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Motivation: Transfer Function Analysis

Transfer function analyses rely on linear
operators that scale response to force
magnitude
°> Nonlinearity complicates the use of transfer
tunctions about an operating load

Mechanical interfaces in assembled structures 102 —— ———
lead to nonlinear frictional energy loss N I AE
° Increased effective damping ~\[[——10.0 Ibf] |

o Decreased effective stiffness

Use of linear(ized) frequency response functions
(FRFs) may lead to over- or undertesting of
structure
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> Overtly designed system that might compromise
mission objectives

> Unexpected failures in qualification and field
testing 10™
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Nonlinear Forced Response

Frequency Response Function: determines the steady-state periodic response of a
linear system to a harmonically driven input force at various frequency lines

Nonlinear Forced Response: determines the steady-state periodic” response of a
nonlinear system to a harmonically driven input force at various frequency lines
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Two common approaches to calculate the x(t)
nonlinear steady-state response:
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1.) Direct time integration to reach steady-state
conditions

2.) Path-following continuation

2a.) Shooting method
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2b.) Multi-harmonic balance
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+ I Nonlinear Forced Response

Single, nonlinear resonant mode approximation by Szemplinska-Stupnicka [1] and later
extended by Krack et al. [2] using complex nonlinear modes without internal resonances
Obijective: use single, nonlinear resonant mode approximation to synthesize the nonlinear

forced response curves using nonlinear frequency and damping curves from quasi-static
modal analysis — applicable to jointed structures with weak damping nonlinearity
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[1]1 W. Szemplinska-Stupnicka, "The modified single mode method in the investigations of the resonant vibrations of non-linear systems," Journal of Sound and Vibration, vol.

Modal Displacement, in-v/Ibm

63, no. 4, pp. 475-489, 1979.
[2] M. Krack, L. Panning-von Scheidt, and J. Wallaschek, "A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited

mechanical systems," Journal of Sound and Vibration, vol. 332, no. 25, pp. 6798-6814, 2013.
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> Weakly nonlinear systems such that modal coupling terms negligible
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s I Nonlinear Resonant Mode Approximation

Modal Frequency Response Function (FRF) for a linear system

Qx(w) = biF

2 A
—w2+wi+2ifwrw

Reconstructing FRF in the physical domain as a linear superposition
m m
X(@) = ) Xe(@) = ) $i0i(®)
k=1 k=1

Adapt the modal FRF to a nonlinear oscillator [1]
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Synthesize the nonlinear forced response (NLEFR) as [2]

X(©) = r0r(©,0) + ) Qi)
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[1]1 W. Szemplinska-Stupnicka, "The modified single mode method in the investigations of the resonant vibrations of non-linear systems," Journal of Sound and Vibration, vol.
63, no. 4, pp. 475-489, 1979.

[2] M. Krack, L. Panning-von Scheidt, and J. Wallaschek, "A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited
mechanical systems," Journal of Sound and Vibration, vol. 332, no. 25, pp. 6798-6814, 2013.




¢ I Solve NLFR: Newton-Raphson Algorithm

Setup the complex residual equation

R*(w,Qr) = (—w? + wZ (10D + 2i¢(1Q-Dwr(1Q-Dw)Qr — b7 F
Rearrange to be written in terms of real and imaginary parts
Qr = QF +iQ;

R’"} _ {—wZQﬁ — 28 (10N wr (10 NwQf + w2 (1Q-1)QT — IF}

R ,Ur) = , : .
(@,0) = {4 —w20} + 28,010, Dy (10, D} + 02 (10D}

Damped Newton-Raphson algorithm to iteratively minimize the Z norm of the
residual at a discrete frequency, w

7).
Qr,n+1 = Qr,n — & R(w, Qr) where 0<e<1
n
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7 I Quasi-static Modal Analysis

Estimate modal amplitude dependent natural Quasi-static Modal Analysis of

frequencies, W, (|Qy|), and damping ratios, Full-order Model

(r( er); for:

> High-fidelity finite element models with
frictional contact [1]

> Reduced models with 4-parameter Iwan Nonlinear Preload Analysm
elements [2] Kx + fy;(%,0) = f,,,

Advantages:

1.) Accessible to commercial FEA software (via wrapper algorithm)
2.) Only valid for weak damping nonlinearity

3.) Captures amplitude dependent frequency and damping ratio

4.) Ignores/ filters internal resonances
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D (a) /\ A Quasi-static Modal Analysis
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[ITE. A. Jewell, M. S. Allen, and R. M. Lacayo, "Predicting Damping of a Cantilever Beam with a Bolted Joint Using Quasi-Static Modal Analysis," presented at the ASME
2017 International Design Engineering Technical Conferences IDETC/CIE, Cleveland, OH, Aug. 6-9, 2017.

[2] R. M. Lacayo and M. S. Allen, "Updating structural models containing nonlinear Iwan joints using quasi-static modal analysis," Mechanical Systems and Signal Processing,
vol. 118, pp. 133-157,2019/03/01/2019.




WY3III03|e JO UOIIBIISUOW(]




C-Beam Assembly with Whole Joints

i

Demonstrate the accuracy of the approach on a

reduced order model with two, four-parameter

Iwan elements to describe the joint forces Kr (58!)2755;4(-)06 6Ibe//ir|:])
Total DOF: 25 fixed-interface modes, and 27 7. 1086 Ibf

static constraint modes (52 total DOF) (4831 N)
Whole Joint: Linear springs except for x- X -0.5714

displacement direction (Iwan) to target first mode 8 | 783E-03




Mode |: Quasi-static Modal Analysis
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i1 I Nonlinear Forced Response

*Direct time integration — 4.7 hours (non-optimal)

*NLFR w/ QSMA — 15 sec

= = = Direct Time Integration
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Direct time integration: integrated over 250 cycles per frequency line to reach steady-state



NLFR Correlation

Modified Frequency Response Assurance Criterion (mFRAC):

el w, I Xilnerr (@)Xl pr (@)

mFRAC =
Yoz w1 XK |nverr (@)Xl virr (@) X2 o, Xilpr (@)Xl pr(w)
Force 0.1 Ibf 0.2 Ibf 0.5 Ibf 1.0 Ibf 2.0 Ibf
Amplitude
mFRAC 1.0000 1.0000 1.0000 1.0000 1.0000
Force 5.0 Ibf 10 Ibf 20 |bf 50 Ibf
Amplitude
mFRAC 1.0000 0.9999 0.9991 0.9992
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Frequency Backbone
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14+ I Conclusion

Applied single, nonlinear resonant mode approximation to jointed structure with
weak damping nonlinearity

Demonstrated accuracy and efficiency of Quasi-Static Modal Analysis for obtaining
nonlinear frequency and damping curves for nonlinear forced response synthesis

Future work will apply this methodology to full-order FEM and extend the modal
nonlinear forced response approach to base-excited systems




Any Questions!?

Contact information
> Robert Kuether, rikueth(@sandia.gov

° David Najera, david.najera@ata-e.com
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