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CONSPECTUS

Microkinetic modeling based on density functional theory (DFT) derived energetics is important
for addressing fundamental questions in catalysis. The quantitative fidelity of microkinetic models
(MKMs), however, is often insufficient to conclusively infer the mechanistic details of a specific
catalytic system. This can be attributed to a number of factors such as an incorrect model of the
active site for which DFT calculations are performed, deficiencies in the hypothesized reaction
mechanism, inadequate consideration of the surface environment under reaction conditions, and
the intrinsic errors in the DFT exchange-correlation functional. Despite these limitations, we aim
at developing a rigorous understanding of the reaction mechanism and of the nature of the active
site for heterogeneous catalytic chemistries under reaction conditions. By achieving parity between
reaction kinetics experimental outcomes and modeling outcomes through robust parameter
estimation and by ensuring coverage-consistency between DFT calculations and MKM
predictions, it is possible to systematically refine the mechanistic model and, thereby, our

understanding of the catalytic active site in situ.



Our general approach consists of developing ab initio-informed MKM for a given active site and
then re-estimating the energies of the transition and intermediate states so that the model
predictions match quantities measured in reaction kinetics experiments. If: (i) model-experiment
parity is high, (ii) the adjustments to the DFT-derived energetics for a given model of the active
site are rationalized within the errors of standard DFT exchange-correlation functionals, and (iii)
the resultant MKM predicts surface coverages that are consistent with those assumed in the DFT
calculations used to initialize the MKM, we conclude that we have correctly identified the active
site and the reaction mechanism. If one or more of these requirements are not met, we iteratively
refine our model by updating our hypothesis for the structure of the active site and/or by
incorporating coverage effects, until we obtain a high-fidelity coverage-self-consistent MKM
whose final kinetic and thermodynamic parameters are within error of the values derived from

DFT.

Using the catalytic reaction of formic acid (FA, HCOOH) decomposition over transition-metal
catalysts as an example, here we provide an account of how we applied this algorithm to study this
chemistry on powder Au/SiC and Pt/C catalysts. For the case of Au catalysts, on which the FA
decomposition occurred exclusively through the dehydrogenation reaction (HCOOH—CO2+H>),
our approach was used to iteratively refine the model starting from the (111) facet until we found
that specific ensembles of Au atoms present in sub-nanometer clusters can describe the active site
for this catalysis. For the case of Pt catalysts, wherein both dehydrogenation (HCOOH—CO2+H2)
and dehydration (HCOOH—CO+H20) reactions were active, our approach identified that a
partially CO*-covered (111) surface serves as the active site and that CO*-assisted steps

contributed substantially to the overall FA decomposition activity. Finally, we suggest that once



the active site and the mechanism are conclusively identified, the model can subsequently serve as

a high-quality basis for designing specific goal-oriented experiments and improved catalysts.
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INTRODUCTION

MKMs formulated using energetics derived from DFT calculations are frequently employed to
elucidate the underlying reaction mechanism of heterogeneously catalyzed reactions. Figure 1
shows a schematic for an algorithm reflecting the workflow for microkinetic modeling based
analysis that is typically employed in the catalysis literature, viz. — (i) enumerating the elementary
steps in the reaction mechanism, (ii) using DFT to evaluate binding energies for each intermediate
and transition-state energies for each elementary step, on an hypothesized structure of the
catalytically-active site, (iii) formulating a MKM, which is a system of differential-algebraic
equations within the mean-field approximation, with DFT computed parameters for kinetics
(activation energies and pre-exponential factors) and thermochemistry, and (iv) solving the model
to obtain information on the catalytic chemistry, including reaction rates, flux-carrying pathways,
selectivity, apparent activation energy barriers, reaction orders, and rate-/selectivity-determining

steps.

Being entirely ab initio, these models are in principle predictive and serve to bridge the gap
between atomic-scale information (i.e., energies corresponding to most stable structures of
intermediates and transition-states on a certain structure of the active site) and macroscopic
observables (e.g., conversion and selectivity).”” MKMs have often complemented experiments
(microscopy, spectroscopy, and reaction kinetics experiments) to offer comprehensive insights
into the reaction mechanism over a wide range of experimental conditions.®? These insights can
then serve as the basis for identifying new material compositions and atomic-scale architectures

with improved catalytic activity and/or selectivity.!%!?
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Figure 1: Schematic representation of the typical workflow adopted in a microkinetic-modeling (MKM)-
based analysis for heterogeneous catalysis. ‘4°, ‘B”/‘C’, and ‘X;’s refer to reactant, products, and reaction
intermediates, respectively. PED refers to potential energy diagram. Reactor balance equations (system of
differential-algebraic equations) solved in a MKM are shown in the third panel.
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A major caveat of the current approach (Figure 1) is that while these models often capture
qualitative reactivity trends across experimental conditions and catalytic materials,®!'>!* their
quantitative accuracy vis-a-vis reaction kinetics experiments is often lacking. Indeed, the mismatch
in reaction rates between model predictions and experiments can be several orders in magnitude

and could stem from a number of factors,"'

such as : (1) an incomplete/incorrect reaction
mechanism, (2) an active site model for which DFT energies are calculated, which is not
dominating the catalytic action, (3) lack of consideration of surface environment effects, i.e.,
adsorbate-induced coverage-effects (clean-surface vs. a surface partially covered by

spectators/reactants/products), and (4) the intrinsic limitations of standard DFT exchange-

correlation functionals which are used to calculate the energetics.

A pertinent question arises: Given this lack of fidelity, how can we identify active sites and reaction

mechanism with a high degree of confidence? To address this question, it is common to simply



adjust the kinetic and thermochemical parameters, to achieve model-experiment parity.'®!” This
parameter adjustment is often rationalized based on qualitative intuition such as: (i) the idealized
models may not fully capture the complexity of the real catalyst, (ii) standard DFT functionals
(PBE/PW91) overpredict the binding of covalently-bound small intermediates, whereas they
underpredict the binding of larger intermediates (due to inadequate treatment of dispersive

interactions),?’ >

and (iii)) most common functionals perform poorly in predicting gas-phase
energetics.’%*?* We have performed such adjustments through parameter estimation previously,
however, we suggest that this approach represents only a partial solution to the problem of parity
between measured and model predicted rates. While the resulting model might offer good
predictive power, it does not necessarily provide a conclusive picture of the underlying reaction
mechanism and of the nature of the active site. This is because: (i) there may be multiple solutions
to the parameter estimation problem, (ii) the adjustments to the DFT-derived parameters may be
too large to be easily rationalized, i.e., larger than the statistical-error of ~0.2 eV for the common

GGA functionals (eg. PBE/PW91),2%227 and (iii) the predicted surface coverage of various

species could be dramatically different from the coverage assumed to compute the DFT energetics.

Here, we provide an account of the methodology developed in our group for formulating high-
fidelity MKMs.!"1928-32 Specifically, we present our algorithmic approach for identifying active
sites and reaction mechanisms in the context of the formic acid (FA) decomposition reaction
(Scheme 1) — a chemistry which we have studied extensively, both computationally and
experimentally — on supported Au' and Pt* catalysts (details regarding our assumptions and
reaction engineering aspects of our MKM can be found in the corresponding references). Through

these examples, we strive to convey the advantages of a systematic and integrated approach of



combining DFT calculations, reaction kinetics experiments, and microkinetic modeling to

iteratively refine the atomic-scale picture of the active site and the reaction mechanism.

HCOOH — H, + CO, (Dehydrogenation) ; AG (298 K)=-43.5 kJ/mol
HCOOH — H,0+ CO (Dehydration) ; AG (298 K) =-14.8 kJ/mol
Scheme 1: Formic acid (FA, HCOOH) decomposition reactions. Gibbs free energies (AG) are calculated
using the NIST thermochemistry database.*
FA DECOMPOSITION ON SUPPORTED GOLD CATALYSTS
Ojeda and Iglesia reported that finely-dispersed Au/Al2Os catalysts decompose FA to H»

34 one of the most active

selectively and exhibit higher activities compared to Pt catalysts,
monometallic catalysts for FA decomposition.*>=7 These authors proposed that small Au clusters
on Al2Os3, undetected by transmission electron microscopy (TEM), were likely responsible for the
exceptional catalytic activity.>* Others have since corroborated that well-dispersed Au catalysts on
a host of supports (SiC,! Si02,%® Zr02,3*4 Ce02,**! and Ti02*) also exhibit high activity and
high Hz selectivity for FA decomposition. Although there is a consensus among these experimental
studies that smaller Au nanoparticles or clusters are responsible for the remarkable FA
decomposition reactivity of Au catalysts, the precise nature of the active site remained unknown.
In the following, we describe our efforts to identify the nature of the active site for FA

decomposition on Au/SiC using an algorithm that significantly expands on the approach outlined

in Figure 1.

Iterative approach for elucidating the nature of the active site for FA decomposition on Au/SiC
We started with studying this catalysis by combining DFT, microkinetic modeling, and reaction
kinetics experiments over Au/SiC.! Specifically, we proposed an algorithmic workflow, wherein

we take input from reaction kinetics experiments and iteratively refine our computational models
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to identify the nature of the active site (Figure 2). Accordingly, we initialized this procedure by
hypothesizing a model for the active site, followed by: (i) evaluating DFT energetics to formulate
a mean-field MKM, (ii) utilizing reaction kinetics experiments to systematically adjust DFT
energetics to minimize model-experiment mismatch, (iii) evaluating if the parameter adjustments
are rationalized within error of the exchange-correlation functional; if yes, we conclude that our
hypothesis is correct, else, we utilize the insights gained from the parameter adjustment procedure
to refine our hypothesis for the nature of the active site and re-perform this analysis iteratively
until adjustments to DFT energetics are within the error of the functional. It is only then that we

conclude that we have developed a reasonable vision for the nature of the active site.
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Figure 2: An iterative approach for elucidating the structure of the active site for FA decomposition on
Au/SiC (ref. ). Feedback from parameter adjustment, required to fit the experiments (steady-state, <20%
conversion, 1-4% FA, 0-6% H,/CO,, 343-383K; catalyst surface-site density determined from scanning
transmission electron microscopy), is used to continually revise the hypothesis for the active site:
Au(111)—Au(100)—Au(211). To fit the reaction kinetics experimental measurements, for all three facets
(shown in the potential energy diagram (PED)), large parameter adjustments were necessary, indicating
that the active site is more undercoordinated than Au(211). CN refers to surface coordination number.
Vertical dashed black-line in the inset for Au(211) marks the step edge.



We started by considering the close-packed Au(111) facet (surface coordination number (CN) of
9) as the hypothesized model for the active site (Figure 2) and evaluated the energetics of a
comprehensive reaction network comprising of 17 reaction steps and 15 distinct species, using
plane-wave periodic DFT (PW91-GGA). We used zero-point energy (ZPE) corrected energetics
to obtain initial estimates for the rate parameters used in the MKMs. However, the model
significantly underpredicted the reaction rates compared to our experimental measurements. To fit
the model-predicted rates with experimental rates, the energies of the transition-states and reaction
intermediates had to be substantially modified (by as large as 1 eV). Such adjustments cannot be
justified on the basis of GGA errors alone, and since a detailed reaction mechanism was modeled,
we concluded that Au(111) cannot represent the active site for this chemistry. Nevertheless, the
parameter adjustments needed for the MKM on Au(111) to capture the experimental data provided
valuable guidance in searching for an alternative model for the active site. We noted that all the
intermediates and transition-states had to be stabilized, suggesting that a more under-coordinated
model site would potentially represent the active site better. Algorithmically (Figure 2), this led
us to evaluate Au(100) (CN=8) and then Au(211) (CN=7) as plausible active sites. However, since
large parameter adjustments were necessary on these two facets as well, we concluded that none

of the facets explored yet were a good representation of the active site on Au/SiC.

The results showed that upon going from Au(111)—Au(100)—Au(211), the magnitude of the
parameter adjustments progressively decreased, but all states still had to be further stabilized to
rationalize the experimental reaction rates. These observations suggest that the active site might
be more undercoordinated than Au(211) (CN<7), which would potentially stabilize the energetics
for the intermediates and transition-states to an even greater extent, compared to Au(111),

Au(100), and Au(211). Additionally, for all three models, >0.95 ML of the sites were predicted to



be vacant under all reaction conditions, which precludes any potential stabilizations stemming

from adsorbate-adsorbate interactions.

Experimental insight on the catalytic active site for FA decomposition on Au/SiC

To further explore the role of undercoordinated Au sites, we synthesized Au catalysts with varying
dispersion (average particle size ranging from 2.5-10.7 nm) and evaluated those through reaction
kinetics experiments.! The results indicated that the turnover frequency (TOF) decreased with
increasing average particle size, demonstrating the structure sensitivity of FA decomposition on
Au/SiC. Subsequently, we estimated the fraction of various surface sites (corner, perimeter,

43-46 and concluded that the reaction rate correlated well with

terrace) as a function of particle size,
the number of corner sites. This conclusion based on experiments is in agreement with the insight

gained from DFT-derived MKMs suggesting that indeed low-coordinated Au sites are playing a

key role in FA decomposition.

FA decomposition on unsupported Au clusters

Motivated by this conclusion, we studied the role of low-coordinated sites in catalytically relevant
sub-nanometric regimes. Specifically, we analyzed FA decomposition reaction paths on
unsupported subnanometric Au clusters (up to Auzs~0.85nm), identified using ab initio molecular
dynamics simulations.? To select the clusters characterized by energetics that could rationalize the
experimental reaction rates, we used the activation energy barrier for the first FA dehydrogenation
step (HCOOH* <> HCOO*+H?*) as a screening criterion (Figure 3). As Au(211), the most reactive
of the three extended surfaces considered, predicted reaction rates that were 5-6 orders of
magnitude smaller than the experimental reaction rates, the active clusters in the Au/SiC catalysts
used in experiments should at least have a smaller activation energy barrier for FA

dehydrogenation compared to that on Au(211).
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Figure 3: Elucidating the active site for FA decomposition on unsupported subnanometric Au clusters (ref.
%). Most stable geometries of Au, (n=2-25) clusters (<0.85nm) obtained from ab initio molecular dynamics
(AIMD) are shown. Combination of DFT-derived mean-field MKMSs and reaction kinetics experiments on
Au/SiC, led to the conclusion that Au;g might resemble the active site the best. Kinetic Monte Carlo (KMC)
study on Aujs revealed that a pair of adjacent Aus ensembles (coordination number (CN) of 5), can be the
active site for FA decomposition on Au/SiC (ref. *).

Consequently, we performed detailed reaction pathway studies on the shortlisted subset of clusters
(Aus, Aus, Auz, Aui7, Auis, and Auiy), which were identified as potential candidates for the active
site on Au/SiC. Mean-field MKMs were then developed using the DFT energetics calculated for
these clusters and were subsequently fit to the experimental data through parameter adjustment.
This entire process (Figure 3) identified the Auis cluster to possess the most favorable energetics,

requiring only minimal parameters adjustments to fit the experimental data.

Although, mean-field MKMs provide valuable information to guide the search of active site
geometry, subnanometric clusters such as the catalytically active Auis: (i) offer a spatially

inhomogeneous surface, (i1) present discrete adsorbate coverages, and (iii) lead to strong adsorbate
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interactions due to quantum-size effects and superatomic nature of the clusters.**’ These properties

mandate the use of methods that better capture local effects. In a recent study,’ we combined DFT

48,49 50,51

calculations with cluster-expansion®>* and on-lattice kinetic Monte Carlo (KMC) simulations
to derive a rigorous mechanistic description for FA decomposition on Auis clusters. The results
suggest that a pair of adjacent Aus triangular ensembles (CN=5) is likely the active site for FA
decomposition on Auis clusters. Dissociation of a single FA molecule, leads to the simultaneous
occupation of each of these triangular-sites by HCOO* and H*, which in turn results into a strong
stabilization of the Auis cluster. This stabilization prevents dehydrogenation of a second FA
molecule, until the first molecule is fully decomposed to CO2(g) and Hz(g). In other words, Auis
processes one FA molecule at a time, thereby explaining the kinetic isolation of decomposition
events associated with the exclusive HD production observed in experiments with half-deuterated
FA molecules over Au/Al203.>* The reaction occurs through the HCOO*-mediated pathway
(HCOOH* <> HCOO*+H* <> CO2*+2H* <> CO2+H2) with complete selectivity towards Ha,
which rationalizes the experimentally observed selectivity towards dehydrogenation on Au/SiC.

Dehydrogenation of HCOO* carries the highest degree of rate control*? for all conditions and is

therefore the rate-determining step.

In the case of FA decomposition over Au/SiC, we showed that the mechanism and active site (pair
of Aus sites on Auisg) could not have been identified following the approach described in Figure
1. Further, we demonstrated that finding an accurate active site model alone through parameter
adjustments, is insufficient. Only an active site model that yields a high degree of parity with
experimental measurements and whose parameter adjustments are within the error of the utilized
functional, offers a desirable stopping point for the active site identification algorithm. It is only

at that point we can extract reliable mechanistic insights.
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FA DECOMPOSITION ON SUPPORTED PLATINUM CATALYSTS

Experimental studies demonstrate Pt as one of the most active monometallic catalysts for FA
decomposition.*>>7 Unlike Au catalysts which selectively dehydrogenates FA, both the
dehydrogenation (CO2+H2) and dehydration (CO+H20) pathways are active on Pt, with >95%
selectivity towards dehydrogenation.’”>® Additionally, formation of CO as one of the
decomposition products implies the presence of adsorbed CO (CO¥*) on the catalyst surface,
leading to the well-known problem of CO*-poisoning of Pt catalysts.’”** Despite numerous
computational and experimental studies of this reaction, the nature of surface reaction
intermediates along with their abundance, the reaction mechanism, and the nature of the active site
as a function of reaction conditions, have not been elucidated. Herein, we discuss our algorithmic

approach for addressing these fundamental questions for FA decomposition on Pt/C (Figure 4).*

Iterative approach for elucidating the active site for FA decomposition on Pt/C

We started by considering extended clean Pt(100) and Pt(111) surfaces as the active site model
and calculated the energetics (DFT-PW91-GGA) for a comprehensive reaction network involving
25 elementary steps and 20 species. To incorporate ZPE and temperature—corrected DFT
energetics in our mean-field MKMs, we derived Shomate parameters,’® using vibrational
frequency calculations and statistical mechanics. Both clean (111) and (100) models, however,
predicted reaction rates that were several orders of magnitude lower than our experimental rates
(steady-state, <10% conversion, 1-5% FA, 0-10% H2/CO2, 0-0.1% H20/CO, 358-378 K; catalyst
surface-site density determined from CO chemisorption). Next, we performed parameter
estimation to determine the adjustments on the two surfaces that would yield quantitative

agreement with our experimental data.
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Post parameter adjustments, both clean Pt(111) and Pt(100) demonstrated improved agreement
with experimental measurements. However, these models were found to be inadequate
representations of the active site on Pt/C, since they: (i) failed to reproduce rates when CO was co-
fed in the reactor, (ii) predicted high coverage of CO* (>0.90 ML, averaged over all experiments),
inconsistent with the clean-surface assumption at which the DFT energetics were calculated, and
(iii) required large adjustments to the DFT-derived activation energy barriers for several
elementary steps, well beyond the typical GGA errors (Figure 4). Although these models fell short
in explaining the experiments, their analysis provided useful insights regarding the nature of the
most abundant surface intermediate (MASI) under experimental conditions, viz. CO*. In principle,
one could also validate this model prediction using operando spectroscopy. Indeed, there is ample
spectroscopic evidence (in situ Fourier-transform infrared spectroscopy (FTIR)) for partial CO*-
poisoning of supported Pt catalysts, under typical FA decomposition conditions.’”** Motivated by
these insights, we updated our hypothesis for the active site model and, in the next step, considered
partially CO*-covered (111) and (100) facets (Figure 4), thereby explicitly accounting for CO*

coverage-effects.
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Figure 4: Workflow for developing a coverage self-consistent description of the active site for FA
decomposition on Pt/C (ref. *). Mean-field MKMs formulated using DFT energetics on clean Pt(100) and
Pt(111) were found to poorly describe the active site. Feedback from the parameter estimation is used to
iteratively update the hypothesis for the nature of the active site.

Modeling CO* spectator-induced coverage-effects

Consequently, using DFT, we reinvestigated the entire reaction network on partially (4/9 ML)
CO*-covered Pt(100) and Pt(111) surfaces. The choice of 4/9 ML CO¥*, used as an initial estimate
of the in situ coverage, was motivated by previous experimental determination of CO*-saturation
coverages on Pt surfaces under low CO partial pressures, which is similar to that experienced by
Pt/C under FA decomposition reaction conditions.> The presence of CO* on the catalyst surface
opened new pathways, including CO*-assisted dehydrogenation steps, which were now included
in the refined reaction network. In addition, we evaluated the reaction energetics
(binding/transition-state energies) at varying CO*-coverage levels to determine the variation of

the energetics as polynomial-functions of CO* coverage. The resultant polynomial-functions were
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incorporated in our MKMs, thereby enabling CO* coverage-dependent energetics for the new

models.

After parameter adjustments, both the CO* coverage-cognizant Pt(100) and Pt(111) models were
able to accurately describe the experimental data, including the subset of the experiments with CO-
co-feed, which were not well reproduced by our clean surface models. Furthermore, these MKMs
predicted CO* coverages (~4/9 ML CO* on Pt(100); ~3/9 ML on Pt(111)) which were consistent
with coverages of 4/9 ML CO* spectators used in the catalyst model for DFT calculations. Both
these MKMs were therefore CO*-coverage self-consistent. Analysis of the parameter adjustments
revealed that Pt(100) required large adjustments to the DFT calculated activation energy barriers

(Figure 4). By constraining the adjustments to the typical GGA error of £0.2 eV,2025-27:56.57

we
found that Pt(100) was largely poisoned by CO* (~0.5 ML) and was rendered inactive under our
reaction conditions. On the other hand, parameter adjustments required for the partially CO*-

covered Pt(111) model were within GGA error. We therefore concluded that a partially CO*-

covered Pt(111) accurately represents the active site for FA decomposition on Pt/C.

The MKM analysis revealed that on the partially CO*-covered Pt(111), the reaction proceeds
through the COOH* mechanism (Figure 5). Both the direct COOH* dehydrogenation (COOH*
<> CO2*+H*) and the CO*-spectator assisted dehydrogenation (COOH*+CO* <> CO2*+COH*;
CO*-spectators are denoted by CO*) pathways contributed to the dehydrogenation reaction flux.
These CO* spectator-assisted pathways were found to be essential for accurately reproducing the

experimentally measured apparent activation energy barriers and reaction orders.
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Figure 5: Results from the MKM on a 4/9 ML CO*-covered Pt(111) (ref. *): (a) Reaction mechanism for
FA decomposition on Pt/C. Formate-mediated pathways were considered, but did not contribute
significantly to FA decomposition. Flux contributions for the various pathways at 2.6% FA, balance He (1
atm, 373K) are indicated, (b) Parity plots comparing model-predicted and experimental turnover
frequencies (TOFs).

This example speaks to the importance of practicing coverage self-consistent microkinetic
modeling and of combining it with experimental data for elucidating the nature of active site and
the reaction mechanism. Modeling CO* coverage-effects for this chemistry: (1) yielded improved
initial estimates for the energetics used in the MKM, since these parameters required minimal
adjustments to fit with the experiments and (2) inspired the consideration of CO* spectator-assisted
pathways, which were essential in reproducing the experimental data. The traditional approach
(Figure 1) was again insufficient; our iterative approach, however, revealed that accounting for

CO* coverages was essential in determining both the active site and the reaction mechanism.
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AN ALGORITHM TO IDENTIFY ACTIVE SITE AND REACTION MECHANISM

The process of iterative model refinement, employed in both examples, can be formalized as a
general algorithm (Figure 6), which substantially expands on the conventional methodology
shown in Figure 1. We initialize the algorithm with a hypothesized active site model, perform
detailed reaction pathway studies using DFT, and formulate a MKM. We then incorporate data
from reaction kinetics experiments and perform parameter estimation to achieve parity with the
experiments. The optimized model is evaluated on the following three criteria: (i) Can the model
accurately reproduce the experimental data?, (ii) Are the parameter adjustments needed to capture
the experiments within error of the utilized exchange-correlation functional?, (iii) Is the model-
predicted surface-environment consistent with the coverages at which the DFT energetics were
calculated? If the optimized model satisfies all three criteria, we conclude that the hypothesized
model for the active site accurately describes the nature of the active site. However, if even one of
these criteria is not satisfied, we use insights gained from our parameter adjustment procedure to
revise our hypothesis for the active site (i.e., active site geometric model, reaction mechanism,
spectator coverage-effects ), and reiterate all steps in the algorithm until all three criteria are met.
The resultant high-fidelity model can then be used to perform well-educated reaction engineering
tasks, e.g.: (i) predict behavior of the catalyst with quantitative accuracy (i.e., activity, selectivity,
surface coverages, reaction mechanism, etc.), under other experimental conditions, (ii) perform
experimental design with specific goals in mind: to identify experimental conditions for
optimizing yield of product(s) or surface concentration of reaction intermediate(s), which, in turn,
could enable spectroscopic identification of elusive reaction intermediates, and (iii) investigate

related chemistries (e.g., the reverse reaction).
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Figure 6: Proposed algorithmic scheme for elucidating the nature of the catalytic active site and the reaction
mechanism, using a combination of DFT, reaction kinetics experiments, and microkinetic modeling.
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PARAMETER ESTIMATION

A critical part of the algorithm is parameter estimation where we minimize the model-experiment
mismatch (of TOFs) by adjusting the energetics of surface intermediates and transition-states from
their respective DFT-values. Mathematically, this is a nonlinear optimization problem with the
MKM (at different experimental conditions) as constraints. Solving this problem is challenging
because: (i) the optimization problem is highly nonlinear due to the numerical stiffness of the
MKM, (ii) we seek solutions where the insensitive parameters are automatically identified and set
to zero (i.e., energy is set to the respective DFT value) to avoid overfitting, (iii) we require
alternative solutions (minima) to compare potentially competing models. Accordingly, by
leveraging modern numerical solvers and optimizers from the process systems engineering

58,59

community, we have developed two different approaches and tools to rigorously solve these

parameter estimation problems'®-!

and to identify a comprehensive set of solutions meeting the
convergence criteria of the algorithm. In both methods, we apply (i) a regularization penalty that
ensures that the DFT-derived energetics are adjusted to the least possible extent, thereby,
enhancing the credibility of the solution and (ii) a multi-start scheme using uniform sampling of
the parameter space to elucidate plausible alternate solutions. Insights from benchmarking

studies?-6°

regarding the uncertainty for the DFT energetics can inform the bounds on the
maximum allowable adjustments for the DFT-energetics, thereby reducing the parameter space in

which the search for acceptable solutions is conducted.

Alternate formulations, such as Bayesian parameter estimation, have also been employed, which
incorporates errors from both theory and experiment to identify the maximum of the posterior

distribution, to fit the experiments, rather than solving as an optimization problem.?’
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OUTLOOK

In Figure 6, we formalize our novel and comprehensive algorithm combining DFT, reaction

kinetics experiments, and MKM to determine: (i) the nature of the active site in catalysis while the

reaction is taking place and (ii) the detailed reaction mechanism for small-to-medium sized

chemistries (~50 elementary steps). Selected opportunities for further methodological

development are summarized here:

Errors in entropy: In the parameter adjustment step of the algorithm, we have implicitly
assumed that the errors arise in energies; not in entropy. While this assumption is reasonable
when the intermediates are strongly bound (as in the examples discussed here), using standard
quantum-harmonic approximations to estimate the partition function may grossly under-
predict the entropy of weakly bound intermediates. ®'~% Further, inclusion of surface
configurational entropy, associated with compensation effects in heterogeneous catalysis,®* %
could also help improve the description of the active site. How these corrections/contributions
can be included in our algorithm remains to be assessed.

Beyond monometallic catalysts and single-site models: While our iterative algorithm is catalyst
agnostic, its application to metal alloys, metal-support interfaces, oxide/sulfide-based
catalysts, and materials with intrinsically isolated sites (e.g., zeolites, single-atom catalysts)
has not yet been explored. For both examples here, single-site models seem adequate,
indicating that only one site is at play. There may be catalytic systems wherein multiple sites
are concurrently operative; in such cases, we expect that our algorithm will identify multiple
plausible solutions, each corresponding to a contributing single-site. In those cases, we expect

that the results of our analysis will inspire carefully designed additional experiments for further

distinguishing contributions to reactivity by different sites.
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Size-scalability: Intrinsically complex reaction networks (comprising of hundreds of
intermediates and thousands of reaction steps) routinely arise in catalysis (e.g., alkane
reforming, hydrotreating, biomass upgrading, etc.); how this approach scales to such large
reaction networks remains to be studied.

Assessing and improving the accuracy of first-principles calculations: A number of recent
functionals, e.g., PBE-D2/D3, opt-PBE, vdW-DF2, BEEF-vdW, etc., are now capable of better
treating long-range dispersion interactions, which may contribute substantially to the
interaction energies of large reaction intermediates.®’*® Recent studies have also proposed
systematic frameworks to analyze error propagation and to assess the uncertainty associated
with MKM predictions, due to the errors stemming from the choice of DFT exchange-
correlation functional.?%%%7° Given their exorbitant computational cost, more accurate methods
such as coupled cluster calculations, random-phase approximations, quantum Monte Carlo
methods, etc. cannot yet be routinely applied in conjunction with MKM. However, advances
in computing power and the recent development of approaches such as hybrid multi-level

273 now allow for accurate

calculations’! or quantum-mechanical embedding techniques
calculation of a relatively small set of energies. The feasibility of infusing, perhaps selectively,
such calculations to improve the model fidelity, represents an interesting research direction.

Beyond the mean-field approximation: 1t is well-recognized that coverage-cognizant models
offer a good trade-off between kinetic Monte Carlo and mean-field models in terms of accuracy
and cost in treating coverage effects.”’” Recently, new approaches to obtain closed-form
continuous functions relating the energetics and the coverage have been proposed which are

nearly exact under the fast-diffusion limit.”*”> The efficacy of these approaches within our

algorithm remains to be explored.
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Finally, we propose that our mathematically rigorous approach may have important implications
for enhancing the fidelity of computational catalyst discovery approaches such as descriptor-based
catalyst screening via higher-dimensional volcano plots. Conventionally this procedure entails: (i)
evaluating the energetics of the reaction network on a ‘reference’ monometallic catalyst, (ii)
extrapolating reaction energetics using the linear scaling’® and Brensted-Evans-Polanyi (BEP)”’
relationships, and (iii) elucidating reactivity trends across the descriptor space and identifying
catalysts with optimal descriptor characteristics. While this established approach certainly has
qualitative merit, its inherent shortcomings (i.e., assumed active site for the reference catalysts,
assumed reaction mechanism, intrinsic-errors of DFT functionals, neglect/inadequate treatment of
coverage-effects) could potentially lead to predictions that are not quantitatively accurate. We
propose that: (i) introducing experimental kinetics data to derive the true active site and energetics
of the reference catalyst and (ii) using coverage-dependent energetics to on-the-fly update the
elementary reaction step’s energetics based on the model predicted coverages,*®!” to formulate

experiment-calibrated coverage-cognizant volcano plots, could help the community move closer

to quantitative accuracy in computational catalyst discovery.

SUMMARY

In this Account, we described an optimization-based mathematically rigorous approach to
elucidate the nature of the active site and the reaction mechanism while the catalysis is taking
place. We formulate quantitatively accurate MKMs by introducing experimental reaction kinetics
data and discussed this methodology for FA decomposition reaction on Au/SiC and Pt/C catalysts.
We demonstrated how this approach can be employed to develop high-fidelity MKMs, which can

predict the behavior of a catalyst at any experimental condition with quantitative accuracy. Finally,

23



we highlighted some opportunities for improvement and potential implications of this

methodology for computational catalyst discovery.
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