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CONSPECTUS 

Microkinetic modeling based on density functional theory (DFT) derived energetics is important 

for addressing fundamental questions in catalysis. The quantitative fidelity of microkinetic models 

(MKMs), however, is often insufficient to conclusively infer the mechanistic details of a specific 

catalytic system.  This can be attributed to a number of factors such as an incorrect model of the 

active site for which DFT calculations are performed, deficiencies in the hypothesized reaction 

mechanism, inadequate consideration of the surface environment under reaction conditions, and 

the intrinsic errors in the DFT exchange-correlation functional. Despite these limitations, we aim 

at developing a rigorous understanding of the reaction mechanism and of the nature of the active 

site for heterogeneous catalytic chemistries under reaction conditions. By achieving parity between 

reaction kinetics experimental outcomes and modeling outcomes through robust parameter 

estimation and by ensuring coverage-consistency between DFT calculations and MKM 

predictions, it is possible to systematically refine the mechanistic model and, thereby, our 

understanding of the catalytic active site in situ.  
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Our general approach consists of developing ab initio-informed MKM for a given active site and 

then re-estimating the energies of the transition and intermediate states so that the model 

predictions match quantities measured in reaction kinetics experiments. If: (i) model-experiment 

parity is high, (ii) the adjustments to the DFT-derived energetics for a given model of the active 

site are rationalized within the errors of standard DFT exchange-correlation functionals, and (iii) 

the resultant MKM predicts surface coverages that are consistent with those assumed in the DFT 

calculations used to initialize the MKM, we conclude that we have correctly identified the active 

site and the reaction mechanism. If one or more of these requirements are not met, we iteratively 

refine our model by updating our hypothesis for the structure of the active site and/or by 

incorporating coverage effects, until we obtain a high-fidelity coverage-self-consistent MKM 

whose final kinetic and thermodynamic parameters are within error of the values derived from 

DFT.  

Using the catalytic reaction of formic acid (FA, HCOOH) decomposition over transition-metal 

catalysts as an example, here we provide an account of how we applied this algorithm to study this 

chemistry on powder Au/SiC and Pt/C catalysts. For the case of Au catalysts, on which the FA 

decomposition occurred exclusively through the dehydrogenation reaction (HCOOH→CO2+H2), 

our approach was used to iteratively refine the model starting from the (111) facet until we found 

that specific ensembles of Au atoms present in sub-nanometer clusters can describe the active site 

for this catalysis. For the case of Pt catalysts, wherein both dehydrogenation (HCOOH→CO2+H2) 

and dehydration (HCOOH→CO+H2O) reactions were active, our approach identified that a 

partially CO*-covered (111) surface serves as the active site and that CO*-assisted steps 

contributed substantially to the overall FA decomposition activity. Finally, we suggest that once 
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the active site and the mechanism are conclusively identified, the model can subsequently serve as 

a high-quality basis for designing specific goal-oriented experiments and improved catalysts.  
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INTRODUCTION 

MKMs formulated using energetics derived from DFT calculations are frequently employed to 

elucidate the underlying reaction mechanism of heterogeneously catalyzed reactions. Figure 1 

shows a schematic for an algorithm reflecting the  workflow for microkinetic modeling based 

analysis that is typically employed in the catalysis literature, viz. – (i) enumerating the elementary 

steps in the reaction mechanism, (ii) using DFT to evaluate binding energies for each intermediate 

and transition-state energies for each elementary step, on an hypothesized structure of the 

catalytically-active site, (iii) formulating a MKM, which is a system of differential-algebraic 

equations within the mean-field approximation, with DFT computed parameters for kinetics 

(activation energies and pre-exponential factors) and thermochemistry, and (iv) solving the model 

to obtain information on the catalytic chemistry, including reaction rates, flux-carrying pathways, 

selectivity, apparent activation energy barriers, reaction orders, and rate-/selectivity-determining 

steps.  

Being entirely ab initio, these models are in principle predictive and serve to bridge the gap 

between atomic-scale information (i.e., energies corresponding to most stable structures of 

intermediates and transition-states on a certain structure of the active site) and macroscopic 

observables (e.g., conversion and selectivity).5–7 MKMs have often complemented experiments 

(microscopy, spectroscopy, and reaction kinetics experiments) to offer comprehensive insights 

into the reaction mechanism over a wide range of experimental conditions.8,9 These insights can 

then serve as the basis for identifying new material compositions and atomic-scale architectures 

with improved catalytic activity and/or selectivity.10–12  
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Figure 1: Schematic representation of the typical workflow adopted in a microkinetic-modeling (MKM)-
based analysis for heterogeneous catalysis. ‘A’, ‘B’/‘C’, and ‘Xi’s refer to reactant, products, and reaction 
intermediates, respectively. PED refers to potential energy diagram. Reactor balance equations (system of 
differential-algebraic equations) solved in a MKM are shown in the third panel. 

 

A major caveat of the current approach (Figure 1) is that while these models often capture 

qualitative reactivity trends across experimental conditions and catalytic materials,6,13,14 their 

quantitative accuracy vis-à-vis reaction kinetics experiments is often lacking. Indeed, the mismatch 

in reaction rates between model predictions and experiments can be several orders in magnitude 

and could stem from a number of factors,1,15 such as : (1) an incomplete/incorrect reaction 

mechanism, (2) an active site model for which DFT energies are calculated, which is not 

dominating the catalytic action, (3) lack of consideration of surface environment effects, i.e., 

adsorbate-induced coverage-effects (clean-surface vs. a surface partially covered by 

spectators/reactants/products), and (4) the intrinsic limitations of standard DFT exchange-

correlation functionals which are used to calculate the energetics. 

A pertinent question arises: Given this lack of fidelity, how can we identify active sites and reaction 

mechanism with a high degree of confidence? To address this question, it is common to simply 
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adjust the kinetic and thermochemical parameters, to achieve model-experiment parity.16–19 This 

parameter adjustment is often rationalized based on qualitative intuition such as: (i) the idealized 

models may not fully capture the complexity of the real catalyst, (ii) standard DFT functionals 

(PBE/PW91) overpredict the binding of covalently-bound small intermediates, whereas they 

underpredict the binding of larger intermediates (due to inadequate treatment of dispersive 

interactions),20–22 and (iii) most common functionals perform poorly in predicting gas-phase 

energetics.20,23,24 We have performed such adjustments through parameter estimation previously, 

however, we suggest that this approach represents only a partial solution to the problem of parity 

between measured and model predicted rates. While the resulting model might offer good 

predictive power, it does not necessarily provide a conclusive picture of the underlying reaction 

mechanism and of the nature of the active site.  This is because: (i) there may be multiple solutions 

to the parameter estimation problem, (ii) the adjustments to the DFT-derived parameters may be 

too large to be easily rationalized, i.e., larger than the statistical-error of ~0.2 eV for the common 

GGA functionals (eg. PBE/PW91),20,25–27 and (iii) the predicted surface coverage of various 

species could be dramatically different from the coverage assumed to compute the DFT energetics.  

Here, we provide an account of the methodology developed in our group for formulating high-

fidelity MKMs.1–4,19,28–32 Specifically, we present our algorithmic approach for identifying active 

sites and reaction mechanisms in the context of the formic acid (FA) decomposition reaction 

(Scheme 1) – a chemistry which we have studied extensively, both computationally and 

experimentally – on supported Au1–3 and Pt4 catalysts (details regarding our assumptions and 

reaction engineering aspects of our MKM can be found in the corresponding references). Through 

these examples, we strive to convey the advantages of a systematic and integrated approach of 
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combining DFT calculations, reaction kinetics experiments, and microkinetic modeling to 

iteratively refine the atomic-scale picture of the active site and the reaction mechanism. 

 
Scheme 1: Formic acid (FA, HCOOH) decomposition reactions. Gibbs free energies (ΔG) are calculated 
using the NIST thermochemistry database.33 
 
 
FA DECOMPOSITION ON SUPPORTED GOLD CATALYSTS 

Ojeda and Iglesia reported that finely-dispersed Au/Al2O3 catalysts decompose FA to H2 

selectively and exhibit higher activities compared to Pt catalysts,34 one of the most active 

monometallic catalysts for FA decomposition.35–37 These authors proposed that small Au clusters 

on Al2O3, undetected by transmission electron microscopy (TEM), were likely responsible for the 

exceptional catalytic activity.34 Others have since corroborated that well-dispersed Au catalysts on 

a host of supports (SiC,1 SiO2,38 ZrO2,39,40 CeO2,39,41 and TiO2
42) also exhibit high activity and 

high H2 selectivity for FA decomposition. Although there is a consensus among these experimental 

studies that smaller Au nanoparticles or clusters are responsible for the remarkable FA 

decomposition reactivity of Au catalysts, the precise nature of the active site remained unknown. 

In the following, we describe our efforts to identify the nature of the active site for FA 

decomposition on Au/SiC using an algorithm that significantly expands on the approach outlined 

in Figure 1.  

Iterative approach for elucidating the nature of the active site for FA decomposition on Au/SiC 

We started with studying this catalysis by combining DFT, microkinetic modeling, and reaction 

kinetics experiments over Au/SiC.1 Specifically, we proposed an algorithmic workflow, wherein 

we take input from reaction kinetics experiments and iteratively refine our computational models 
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to identify the nature of the active site (Figure 2). Accordingly, we initialized this procedure by 

hypothesizing a model for the active site, followed by: (i) evaluating DFT energetics to formulate 

a mean-field MKM, (ii) utilizing reaction kinetics experiments to systematically adjust DFT 

energetics to minimize model-experiment mismatch, (iii) evaluating if the parameter adjustments 

are rationalized within error of the exchange-correlation functional; if yes, we conclude that our 

hypothesis is correct, else,  we utilize the insights gained from the parameter adjustment procedure 

to refine our hypothesis for the nature of the active site and re-perform this analysis iteratively 

until adjustments to DFT energetics are within the error of the functional. It is only then that we 

conclude that we have developed a reasonable vision for the nature of the active site.  

 
Figure 2: An iterative approach for elucidating the structure of the active site for FA decomposition on 
Au/SiC (ref. 1). Feedback from parameter adjustment, required to fit the experiments (steady-state, <20% 
conversion, 1-4% FA, 0-6% H2/CO2, 343-383K; catalyst surface-site density determined from scanning 
transmission electron microscopy), is used to continually revise the hypothesis for the active site: 
Au(111)→Au(100)→Au(211). To fit the reaction kinetics experimental measurements, for all three facets 
(shown in the potential energy diagram (PED)), large parameter adjustments were necessary, indicating 
that the active site is more undercoordinated than Au(211). CN refers to surface coordination number. 
Vertical dashed black-line in the inset for Au(211) marks the step edge. 
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We started by considering the close-packed Au(111) facet (surface coordination number (CN) of 

9) as the hypothesized model for the active site (Figure 2) and evaluated the energetics of a 

comprehensive reaction network comprising of 17 reaction steps and 15 distinct species, using 

plane-wave periodic DFT (PW91-GGA). We used zero-point energy (ZPE) corrected energetics 

to obtain initial estimates for the rate parameters used in the MKMs. However, the model 

significantly underpredicted the reaction rates compared to our experimental measurements. To fit 

the model-predicted rates with experimental rates, the energies of the transition-states and reaction 

intermediates had to be substantially modified (by as large as 1 eV). Such adjustments cannot be 

justified on the basis of GGA errors alone, and since a detailed reaction mechanism was modeled, 

we concluded that Au(111) cannot represent the active site for this chemistry. Nevertheless, the 

parameter adjustments needed for the MKM on Au(111) to capture the experimental data provided 

valuable guidance in searching for an alternative model for the active site. We noted that all the 

intermediates and transition-states had to be stabilized, suggesting that a more under-coordinated 

model site would potentially represent the active site better. Algorithmically (Figure 2), this led 

us to evaluate Au(100) (CN=8) and then Au(211) (CN=7) as plausible active sites. However, since 

large parameter adjustments were necessary on these two facets as well, we concluded that none 

of the facets explored yet were a good representation of the active site on Au/SiC.  

The results showed that upon going from Au(111)→Au(100)→Au(211), the magnitude of the 

parameter adjustments progressively decreased, but all states still had to be further stabilized to 

rationalize the experimental reaction rates. These observations suggest that the active site might 

be more undercoordinated than Au(211) (CN<7), which would potentially stabilize the energetics 

for the intermediates and transition-states to an even greater extent, compared to Au(111), 

Au(100), and Au(211). Additionally, for all three models, >0.95 ML of the sites were predicted to 
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be vacant under all reaction conditions, which precludes any potential stabilizations stemming 

from adsorbate-adsorbate interactions. 

Experimental insight on the catalytic active site for FA decomposition on Au/SiC 

To further explore the role of undercoordinated Au sites, we synthesized Au catalysts with varying 

dispersion (average particle size ranging from 2.5-10.7 nm) and evaluated those through reaction 

kinetics experiments.1 The results indicated that the turnover frequency (TOF) decreased with 

increasing average particle size, demonstrating the structure sensitivity of FA decomposition on 

Au/SiC. Subsequently, we estimated the fraction of various surface sites (corner, perimeter, 

terrace) as a function of particle size,43–46 and concluded that the reaction rate correlated well with 

the number of corner sites. This conclusion based on experiments is in agreement with the insight 

gained from DFT-derived MKMs suggesting that indeed low-coordinated Au sites are playing a 

key role in FA decomposition. 

FA decomposition on unsupported Au clusters 

Motivated by this conclusion, we studied the role of low-coordinated sites in catalytically relevant 

sub-nanometric regimes. Specifically, we analyzed FA decomposition reaction paths on 

unsupported subnanometric Au clusters (up to Au25~0.85nm), identified using ab initio molecular 

dynamics simulations.2 To select the clusters characterized by energetics that could rationalize the 

experimental reaction rates, we used the activation energy barrier for the first FA dehydrogenation 

step (HCOOH*  HCOO*+H*) as a screening criterion (Figure 3). As Au(211), the most reactive 

of the three extended surfaces considered, predicted reaction rates that were 5-6 orders of 

magnitude smaller than the experimental reaction rates, the active clusters in the Au/SiC catalysts 

used in experiments should at least have a smaller activation energy barrier for FA 

dehydrogenation compared to that on Au(211).  
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Figure 3: Elucidating the active site for FA decomposition on unsupported subnanometric Au clusters (ref. 
2). Most stable geometries of Aun (n=2-25) clusters (<0.85nm) obtained from ab initio molecular dynamics 
(AIMD) are shown. Combination of DFT-derived mean-field MKMs and reaction kinetics experiments on 
Au/SiC, led to the conclusion that Au18 might resemble the active site the best. Kinetic Monte Carlo (KMC) 
study on Au18 revealed that a pair of adjacent Au3 ensembles (coordination number (CN) of 5), can be the 
active site for FA decomposition on Au/SiC (ref. 3). 

 

Consequently, we performed detailed reaction pathway studies on the shortlisted subset of clusters 

(Au4, Au5, Au7, Au17, Au18, and Au19), which were identified as potential candidates for the active 

site on Au/SiC. Mean-field MKMs were then developed using the DFT energetics calculated for 

these clusters and were subsequently fit to the experimental data through parameter adjustment. 

This entire process (Figure 3) identified the Au18 cluster to possess the most favorable energetics, 

requiring only minimal parameters adjustments to fit the experimental data.  

Although, mean-field MKMs provide valuable information to guide the search of active site 

geometry, subnanometric clusters such as the catalytically active Au18: (i) offer a spatially 

inhomogeneous surface, (ii) present discrete adsorbate coverages, and (iii) lead to strong adsorbate 
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interactions due to quantum-size effects and superatomic nature of the clusters.3,47 These properties 

mandate the use of methods that better capture local effects. In a recent study,3 we combined DFT 

calculations with cluster-expansion48,49 and on-lattice kinetic Monte Carlo (KMC) simulations50,51 

to derive a rigorous mechanistic description for FA decomposition on Au18 clusters. The results 

suggest that a pair of adjacent Au3 triangular ensembles (CN=5) is likely the active site for FA 

decomposition on Au18 clusters. Dissociation of a single FA molecule, leads to the simultaneous 

occupation of each of these triangular-sites by HCOO* and H*, which in turn results into a strong 

stabilization of the Au18 cluster. This stabilization prevents dehydrogenation of a second FA 

molecule, until the first molecule is fully decomposed to CO2(g) and H2(g). In other words, Au18 

processes one FA molecule at a time, thereby explaining the kinetic isolation of decomposition 

events associated with the exclusive HD production observed in experiments with half-deuterated 

FA molecules over Au/Al2O3.34 The reaction occurs through the HCOO*-mediated pathway 

(HCOOH*  HCOO*+H*  CO2*+2H*  CO2+H2) with complete selectivity towards H2, 

which rationalizes the experimentally observed selectivity towards dehydrogenation on Au/SiC. 

Dehydrogenation of HCOO* carries the highest degree of rate control52 for all conditions and is 

therefore the rate-determining step. 

In the case of FA decomposition over Au/SiC, we showed that the mechanism and active site (pair 

of Au3 sites on Au18) could not have been identified following the approach described in Figure 

1. Further, we demonstrated that finding an accurate active site model alone through parameter 

adjustments, is insufficient. Only an active site model that yields a high degree of parity with 

experimental measurements and whose parameter adjustments are within the error of the utilized 

functional, offers a desirable stopping point for the active site identification algorithm. It is only 

at that point we can extract reliable mechanistic insights. 
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FA DECOMPOSITION ON SUPPORTED PLATINUM CATALYSTS       

Experimental studies demonstrate Pt as one of the most active monometallic catalysts for FA 

decomposition.35–37 Unlike Au catalysts which selectively dehydrogenates FA, both the 

dehydrogenation (CO2+H2) and dehydration (CO+H2O) pathways are active on Pt, with >95% 

selectivity towards dehydrogenation.37,53 Additionally, formation of CO as one of the 

decomposition products implies the presence of adsorbed CO (CO*) on the catalyst surface, 

leading to the well-known problem of CO*-poisoning of Pt catalysts.37,54 Despite numerous 

computational and experimental studies of this reaction, the nature of surface reaction 

intermediates along with their abundance, the reaction mechanism, and the nature of the active site 

as a function of reaction conditions, have not been elucidated. Herein, we discuss our algorithmic 

approach for addressing these fundamental questions for FA decomposition on Pt/C (Figure 4).4 

Iterative approach for elucidating the active site for FA decomposition on Pt/C 

We started by considering extended clean Pt(100) and Pt(111) surfaces as the active site model 

and calculated the energetics (DFT-PW91-GGA) for a comprehensive reaction network involving 

25 elementary steps and 20 species. To incorporate ZPE and temperature–corrected DFT 

energetics in our mean-field MKMs, we derived Shomate parameters,33 using vibrational 

frequency calculations and statistical mechanics. Both clean (111) and (100) models, however, 

predicted reaction rates that were several orders of magnitude lower than our experimental rates 

(steady-state, <10% conversion, 1-5% FA, 0-10% H2/CO2, 0-0.1% H2O/CO, 358-378 K; catalyst 

surface-site density determined from CO chemisorption). Next, we performed parameter 

estimation to determine the adjustments on the two surfaces that would yield quantitative 

agreement with our experimental data.  
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Post parameter adjustments, both clean Pt(111) and Pt(100) demonstrated improved agreement 

with experimental measurements. However, these models were found to be inadequate 

representations of the active site on Pt/C, since they: (i) failed to reproduce rates when CO was co-

fed in the reactor, (ii) predicted high coverage of CO* (>0.90 ML, averaged over all experiments), 

inconsistent with the clean-surface assumption at which the DFT energetics were calculated, and 

(iii) required large adjustments to the DFT-derived activation energy barriers for several 

elementary steps, well beyond the typical GGA errors (Figure 4). Although these models fell short 

in explaining the experiments, their analysis provided useful insights regarding the nature of the 

most abundant surface intermediate (MASI) under experimental conditions, viz. CO*. In principle, 

one could also validate this model prediction using operando spectroscopy. Indeed, there is ample 

spectroscopic evidence (in situ Fourier-transform infrared spectroscopy (FTIR)) for partial CO*-

poisoning of supported Pt catalysts, under typical FA decomposition conditions.37,54 Motivated by 

these insights, we updated our hypothesis for the active site model and, in the next step, considered 

partially CO*-covered (111) and (100) facets (Figure 4), thereby explicitly accounting for CO* 

coverage-effects.  
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Figure 4: Workflow for developing a coverage self-consistent description of the active site for FA 
decomposition on Pt/C (ref. 4). Mean-field MKMs formulated using DFT energetics on clean Pt(100) and 
Pt(111) were found to poorly describe the active site. Feedback from the parameter estimation is used to 
iteratively update the hypothesis for the nature of the active site. 

 

Modeling CO* spectator-induced coverage-effects 

Consequently, using DFT, we reinvestigated the entire reaction network on partially (4/9 ML) 

CO*-covered Pt(100) and Pt(111) surfaces. The choice of 4/9 ML CO*, used as an initial estimate 

of the in situ coverage, was motivated by previous experimental determination of CO*-saturation 

coverages on Pt surfaces under low CO partial pressures, which is similar to that experienced by 

Pt/C under FA decomposition reaction conditions.55 The presence of CO* on the catalyst surface 

opened new pathways, including CO*-assisted dehydrogenation steps, which were now included 

in the refined reaction network. In addition, we evaluated the reaction energetics 

(binding/transition-state energies) at varying CO*-coverage levels to determine the variation of 

the energetics as polynomial-functions of CO* coverage. The resultant polynomial-functions were 
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incorporated in our MKMs, thereby enabling CO* coverage-dependent energetics for the new 

models.  

After parameter adjustments, both the CO* coverage-cognizant Pt(100) and Pt(111) models were 

able to accurately describe the experimental data, including the subset of the experiments with CO-

co-feed, which were not well reproduced by our clean surface models. Furthermore, these MKMs 

predicted CO* coverages (~4/9 ML CO* on Pt(100); ~3/9 ML on Pt(111)) which were consistent 

with coverages of 4/9 ML CO* spectators used in the catalyst model for DFT calculations. Both 

these MKMs were therefore CO*-coverage self-consistent. Analysis of the parameter adjustments 

revealed that Pt(100) required large adjustments to the DFT calculated activation energy barriers 

(Figure 4). By constraining the adjustments to the typical GGA error of ±0.2 eV,20,25–27,56,57 we 

found that Pt(100) was largely poisoned by CO* (~0.5 ML) and was rendered inactive under our 

reaction conditions. On the other hand, parameter adjustments required for the partially CO*-

covered Pt(111) model were within GGA error. We therefore concluded that a partially CO*-

covered Pt(111) accurately represents the active site for FA decomposition on Pt/C.  

The MKM analysis revealed that on the partially CO*-covered Pt(111), the reaction proceeds 

through the COOH* mechanism (Figure 5). Both the direct COOH* dehydrogenation (COOH* 

 CO2*+H*) and the CO*-spectator assisted dehydrogenation (COOH*+CO*  CO2*+COH*; 

CO*-spectators are denoted by CO*) pathways contributed to the dehydrogenation reaction flux. 

These CO* spectator-assisted pathways were found to be essential for accurately reproducing the 

experimentally measured apparent activation energy barriers and reaction orders.  
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Figure 5: Results from the MKM on a 4/9 ML CO*-covered Pt(111) (ref. 4): (a) Reaction mechanism for 
FA decomposition on Pt/C. Formate-mediated pathways were considered, but did not contribute 
significantly to FA decomposition. Flux contributions for the various pathways at 2.6% FA, balance He (1 
atm, 373K) are indicated, (b) Parity plots comparing model-predicted and experimental turnover 
frequencies (TOFs).  

 

 

This example speaks to the importance of practicing coverage self-consistent microkinetic 

modeling and of combining it with experimental data for elucidating the nature of active site and 

the reaction mechanism. Modeling CO* coverage-effects for this chemistry: (1) yielded improved 

initial estimates for the energetics used in the MKM, since these parameters required minimal 

adjustments to fit with the experiments and (2) inspired the consideration of CO* spectator-assisted 

pathways, which were essential in reproducing the experimental data. The traditional approach 

(Figure 1) was again insufficient; our iterative approach, however, revealed that accounting for 

CO* coverages was essential in determining both the active site and the reaction mechanism.  
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AN ALGORITHM TO IDENTIFY ACTIVE SITE AND REACTION MECHANISM 

The process of iterative model refinement, employed in both examples, can be formalized as a 

general algorithm (Figure 6), which substantially expands on the conventional methodology 

shown in Figure 1. We initialize the algorithm with a hypothesized active site model, perform 

detailed reaction pathway studies using DFT, and formulate a MKM. We then incorporate data 

from reaction kinetics experiments and perform parameter estimation to achieve parity with the 

experiments. The optimized model is evaluated on the following three criteria: (i) Can the model 

accurately reproduce the experimental data?, (ii) Are the parameter adjustments needed to capture 

the experiments within error of the utilized exchange-correlation functional?, (iii) Is the model-

predicted surface-environment consistent with the coverages at which the DFT energetics were 

calculated? If the optimized model satisfies all three criteria, we conclude that the hypothesized 

model for the active site accurately describes the nature of the active site. However, if even one of 

these criteria is not satisfied, we use insights gained from our parameter adjustment procedure to 

revise our hypothesis for the active site (i.e., active site geometric model, reaction mechanism, 

spectator coverage-effects ), and reiterate all steps in the algorithm until all three criteria are met. 

The resultant high-fidelity model can then be used to perform well-educated reaction engineering 

tasks, e.g.: (i) predict behavior of the catalyst with quantitative accuracy (i.e., activity, selectivity, 

surface coverages, reaction mechanism, etc.), under other experimental conditions, (ii) perform 

experimental design with specific goals in mind: to identify  experimental conditions for 

optimizing yield of product(s) or surface concentration of reaction intermediate(s), which, in turn, 

could enable spectroscopic identification of elusive reaction intermediates, and (iii) investigate 

related chemistries (e.g., the reverse reaction).  
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Figure 6: Proposed algorithmic scheme for elucidating the nature of the catalytic active site and the reaction 
mechanism, using a combination of DFT, reaction kinetics experiments, and microkinetic modeling. 
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PARAMETER ESTIMATION 

A critical part of the algorithm is parameter estimation where we minimize the model-experiment 

mismatch (of TOFs) by adjusting the energetics of surface intermediates and transition-states from 

their respective DFT-values. Mathematically, this is a nonlinear optimization problem with the 

MKM (at different experimental conditions) as constraints. Solving this problem is challenging 

because: (i) the optimization problem is highly nonlinear due to the numerical stiffness of the 

MKM, (ii) we seek solutions where the insensitive parameters are automatically identified and set 

to zero (i.e., energy is set to the respective DFT value) to avoid overfitting, (iii) we require 

alternative solutions (minima) to compare potentially competing models.  Accordingly, by 

leveraging modern numerical solvers and optimizers from the process systems engineering 

community,58,59 we have developed two different approaches and tools to rigorously solve these 

parameter estimation problems19,31 and to identify a comprehensive set of solutions meeting the 

convergence criteria of the algorithm. In both methods, we apply (i) a regularization penalty that 

ensures that the DFT-derived energetics are adjusted to the least possible extent, thereby, 

enhancing the credibility of the solution and (ii) a multi-start scheme using uniform sampling of 

the parameter space to elucidate plausible alternate solutions. Insights from benchmarking 

studies20,60 regarding the uncertainty for the DFT energetics can inform the bounds on the 

maximum allowable adjustments for the DFT-energetics, thereby reducing the parameter space in 

which the search for acceptable solutions is conducted. 

Alternate formulations, such as Bayesian parameter estimation, have also been employed, which 

incorporates errors from both theory and experiment to identify the maximum of the posterior 

distribution, to fit the experiments, rather than solving as an optimization problem.27 
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OUTLOOK 

In Figure 6, we formalize our novel and comprehensive algorithm combining DFT, reaction 

kinetics experiments, and MKM to determine: (i) the nature of the active site in catalysis while the 

reaction is taking place and (ii) the detailed reaction mechanism for small-to-medium sized 

chemistries (~50 elementary steps). Selected opportunities for further methodological 

development are summarized here:  

 Errors in entropy: In the parameter adjustment step of the algorithm, we have implicitly 

assumed that the errors arise in energies; not in entropy. While this assumption is reasonable 

when the intermediates are strongly bound (as in the examples discussed here), using standard 

quantum-harmonic approximations to estimate the partition function may grossly under-

predict the entropy of weakly bound intermediates. 61–63 Further, inclusion of surface 

configurational entropy, associated with compensation effects in heterogeneous catalysis,64–66 

could also help improve the description of the active site. How these corrections/contributions 

can be included in our algorithm remains to be assessed.  

 Beyond monometallic catalysts and single-site models: While our iterative algorithm is catalyst 

agnostic, its application to metal alloys, metal-support interfaces, oxide/sulfide-based 

catalysts, and materials with intrinsically isolated sites (e.g., zeolites, single-atom catalysts) 

has not yet been explored. For both examples here, single-site models seem adequate, 

indicating that only one site is at play. There may be catalytic systems wherein multiple sites 

are concurrently operative; in such cases, we expect that our algorithm will identify multiple 

plausible solutions, each corresponding to a contributing single-site. In those cases, we expect 

that the results of our analysis will inspire carefully designed additional experiments for further 

distinguishing contributions to reactivity by different sites.  
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 Size-scalability: Intrinsically complex reaction networks (comprising of hundreds of 

intermediates and thousands of reaction steps) routinely arise in catalysis (e.g., alkane 

reforming, hydrotreating, biomass upgrading, etc.); how this approach scales to such large 

reaction networks remains to be studied. 

 Assessing and improving the accuracy of first-principles calculations: A number of recent 

functionals, e.g., PBE-D2/D3, opt-PBE, vdW-DF2, BEEF-vdW, etc., are now capable of better 

treating long-range dispersion interactions, which may contribute substantially to the 

interaction energies of large reaction intermediates.67,68 Recent studies have also proposed 

systematic frameworks to analyze error propagation and to assess the uncertainty associated 

with MKM predictions, due to the errors stemming from the choice of DFT exchange-

correlation functional.26,69,70 Given their exorbitant computational cost, more accurate methods 

such as coupled cluster calculations, random-phase approximations, quantum Monte Carlo 

methods, etc. cannot yet be routinely applied in conjunction with MKM. However, advances 

in computing power and the recent development of approaches such as hybrid multi-level 

calculations71 or quantum-mechanical embedding techniques72,73 now allow for accurate 

calculation of a relatively small set of energies. The feasibility of infusing, perhaps selectively, 

such calculations to improve the model fidelity, represents an interesting research direction.  

 Beyond the mean-field approximation: It is well-recognized that coverage-cognizant models 

offer a good trade-off between kinetic Monte Carlo and mean-field models in terms of accuracy 

and cost in treating coverage effects.27 Recently, new approaches to obtain closed-form 

continuous functions relating the energetics and the coverage have been proposed which are 

nearly exact under the fast-diffusion limit.74,75 The efficacy of these approaches within our 

algorithm remains to be explored. 
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Finally, we propose that our mathematically rigorous approach may have important implications 

for enhancing the fidelity of computational catalyst discovery approaches such as descriptor-based 

catalyst screening via higher-dimensional volcano plots. Conventionally this procedure entails: (i) 

evaluating the energetics of the reaction network on a ‘reference’ monometallic catalyst, (ii) 

extrapolating reaction energetics using the linear scaling76 and Brønsted-Evans-Polanyi (BEP)77 

relationships, and (iii) elucidating reactivity trends across the descriptor space and identifying 

catalysts with optimal descriptor characteristics. While this established approach certainly has 

qualitative merit, its inherent shortcomings (i.e., assumed active site for the reference catalysts, 

assumed reaction mechanism, intrinsic-errors of DFT functionals, neglect/inadequate treatment of 

coverage-effects) could potentially lead to predictions that are not quantitatively accurate. We 

propose that: (i) introducing experimental kinetics data to derive the true active site and energetics 

of the reference catalyst and (ii) using coverage-dependent energetics to on-the-fly update the 

elementary reaction step’s energetics based on the model predicted coverages,4,6,17 to formulate 

experiment-calibrated coverage-cognizant volcano plots, could help the community move closer 

to quantitative accuracy in computational catalyst discovery.  

 

SUMMARY 

In this Account, we described an optimization-based mathematically rigorous approach to 

elucidate the nature of the active site and the reaction mechanism while the catalysis is taking 

place. We formulate quantitatively accurate MKMs by introducing experimental reaction kinetics 

data and discussed this methodology for FA decomposition reaction on Au/SiC and Pt/C catalysts. 

We demonstrated how this approach can be employed to develop high-fidelity MKMs, which can 

predict the behavior of a catalyst at any experimental condition with quantitative accuracy. Finally, 
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we highlighted some opportunities for improvement and potential implications of this 

methodology for computational catalyst discovery. 
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