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Abstract— In this paper we present the application of big data 

processing for the development of machine learning (ML) models 

to detect relevant events in power grid operations. This is based 

on almost 20TB of phasor measurement unit data corresponding 

to up to two years of operation of three grid interconnections 

which provide power to most of the United States. A significant 

aspect of the work consists in having all data processing 

performed on a single standard GPU server, from pre-processing 

to ML model training and testing. We describe the data and 

computational infrastructure, challenges faced and methods used 

in data processing, main findings and results. The ML approach 

employed for best utilization of the big data is also discussed, 

including sample results. 
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I. INTRODUCTION 

In this paper we present the application of big data 
processing for the development of machine learning (ML) 
models to detect relevant events in power grid operations. 
Power grids are complex distributed systems which can extend 
over the area of a country or a continent. Modern life has 
become increasingly dependent on electric power. Detection 
and identification of events such as short circuits and 
oscillations have the potential of preventing power outages, 
reducing operation costs and increasing system reliability. 
Existing tools already provide grid operators with a certain 
level of information about relevant occurrences, but they have 
many limitations. Usually these tools can indicate the 
occurrence of some anomalous conditions, but information 
about event types and root causes, associated impacts and 
actions required to remediate the situation depend on manual 
analysis by domain experts. Machine learning models trained 
on big data from the power grid have the potential of 
automating this process, making it more efficient and effective. 
Therefore, this is an active field of research in academia and 
industry [1][2]. 

Big data used in this work is obtained from devices called 
Power Measurement Units (PMUs). Prior to the invention of 
PMU, power system operators have been using voltage 
magnitude and power measurements taken at RTUs (remote 
terminal units) to monitor the power system health. System 
operators had to assume quasi-steady state conditions and had 
to rely on state estimation techniques to recover system states 
(voltage phase and angle) from low frequency and poorly 
synchronized RTU data [3]. PMUs directly measure 
timestamped voltage and current magnitude and angle. Those 
measurements are synchronized among different PMUs by 
means of the Global Positioning Systems (GPS). Each PMU 

can provide measurements such as three-phase magnitudes and 
angles for voltage and current with sampling frequencies up to 
60Hz. Compared to traditional RTU-based monitoring, PMUs 
provide better observabilities especially to systems with 
phenomenal dynamics [4]. Since the invention of the first PMU 
at Virginia Tech in 1988, PMUs have become a popular option 
for modernizing power systems – the number of PMUs 
deployed across North America has increased from about 200 
in 2009 to almost 1700 in 2016 [5]. With the introduction of 
PMUs, new power system applications could be developed, 
such as power swing monitoring, damping ratio monitoring 
and island state detection, which have been important features 
in commercial wide area monitoring tools [6]. 

The dataset employed in this work comprises years of 
operation from a fleet of PMUs covering a large part of the 
continental United States. Therefore, the dataset corresponds to 
a huge amount of data containing precious information for 
power grid monitoring and operation which can only be 
extracted by proper big data processing tools. Costs or 
constraints associated to computational power for processing 
the data are relevant aspects of big data analysis. In this paper, 
available computation infrastructure is limited to a single GPU 
server. The setup can be considered typical for standard ML 
development, but it poses a relevant challenge for processing 
the amount of data available for this work. 

The rest of the paper is organized as follows: section II 
presents details about the data and computational infrastructure 
employed for processing; data storage, pre-processing and 
visualization are described in section III; section IV comprises 
the description of the ML processing pipeline and section V is 
the conclusion. 

II. BIG DATA AND COMPUTATIONAL INFRASTRUCTURE 

A. PMU Data 

The PMU dataset employed in this work is described in 
detail below. It consists of almost 20TB of compressed time 
series data. To the best of the authors’ knowledge, the 
collection of such amount of data in this domain in 
unprecedented and it was only made possible because of an 
initiative led by the US Department of Energy (DOE) which 
integrated data from multiple utility companies. Data was 
anonymized so that it could be distributed to selected third 
parties for analysis without revealing the identity of the data 
providers. In order to evaluate how large this dataset is in the 
context of ML, it is useful to compare it with typical big 
datasets employed for deep learning (DL) model development. 
The English Wikipedia, which is possibly the most usual 
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source of big data for text analytics with over six million 
articles and three billion words, consists of around 17GB 
(compressed) [7]. Open Images Dataset [8], containing almost 
two million annotated images is potentially the largest public 
dataset for image analytics with total size of 561GB. 

Folder structure: The data was provided in 17396 parquet 
files with snappy compression, each one ~1GB in size. Files 
were organized into three folders, one for each of three 
interconnections (ICs), referred to as A, B and C, where each 
one corresponds to a separate power grid with its own set of 
PMUs. Table 1 presents more information about each IC, 
including what actual interconnection it corresponds to, the 
number of PMUs, date range, data volume and number of files 
associated to the corresponding datasets. In terms of data 
points, dataset for IC B alone has over 93 billion records. 

 

Table 1 - Data characteristics for each interconnect 

Interconnection A B C 

Actual IC Texas IC Western IC Eastern IC 

Start Date 2018-07-21 2016-01-01 2016-01-01 

End Date 2019-08-24 2017-12-31 2017-12-31 

PMU Number 215 43 188 

Data Volume ~3TB ~5TB ~11.5TB 

File Count 2576 4365 10496 

 
The data for each IC is further organized into folder 

hierarchy by year, then by month, then by day. The data covers 
six-week periods followed by omitted two-week periods. The 
omitted data will be provided by DOE at a future time for 
testing and validation. Therefore, it must be noted that the 
complete dataset will be considerably larger than what is 
described here. Each folder corresponding to a day contains 
multiple parquet files, each one containing data from all PMUs 
for a period of that day. The number of such files per folder 
differs across interconnections and dates.   

File Structure: The structure of the parquet files is always 
the same and consists of 24 columns: utc, vp_m, va_m, vb_m, 
vc_m, vp_a, va_a, vb_a, vc_a, ip_m, ia_m, ib_m, ic_m, ip_a, 
ia_a, ib_a, ic_a, f, df, status, id, interconnect, theHour, 
theMinute.  Here letters v and i indicate voltage and current 
respectively, while m and a correspond to magnitude and 
angle. Letter p means positive sequence and a, b and c are 
phases. Columns f and df contain frequency and time 
difference in frequency respectively. Original values for all 
columns except status, theHour and theMinute are strings, so 
conversion to numbers is required. Column status is discussed 
in more details below, and columns theHour and theMinute 
correspond to the hour and minute values of the timestamp 
associated to each sample. Current magnitudes were recorded 
in Amperes, while voltage magnitudes were recorded in Volts.  
Column id refers to PMU id, which is an artificial identifier 
created to preserve anonymity of data providers. Column utc 
presents timestamps in UTC. Sampling frequency is either 
30Hz or 60Hz for each PMU. It must be noted that each row in 
the original dataset corresponds to measurements from a single 
PMU. Therefore, processing is also required for synchronizing 
the data across multiple PMUs. 

Column status provides PMU status values as defined in 
IEEE Standard for Synchrophasor Data Transfer for Power 
Systems [9].  Python library PyMU [10] was adapted to 
process the available status codes in the data. From each status 
code, 9 fields were extracted as described in the referenced 
IEEE Standard: STAT, PMUSYNC, SORTING, PMUTrigger, 
ConfigChange, DataModified, TimeQuality, UnlockTime and 
TriggerReason. Based on discussions with domain experts, it 
was determined that valid measurements should have STAT 
value of GOOD and PMUSYNC value of UTCSOURCE. More 
details about how this information was employed to filter the 
data are presented in a later section. 

Data Quality: Preliminary analysis of the data indicated 
various issues that had to be dealt with, including: 

• Overlap in time between files 

• Duplicate rows 

• Unaligned timestamps for different PMUs 

• Many missing values or, in some cases, columns which are 
completely missing for certain PMUs 

Pre-processing and data preparation for ML model training 
must take all those characteristics into account.  

Event Log Data: Besides the PMU data, some associated 
event log information has also been provided to help identify 
when events took place and what type of event they correspond 
to. This data was generated from the combination of records 
from different data providers. Each data provider has its own 
methods for collecting the logs, which in general involves 
some level of manual evaluation by domain experts. The 
combination of the data was also a manual process where the 
goal was to standardize as much as possible the contributions 
from all data providers. A complete event log record contains 
the following information: 

• Start and end time of the event 

• Category: type of event (e.g. frequency deviation, 
oscillation) or type of associated equipment (generator, 
line, transformer, bus) 

• Cause: cause of the event, such as: planned service, trip, 
lightning, equipment 

• Descriptors: more details about the event, such as which 
phases are affected 

 Information varies significantly among interconnections. 
For instance, there are only 29 event log records for IC A and 
only the date is provided, i.e. no time information is given, 
while IC B has 4854 records and minute resolution for start and 
end times of most records. IC C has 1884 records with minute 
resolution for start time but no information about end 
date/time. 

 Although the event log data presents invaluable 
information for identifying relevant power grid events, it must 
be noted that it is not adequate for direct use as labels for 
machine learning training. The main factors that justify this 
claim are: 



 

 

1. the dataset is generated by multiple levels of manual 
processing, which is an error prone process.  

2. Event categories and causes do not necessarily uniquely 
map to physical phenomena/patterns, i.e., multiple 
categories may correspond to the same underlying 
phenomena and certain categories may correspond to a 
variety of underlying phenomena. Similarly, reported 
event durations often cover the consequence of the event, 
e.g. the resulting power outage, and not the event itself 
which created the issue. 

3. There is no information about which PMUs are affected. 
Since each interconnect covers a large area, even big 
events will usually affect only part of the PMUs. Also, the 
same type of event may happen in multiple locations with 
different consequences. 

Therefore, additional analysis must be performed before 
this event log data can be employed in training of ML models. 
As part of the project, we have developed a web application 
which facilitates the evaluation and annotation of events by a 
domain expert thereby enabling the use of the log information 
for training ML models. More information about this topic is 
presented in section III. 

B. Computational Infrastructure 

A significant aspect of our work is the constraint of using a 
single GPU server for processing of the data. This was a 
project decision aiming to avoid the overhead associated with 
the creation of a dedicated cluster for the task and the costs of 
cloud-based computing. The employed server can be 
considered a typical configuration for a machine used for 
training of ML models which should be similar to various 
setups employed across industry and academia. Therefore, 
discussions about handling big data using such a server can be 
very useful for the research community. 

The specifications for the GPU server employed in this 
work are described below: 

• Processor: Intel® Xeon® Silver 4210, with 40 cores 

• 196GB of RAM 

• 4 NVIDIA Quadro RTX 6000 GPUs, each with 24GB of 
RAM 

• 2TB NVMe drive for operating system 

• 42TB of HDD space for data storage 

• Ubuntu 18.04.2 LTS operating system 

III. DATA STORAGE, PRE-PROCESSING AND VISUALIZATION 

A. Data storage 

In terms of data storage, two options were considered: 
using a time series database or using the original files directly. 
Test of a time series database was performed based on 
influxDB [11] open source version installed as a single node in 
the server. The associated Python package was used for testing 
the data ingestion. However, the ingestion of each file took ~13 
minutes and therefore more than 5 months would be required 

for ingestion of the complete dataset. Thus, our choice was to 
process parquet files directly. 

B. Pre-processing 

Given the characteristics of the problem, an effort was 
made to pre-process the files as efficiently as possible while 
producing as much useful information as possible. Besides 
adjustments to the data itself, such as type conversion, 
summary statistics of the data were also calculated during the 
pre-processing step in order to enable more efficient 
exploration of its contents to guide the ML model training. As 
Python was the language of choice for ML model 
development, it was also employed for the pre-processing 
steps. The pre-processing pipeline comprised the following 
operations for each original data file: 

1) loading original parquet file 
2) converting numerical fields type (originally stored as 

strings) 
3) converting empty values to null 
4) removing columns which are all null 
5) converting timestamp type (originally stored as 

strings) 
6) indexing the data based on the timestamp 
7) calculating and saving statistics  
8) synchronizing the data from all PMUs for each 

timestamp. 
9) sorting by timestamp 
10) saving the pre-processed data as a new parquet file 

In order to implement such pre-processing, a comparison 
between the use of CPU and GPU for the task was performed. 
For the CPU option, parallel processing was employed, in 
which case the computer memory limited the maximum of the 
number of files that could be processed simultaneously. Based 
on testing, this maximum number was identified as 4 and the 
processing time for 4 files in parallel took ~10min, i.e. 
~2.5min/file.  

GPUs are commonly used for efficient computation in 
specialized tasks such as DL model training, but their 
application in general data processing was traditionally very 
limited as this required implementation of the processing 
routines based on CUDA1 [12]. However, the recent release of 
RAPIDS cuDF provided adequate tools for this task. cuDF is a 
Python package that provides an interface that approximates 
that of the traditional Pandas library [14] but using GPU-based 
operations. Since such package is still experimental, required 
functionalities were double-checked against their Pandas 
counterpart before use. GPU-based pre-processing of the files 
using cuDF took around 2min/file on a single GPU. Therefore, 
it was chosen as the option for pre-processing. The main 
limitation of the GPU-based processing is memory. Files 
requiring more memory than that available in the GPU, e.g. 
those for interconnections with a large number of PMUs, were 
broken into smaller chunks for processing. 

Statistics calculation comprised the production of summary 
statistics for each measurement of each PMU and for the 
occurrence of the various status codes for each PMU. The 
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choice was to aggregate the whole set of statistics for every 
minute, which was considered a good tradeoff between 
resolution and efficient handling of data in large time windows 
for visualization and exploration. The use of this resolution 
was also facilitated by the existence of theHour and theMinute 
fields in the dataset. The following statistics were calculated 
for each numerical field: 

• count 

• mean 

• min, max 

• quantiles: 10%, 25%, 50% (median), 75%, 90% 

Concerning the status codes, statistics comprised the count 
of occurrence of each applicable status code for each PMU at 
each minute. Information about the time range covered by each 
file was also compiled in the process. All statistics information 
was stored in JSON files. 

As a consequence of the definition of valid status codes 
described in section II and also the findings about clear outliers 
described below in sub-section C, additional data pre-
processing was performed so that invalid data could be 
removed from calculations. Instead of removing invalid 
measurements directly from the data, the option chosen was to 
generate a binary mask for each data file, indicating what are 
valid measurements. This provides more flexibility for dealing 
with the invalid measurements. Besides, masks can be 
efficiently applied when preparing the datasets and results in a 
small cost in terms of disk space, as each mask file is only a 
few MB in size. 

The criteria for defining valid measurements are then the 
valid status and valid ranges for the measurements defined with 
support from a domain expert. Values that don’t fulfill such 
requirements are indicated in the corresponding binary masks 
as invalid. Using IC B dataset as a reference, generation of 
mask file takes ~11.5s per preprocessed data file using a single 
GPU.   

Invalid status codes correspond to ~4% of the data. Outliers 
as defined above occur on less than 0.01% of the frequency 
values and even less on magnitudes and angles. Phase currents 
are missing in almost 80% of measurements. Other 
measurements are missing less than 10% of the time. 

C. Data Visualization and Annotation 

Data visualization tools were created for exploring the data 
and aggregated statistics. A set of functionalities was 
developed to facilitate the creation of static plots for 
visualization of selected measurements from selected PMUs. 
Fig. 1 presents a sample heatmap plot of normalized mean 
values for positive sequence voltage magnitude for all PMUs in 
interconnection B during 1 year. 

 

Fig. 1. Heatmap plot of normalized mean values for positive sequence voltage 
magnitude for all PMUs in interconnect B during one year 

 

Interactive web-based plotting tools were also created since 
they are more convenient for some tasks, such as exploration 
and discussions with domain experts, as they enable users to 
perform operations such as adding/removing data and zooming 
in and out. We have developed and made use of interactive 
dashboards using the Dash framework for Python [15].  

One of the developed tools enables the creation of 
aggregated statistics plots based on the following information 
specified by the user, as presented in Fig. 2: 

• A set of PMUs  

• A time range 

• A statistic for a specific measurement 

• Frequency of aggregation and aggregation function 

• Options for normalizing the data or applying log 
transformations. 

 

 
Fig. 2. Sensor statistics exploration tool: configuration screen 

 



 

 

 
Fig. 3. Sensor statistics exploration tool: sample box plot of the maximum 

values of positive sequence current magnitudes for a subset of PMUs in 
interconnect B. Occurrence of outliers is clearly identified for some of the 

PMUs. 
 

The project team has used those visualization for analyzing 
the data and discussing it with domain experts.  

One example of important findings enabled by the 
visualization was the existence of clear outlier values. While 
determining what constitutes normal and abnormal values for a 
specific measurement often requires domain expertise and/or 
statistical analysis, it was possible to immediately identify 
extreme values on multiple PMUs of interconnect B as 
presented in Fig. 3. Corresponding values clearly indicate 
errors in measurement.  

Another example of relevant findings based on this analysis 
correspond to issues on PMU voltage levels. Voltages in the 
system are supposed to remain within 10% of a nominal value. 
Rare outliers could indicate anomalies/events. However, it was 
verified that for some PMUs the nominal voltage value 
changed over time, as illustrated in Fig. 4. One possible reason 
for this behavior could be that those PMUs may have been 
relocated to perform different measurements over time. 

 
Fig. 4. Evidence of changes in voltage levels for PMUs over time. Plots 

present voltage magnitudes over the complete time range covered by the 
dataset. Voltage values are hidden to preserve anonymity of data providers. 

 

The web-based visualization tool has also been converted 

into an annotation tool to capture information from domain 

experts about validation of event logs. This enables the proper 

use of this information as labels for ML training, given the 

issues discussed in section II. For each event log entry, a 

domain expert can perform one of the following actions: 

• Confirm presence of a relevant event in the data that 

matches the event description, map it to a specific 

physical phenomenon, and provide additional information 

such as PMUs affected and more precise times 

• Confirm presence of an event which is different from 

what is described in the logs, also mapping it to the 

corresponding phenomenon and additional information.  

• Mark the event as not observed in the data 

 
The list of physical phenomena used for mapping the log 

events, also defined with support from the domain expert, is: 
short circuit, trip (no short circuit), line down, islanding, heavy 
load, low load, reactive power shortage, transmission corridor 
congestion, power plant controller issue, frequency event, 
oscillation event.  

Fig. 5, Fig. 6 and Fig. 7 show the annotation tool. It has the 
following features/capabilities: 

• Presents a list of the event logs for selection and 

indications of whether or not each one has already been 

annotated (Fig. 5) 

• Selection of various parameters (Fig. 5) for plotting data 

associated to the event under review. The tool provides 

plotting of multiple features from a single PMU (Fig. 6) 

or  single feature and multiple PMUs (Fig. 7) 

• Annotation fields are used to record the annotation (Fig. 

5). They can be adapted to the specific scenario and set of 

events. 

• Backend Efficiency: it is important for the tool to be fast 
and responsive, to avoid causing frustration to the user and 
to allow efficient annotation. This is a challenge given 
large amounts of data needed for labelling events. We use 
data aggregation and fast access storage of both original 
and aggregated data based on caching [16] to achieve 
adequate performance.  

We have provided access to this tool to a domain expert 
from Siemens Digital Grid who annotated a subset of events on 
IC B for use in ML model training and validation. 

 
Fig. 5. Plotting parameters and annotation fields 



 

 

 

 
Fig. 6. Individual PMU plot with feature selection 

 

 
Fig. 7. Feature plots for multiple PMUs. Voltage values are hidden to preserve 

anonymity of data providers. 

 

IV. MACHINE LEARNING DEVELOPMENT 

A. Machine Learning Pipeline 

In order to perform training and testing of a variety of ML 
model types and configurations for such a volume of data, a 
proper processing pipeline must be developed.  

The framework of choice for ML model development was 
tensorflow 2 [17] which is one of the most popular tools for 
creation of DL models, leveraging all the processing power of 
GPUs for the task.  

Although all the PMU data had already been pre-processed, 
it requires additional preparation before it can be used for ML 
model development. Such preparation is not incorporated into 
pre-processing as it may differ for different modeling tasks. In 
order to create an efficient pipeline, data preparation is 
performed in CPU in parallel to model training in GPU as 
illustrated in Fig. 8. Each block in the figure corresponds to a 
processing task employing either CPU or GPU and block 
widths correspond to processing duration. 

 

Fig. 8. Schematic of processing pipeline developed for model training where 
data preparation happens in CPU in parallel to model training in GPU. Block 

widths correspond to processing durations. 

Data preparation consists of a series of processing tasks 
which transform pre-processed files into batches of data for 
model training. Developed data preparation consists of the 
following steps: 

1) load parquet metadata from pre-processed file and 
corresponding valid data mask 

2) filter columns to specific PMUs if needed 
3) load corresponding columns for data and mask 
4) apply valid data mask to the data 
5) eliminate regions of overlap with other files 
6) unwrap phase angles (optional) 
7) fill missing columns with token value 
8) resample to 30Hz 
9) forward fill and then back fill missing values 
10) eliminate extra rows that won't fit in batch 
11) normalize values based on pre-defined ranges for each 

measurement 
12) reshape data to batch format 
13) adjust all angle values to the same reference in each batch 

(optional) 
14) replace token value from missing columns with zeros 

Unwrapping in step 6 is performed to eliminate the abrupt 
changes in phase angles as they are originally represented in 
the range between -180 and 180 degrees. Adjustment of phase 
angle values to the same reference as presented in step 13 is 
performed because the most important information from the 
phase is not in its absolute value but in the phase difference 
among different measurements. 

Resulting batch consists of a tensor which is a collection of 
samples, each sample comprising a time window of 
measurements. Figure 9 presents a heatmap depicting one such 
sample which consists of a 2D array with dimensions 300x18, 
corresponding respectively to time (10s of data at 30Hz) and 
the 18 measurements. One of the main challenges corresponds 
to dealing with missing data. Whole measurements may be 
missing for each PMU in which case they are replaced with 
zeros. Values are normalized to pre-defined ranges. Data 
preparation is performed in CPU as described above. With no 
parallel processing, it takes from ~0.4s to ~2.5s to convert all 
data from one PMU in one file into batches, depending on how 
many PMUs are considered on the same file. 



 

 

 

Fig. 9. Heatmap presenting a sample for model training resulting from data 
preparation. It corresponds to 300 seconds (y-axis) of normalized values for all 

measurements (x-axis) from one PMU. 

 

The processing pipeline also comprises facilitated means 
for definition of multiple model architectures and 
configurations related to data preparation and training, so that 
multiple options can be easily tried for hyperparameter tuning. 
Each such option can be created as a folder containing two 
files: a Python script defining the model architecture based on 
tensorflow and a configuration file which defines parameters 
for data preparation, such as: 

• files/data to use for training 

• time window length 

• options such as angle corrections and randomization of files 

• values to use for normalization 

And hyperparameters and options related to model training, 
such as: 

• number of epochs 

• use of early stopping or regularization 

• validation split 

• method specific hyperparameters such as dimensionality of 
the latent space in autoencoder 

B. ML Models and Sample Results 

In order to create models for relevant power grid event 
detection based on the available PMU data, a deep semi-
supervised learning approach is employed [18]. Based on such 
approach, the large amount of unlabeled data can be combined 
with a reduced set of labeled data to potentially achieve 
performance in the classification tasks which is superior to that 
achieved using the labeled data alone. One approach employed 
in this work is based on an autoencoder architecture as 
depicted in Fig. 10. The standard autoencoder architecture 
comprises the encoder and decoder presented in the figure, 
where the deep neural network (DNN) is trained to produce an 
estimate of its own input X, which in this case corresponds to a 

multivariate time window of fixed length as presented in Fig. 
9. In our work, various approaches have been tested where 
encoder and decoder are created using convolutional neural 
networks (CNN) or long short-term memory (LSTM) 
networks. The autoencoder presents a bottleneck which is a 
latent space, also referred to as code, which has reduced 
dimensionality compared to X. Once trained, the encoder can 
produce such code for new input samples. The difference 
between the standard autoencoder and the semi-supervised 
architecture employed in this work is in the classification head, 
as presented in Fig. 10. This classification head comprises 
additional DNN layers which receive as input the code and 
provide as output an estimate of the class to which the input 
sample belongs to. In this case, classes are associated to normal 
operating conditions and different types of anomalous events. 
Training of the standard autoencoder (encoder and decoder) is 
unsupervised, therefore it can be performed using all the big 
data from PMU measurements so that the DNN can learn to 
produce the best code to represent the information in the 
samples. The classifier, which includes the classification head 
as well as the encoder, is trained using the reduced set of 
labeled data containing ground truth information about sample 
classes. 

 

Fig. 10. Semi-supervised autoencoder architecture. 

 Here we describe a sample experiment employing a CNN-
based semi-supervised autoencoder. A dataset consisting of 
370143 samples produced by applying the data preparation 
process described above is used for the unsupervised learning 
task. These samples correspond to a randomly selected subset 
of the complete dataset from 24 IC B PMUs covering 2 years 
of operation. Data labeled by a domain expert corresponding to 
the occurrence of short circuit events are used to train the 
classifier. The labeled dataset contains 221 labels in total of 
which 29 correspond to the occurrence of short circuits. 
Twenty percent of the samples stratified by class (short circuit 
or no short circuit) are used as hold-out data for validation and 
calculation of performance metrics. All training was performed 
in a single GPU and each training epoch consisted of one step 
of autoencoder training, taking ~40s to complete, and multiple 
steps of classifier training taking ~0.3s each. This approach 
resulted in a perfect result with 100% accuracy. 

V. CONCLUSION 

In this paper we have presented the application of big data 
processing for the development of ML models for detection of 
relevant events in power grid operations. All data processing of 
the almost 20TB of phasor measurement unit data has been 
performed using a single GPU server, which is a typical 



 

 

configuration for ML development. Despite the many 
challenges faced due to the large data volume and issues 
normally associated to real world data, we have successfully 
employed GPUs to scale the processing power to enable the 
development of ML models, not only on the model training 
and testing tasks but throughout the whole data processing 
pipeline.  

This is part of an ongoing project, and the main tasks 
planned for future work include: exploration of other ML 
approaches, introduction of physics-based features in ML 
model development, application of weak supervision 
approaches for a more scalable extraction of labels from event 
logs, analysis of complete dataset of all interconnects including 
additional test data which will be provided by DOE at a future 
time. 
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