed a
minimum of five times, and results are averaged across these runs.
The one exception is the HDF5 comparison system runs, where
each testing configuration is performed a minimum of three times
rather than five (due to job timeout issues and resource constraints).
Last-first timing is used (where possible), meaning that timing mea-
sures the time that passes between the first process that reaches
task A and the last process that completes task B.

The choice of these configurations merits some discussion. First,
the 1000:1 client-server ratio for writing is chosen to simulate the ex-
pected use case: that scientists will wish to allocate as few hardware
resources as possible to metadata management since they could
otherwise be used to perform additional computations. One tenth
as many client processes are used for reading (vs. writing) since, in
general, scientists will allocate far more resources to computation
than they will to post-processing. Finally, the 100:1 client-server
ratio is chosen for reading because, with 100, 200, and 400 read
clients, 100:1 is the largest fixed ratio that could be used for all
configurations (thereby allowing us to evaluate the system’s weak
scaling). The testing harness is composed of three main parts: writ-
ing, reading, and checkpointing.

5.3 Writing

Each test simulates an application writing metadata for 1000 timesteps,
where each timestep is composed of a set of 10 3D variables. Vari-
ables used in this evaluation include temperature, pressure, and
density. Each of these variables is distributed across the processes
using a 3D domain decomposition, so that each process writes meta-
data for a regular hyper-rectangle (a “chunk”) for each variable.
10 different types of custom metadata attributes are written, each
of which has a set frequency that determines what percentage of
chunks it is associated with. These types include "blobs" (a scientific
name for spatial phenomena), annotations, ranges, and maximum
and minimum. The blobs have a Boolean value (indicating presence
or absence of a particular feature), the maximum and minimum have
a double value (like the associated data), the notes have text values,
and the ranges have values that are a pair of integers. On average,
2.6 attributes are written per chunk (per variable, per timestep). In
all, this amounts to over 200 million metadata attributes distributed
across the 8 server processes for the 8000 write client case. For each
timestep, the global maximum and minimum for the temperature
variable are written as timestep attributes and the maximum and
minimum across all timesteps are inserted as run attributes.

5.3.1 Reading and Checkpointing. Every 100th timestep, a set of
read queries are performed to evaluate how performance varies as
the metadata volume per server increases. Reading consists of 2
stages. The first stage performs six read patterns that are identified
by the Six Degrees of Scientific Data[19] as typical for analysis
codes. These six patterns are, for a given timestep:

(1) Read all data

(2) Read all data for a variable

(3) Read all data for 3 variables

(4) Read a plane in each dimension

(5) Read a 3D subspace

(6) Read a partial plane in each dimension
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However, instead of reading the data for these patterns, the clients
retrieve the associated metadata attributes for a particular tag. This
reflects use cases such as using SystemX to rapidly identify data of
interest, summarize global trends or provide high-level sampling
statistics. These six read patterns are performed first for a tag that
appears on 25% of all data, then 5% of all data and then .1%. This
provides evidence of SystemX’s ability to perform spatial queries
efficiently. In the second stage of reading, the clients perform one
global, one temporal and one multivariate query. After these reading
stages conclude, each database is checkpointed (if the database is
not on disk). Thus, with 1000 timesteps, reading and checkpointing
are performed 10 times each.

5.4 Results

5.4.1 Scalability. Figure 5 demonstrates the scalability for writ-
ing, transaction management, and checkpointing the database to
disk for SystemX’s default configuration: using dedicated servers,
the D?T [18] transaction system, non-delayed database indexing,
and a checkpointing method that copies the entire database disk
each time. As we can see, the system achieves good scalability.
The small differences in performance for writing and the larger
difference in performance for the transaction management can be
attributed to stragglers. Since the number of clients per server is
held constant, this close to constant performance is what we would
expect. We can also see there is a slight increase in the time needed
for checkpointing. This is likely due to contention for the parallel
file system resources (the metadata servers and disks). Since the
databases will likely be checkpointed asynchronously, this perfor-
mance difference is unlikely to matter. However, we could likely
improve the checkpointing performance for each individual server
by staggering slightly when they perform their checkpointing.

Write and Checkpoint Time vs. Number of Processes
For Dedicated Servers
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5.4.2 Comparison to Alternatives. As we can see in Figure 6, which
uses logarithmic scaling on the y-axis, there is large performance
difference between SystemX and the HDF5 comparison system. For
our system, since we store our metadata in-memory, we include
the additional cost of checkpointing the database to disk (although,
this could be performed asynchronously by the servers). We can
see that our system obtains better write performance (which will be
discussed more below), and substantially better read performance.
Our reads are performed in 2.61 seconds whereas is takes the HDF5
comparison system 51193.12 seconds. This difference is due in large
part to our ability to scale out metadata operations (whereas HDF5

Anon.

requires them to be serialized), and SystemX’s ability to use exten-
sive indexing of the metadata. This is a feature HDF5 is hoping to
offer in the future. Overall, this read performance difference reflects
how RDBMS’s offer well-tuned data access methods out-of-the box,
and how this is a feature I/O systems are lacking when it comes to
metadata management.

165605 Write and Checkpoint Time of Our System vs. HDF5

1000

- \Vrite
s Read
mmm Checkpoint

Time (sec)

100

is too small to see

Our System HDF5
Number of Processes

Figure 6

In Figure 7 we can see how SystemX’s write performance scales
compared to HDF5’s. Whereas SystemX can scale out, increasing
the number of metadata servers, HDF5 cannot. With fewer than
2000 write clients, HDF5 actually performs better since it performs
a gather and single write whereas SystemX performs one small
write per client. However, SystemX is able to maintain more-or-less
constant write performance by scaling out to maintain a constant
client-server ratio (1000:1) while HDF5 is not. As applications scale
up to use hundreds of thousands or even millions of processes,
using a single process to write application metadata will no longer
be tenable.

Write Time of Our System vs. HDF5
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5.4.3  Service Modes. As mentioned above, SystemX offers two ser-
vice modes: dedicated (using dedicated processes to serve solely as
metadata servers) and embedded (managing the application meta-
data using the compute processes). The performance of these two
models is compared in Figure 8. The precise timing results are sum-
marized in Table 2. From the graph, we can see that using the local
service mode substantially outperforms the dedicated service mode.
Writing is significantly faster since there is no need to send small
messages across the network and no chance of a metadata server
bottleneck. Transaction management is significantly faster since
each transaction and individual database is smaller. Checkpointing
is faster since, again, each database being checkpointed is smaller.
Finally, the local servers do not have to spend time compacting

Note: Read time for Our System
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. Trans-
Write . Read | Checkpt | Compact
action
Dedicated | 851.56 | 133.82 | 2.61 358.79 193.56
Local 2.63 2.09 7.69 32.10 0.00

Table 2: Runtime Comparison for Dedicated and Local Ser-
vice Modes

the databases since the total metadata volume per process is small
enough it can easily fit in memory. However, it is important to note
that, as we can see in the table, reading takes almost 3X as long
for the local servers. This is because it requires global coordination
across all write processes to both read, and share the results of the
read. This reflects one of the main limitations of the local server
case: that it is more complex and slower to perform reads across
the entire set of metadata since the metadata is significantly more
distributed.

Run Time vs. Service Mode for In-Memory Storage
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5.4.4 Storage Modes. Figures 9 and 10 compare how the differ-
ent storage modes (storing the metadata in-memory vs. on disk)
perform for the dedicated and local service modes, respectively.
As we can see in both figures, the on disk case performs signifi-
cantly worse than the in-memory case, due to both writing and
transaction management being significantly slower. Since these
test cases use SystemX’s default transaction management system
(the DT [18] system), which updates the transaction status of each
piece of metadata, transaction management requires performing
a full table scan and a significant update of the table. Using the
in-memory storage mode incurs an additional cost of having to
checkpoint the database to disk and, in some cases, compacting the
checkpoint files to produce a single checkpoint file per database.
For the local service mode, the amount of metadata per compute
process will typically be small enough that all metadata can be
kept in memory, thereby eliminating the need to produce multiple
checkpoint files and thus the need to compact these files. We can
see that in both cases checkpointing results in a moderate cost, and
for the dedicated server case, compacting results in an additional
cost. However, storing the metadata in-memory still offers a large
performance advantage. In addition, it is important to remember
that, for the dedicated service mode, checkpointing will likely be
done asynchronously by the servers, and thus will likely overlap
with compute phases on the client processes and will not affect the
client’s run time.
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Since the read times are small enough that they are difficult
to compare, they are displayed in Figure 11. From this figure we
can see that, as expected, reading from disk is significantly slower
than reading from memory for the dedicated case. However, for
the local case, reading performance is approximately the same for
on disk and in-memory. This is likely due to the fact that the total
metadata volume per compute process is small enough that it can
be maintained in SQLite’s “page-cache”, which is stored in main
memory. We know that caching does not produce this result since
we flush the cache before the start of each timestep.
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5.4.5 Checkpointing. Figures 12 and 13 compare the performance
of the implemented checkpointing methods for the dedicated and
local service mode cases, respectively. A summary of the various
checkpointing schemes can be found in Table 3. Methods 0 and
1 involve keeping all metadata in-memory (when possible) and
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Single Checkpt. File | Multiple Checkpt. Files
Full DB Method 0
In memory Method 1
Partial DB Method 4 Method 2
In Memory Method 5 Method 3

Table 3: Checkpoint Methods

checkpointing to a single file. Methods 2-5 do not keep metadata
in-memory after it has been checkpointed to disk. Methods 2 and
3 checkpoint to a separate file per checkpoint whereas methods 4
and 5 checkpoint to a single file. We can see that, for the dedicated
servers case, methods 4 and 5 perform best. By keeping only un-
checkpointed metadata in memory and checkpointing to a single
file, these methods eliminate the need to perform database com-
paction. Methods 0 and 1 have to compact the database because
they attempt to keep all metadata in-memory, and run out of RAM.
Methods 2 and 3 utilize a separate file per checkpoint and thus will
always require checkpoint file compaction. We can see that it is
possible for methods 2 and 3 to perform similarly to methods 4 and
5. However, as we can see with the performance of method 2, meth-
ods 2 and 3 can be very sensitive to contention since they involve
reading several moderately sized files for compaction. Methods 2
and 3 should experience the same compaction performance but,
likely due to increased contention, method 2 is significantly slower.
For the local service mode, methods 0 and 1 actually perform best.
The total database sizes are small enough that it actually takes
longer to remove already checkpointed metadata from the database
than it does to re-checkpoint it (method 0) or search for and output
only the new metadata (method 1). Here again we see that the cost
of compacting the databases far outweighs the checkpointing cost
for methods 2 and 3, and makes these the worst performing option.
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5.4.6 Transactions. Figure 14 demonstrates that both of our newly
implemnted transaction methods, using a different database per
transaction and using a lower-overhead method that limits the
flexibility of transactions, result in significantly faster performance.
Using a different database per transaction dramatically reduces
write times since writes are performed to an empty or nearly empty
database, but actually increases transaction management time since,
upon committing a transaction, all of the writes must be copied
to the “committed” database. We would, however, still expect this
transaction method to scale better than the D?T method since the
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commit method is O(transaction size) rather O(log(total metadata
size)). Note that it is O(log(total metadata size)) since we are using
an index to perform the table scan. As expected, the fastest method
is the one with the most limited functionality. By limiting the ability
to have concurrent transactions, flexibility over what is removed
by a rollback, and when reads can be performed, we obtain ample
speedups. Writing is faster since we eliminate the need to write
the transaction visibility status for each piece of metadata and the
indices on this information, and the transaction management is
much faster since we do not have to perform an (indexed) full table
scan to commit a transaction.

Write and Checkpoint Time vs.Transaction Type
For Dedicated Servers
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5.4.7 Indexing. Figures 15 and 16 demonstrate the performance

impact of delaying the creation of indices until the end of the run.
For the dedicated case, eliminating indices causes read time to
jump from 2.61 seconds to 1317.75 seconds. However, we can also
see that writing takes significantly less time, since each write no
longer has to update the various indices. We can also see that the
checkpointing time is slightly reduced (since the total database size
is reduced), and very little compaction time is required (since the
database was approximately 50% smaller, it was mostly able to fit in
memory). However, indexing does require a significant amount of
time at the end. This would, however, be done independently of the
compute processes, and thus by trading indexing time on the server
for faster writes with the compute processes, this could result in
substantial savings in compute hours, if there are no or minimal
reads required. For the local case, the picture is quite different.
Writes take similar times and reading takes less than 2X longer for
the non-indexed case (13.58 vs. 7.69). Overall, the relatively small
size of the database changes most of the calculus, making delaying
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indices more feasible for cases with intervening reads and for cases
that require more frequent checkpointing.

Run Time vs. Index Type for Dedicated Servers
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5.4.8 Message Bundling and Synchronicity. Two design features
for which we do not present evaluation are message bundling and
synchronicity. This is partially due to space constraints, and also
due to the fact that their effect on performance will be very context
dependent. The performance benefits gained by message bundling
will be largely dependent on the number of messages bundled to-
gether, which processes need a response, the networking topology,
and process distribution within this network. The performance ben-
efits of using asynchronous operations will be dependent on how
long compute phases last (assuming traditional cycles of compute
and then output), and how quickly users need a response and from
which operations.

6 RELATED WORK

While many tools provide some form of metadata management, far
fewer offer support for the kind of descriptive, custom metadata
that SystemX is designed to support. Of the tools that do support
descriptive metadata, most suffer from a significant limitation that
differentiates them from SystemX. The most common limitations
are tools offering only file-level metadata, storing the metadata
using key-value stores, being domain dependent, or lacking support
for extensible, user-defined metadata.

File-Level Metadata. Many projects have focused on metadata
management at the file level, meaning metadata that applies to
an entire file. This includes tools that manage basic file system
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metadata such as GUFI [5], which is part of MarFS [7] from Los
Alamos National Lab. This also includes tools that allow users to
add limited custom annotations to entire files such as Taglt [24],
ExpressQuery [14], Starfish [2], and POSIX extended attributes.
While file-level metadata can be useful, it does not offer the level
of granularity needed for either the petascale or exascale era. With
individual files already exceeding several petabytes, scientists need
access to finer-grained metadata to be able to limit their reading
scope to data of interest and thereby accelerate analysis.

Key-Value Stores. Many solutions offer metadata management by
allowing users to create key-value attributes. This includes the most
popular I/O systems used by scientific simulations: ADIOS [20],
HDF5 [11], netCDF-4 [23], and PnetCDF [17]. This also includes
many tools that support only file-level metadata such as Starfish [2]
and POSIX extended attributes, tools such as MIQS [30], which
provides indexing of key-value attributes, and SoMeta, which offers
a robust range of key-based metadata queries. However, key-value
stores cannot efficiently support the wide range of queries needed
by scientific users. Key-value stores suffer from two limitations.
First, while they offer good performance when retrieving a value
associated with an entire key, for all other searches they must resort
to linear searches of all stored metadata. This poor performance
makes key-value stores a poor fit for scientific users who need to be
able to perform searches based on many different potential values
such as run, timestep, variable, spatial area, and value. Second, for
searches that do not involve the entire key, string matching must
be used for each key in the store to determine if it is a match.

Domain Specific Solutions. A lot of work has been done to de-
velop domain- and application-specific tools to aid with metadata
management. Many of these tools use database backends to offer a
wider range of querying capabilities. Examples include the Catalog
Archive Server (CAS) [25] for the Sloan Digital Sky Survey (SDSS),
ATLAS [4] for the Large Hadron Collider, the Atmospheric Data
Discovery System (ADDS) [22], the Biomedical Image Metadata
Manager (BIMM) [15], the JGI Archive and Metadata Organizer
(JAMO) for genomics [3], and the SPOT Suite for advanced light
sources [26]. While these systems have their merits, they offer en-
tirely domain-specific solutions, which do not offer the generality
or flexibility offered by SystemX. They also do not allow for exten-
sible, user-defined attributes like SystemX since they are designed
to capture particular, predefined kinds of features and to generate
standardized metadata catalogs.

Limited Extensible, User-Defined Metadata. Many systems offer
limited support for extensible, user-defined metadata, and instead
focus on metadata that is automatically collected or which has little
flexibility. This includes the domain specific solutions listed above
and the Scientific Data Manager (SDM). The SDM uses a database
to store metadata about the physical locations of data objects and
abstracts away low-level storage details from the user. It also offers
very limited basic attribute capabilities. These kinds of systems are
designed to capture predefined categories of metadata and lack the
flexibility and range of functionality needed to support users across
the scientific domains.
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7 FUTURE WORK

Future work will focus on expanding SystemX’s functionality. We
will investigate the possibility of offering direct support for coordi-
nate systems other than Cartesian and for supporting non-uniform
meshes and Adaptive Mesh Refinement codes. It will also be im-
portant to explore how a metadata system like SystemX can better
serve applications with different data models, such as genomics
applications. We also want to look further at improving usability to
provide support for users with varying levels of comfort with pro-
gramming. Finally, we hope to explore more fully how a metadata
management service like SystemX can be integrated with storage
systems to make better decisions about prefetching, tiering, and
striping, and to better support the full data life-cycle.
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