Big Data Processing for Power Grid Event Detection

Bruno P. Leao
Siemens Technology
Princeton, NJ
bruno.leao@siemens.com

Dmitriy Fradkin
Siemens Technology
Princeton, NJ
dmitriy.fradkin@siemens.com

Abstract— In this paper we present the application of big data
processing for the development of machine learning (ML) models
to detect relevant events in power grid operations. This is based
on almost 20TB of phasor measurement unit data corresponding
to up to two years of operation of three grid interconnections
which provide power to most of the United States. A significant
aspect of the work consists in having all data processing
performed on a single standard GPU server, from pre-processing
to ML model training and testing. We describe the data and
computational infrastructure, challenges faced and methods used
in data processing, main findings and results. The ML approach
employed for best utilization of the big data is also discussed,
including sample results.

Keywords—Big Data, Power Grid, GPU, Phasor Measurement
Unit, Machine Learning, Event Detection

I. INTRODUCTION

In this paper we present the application of big data
processing for the development of machine learning (ML)
models to detect relevant events in power grid operations.
Power grids are complex distributed systems which can extend
over the area of a country or a continent. Modern life has
become increasingly dependent on electric power. Detection
and identification of events such as short circuits and
oscillations have the potential of preventing power outages,
reducing operation costs and increasing system reliability.
Existing tools already provide grid operators with a certain
level of information about relevant occurrences, but they have
many limitations. Usually these tools can indicate the
occurrence of some anomalous conditions, but information
about event types and root causes, associated impacts and
actions required to remediate the situation depend on manual
analysis by domain experts. Machine learning models trained
on big data from the power grid have the potential of
automating this process, making it more efficient and effective.
Therefore, this is an active field of research in academia and
industry [1][2].

Big data used in this work is obtained from devices called
Power Measurement Units (PMUs). Prior to the invention of
PMU, power system operators have been using voltage
magnitude and power measurements taken at RTUs (remote
terminal units) to monitor the power system health. System
operators had to assume quasi-steady state conditions and had
to rely on state estimation techniques to recover system states
(voltage phase and angle) from low frequency and poorly
synchronized RTU data [3]. PMUs directly measure
timestamped voltage and current magnitude and angle. Those
measurements are synchronized among different PMUs by
means of the Global Positioning Systems (GPS). Each PMU

This material is based upon work supported by the Department of Energy
under Award Number DE-OE0000917.

978-1-7281-6251-5/20/$31.00 ©2020 IEEE

Sindhu Suresh
Siemens Technology
Princeton, NJ
sindhu-suresh@siemens.com

Yubo Wang
Siemens Technology
Princeton, NJ
yubo.wang@siemens.com

can provide measurements such as three-phase magnitudes and
angles for voltage and current with sampling frequencies up to
60Hz. Compared to traditional RTU-based monitoring, PMUs
provide better observabilities especially to systems with
phenomenal dynamics [4]. Since the invention of the first PMU
at Virginia Tech in 1988, PMUs have become a popular option
for modernizing power systems — the number of PMUs
deployed across North America has increased from about 200
in 2009 to almost 1700 in 2016 [5]. With the introduction of
PMUs, new power system applications could be developed,
such as power swing monitoring, damping ratio monitoring
and island state detection, which have been important features
in commercial wide area monitoring tools [6].

The dataset employed in this work comprises years of
operation from a fleet of PMUs covering a large part of the
continental United States. Therefore, the dataset corresponds to
a huge amount of data containing precious information for
power grid monitoring and operation which can only be
extracted by proper big data processing tools. Costs or
constraints associated to computational power for processing
the data are relevant aspects of big data analysis. In this paper,
available computation infrastructure is limited to a single GPU
server. The setup can be considered typical for standard ML
development, but it poses a relevant challenge for processing
the amount of data available for this work.

The rest of the paper is organized as follows: section Il
presents details about the data and computational infrastructure
employed for processing; data storage, pre-processing and
visualization are described in section Il1; section IV comprises
the description of the ML processing pipeline and section V is
the conclusion.

Il. BIG DATA AND COMPUTATIONAL INFRASTRUCTURE

A. PMU Data

The PMU dataset employed in this work is described in
detail below. It consists of almost 20TB of compressed time
series data. To the best of the authors’ knowledge, the
collection of such amount of data in this domain in
unprecedented and it was only made possible because of an
initiative led by the US Department of Energy (DOE) which
integrated data from multiple utility companies. Data was
anonymized so that it could be distributed to selected third
parties for analysis without revealing the identity of the data
providers. In order to evaluate how large this dataset is in the
context of ML, it is useful to compare it with typical big
datasets employed for deep learning (DL) model development.
The English Wikipedia, which is possibly the most usual

mailto:bruno.leao@siemens.com
mailto:dmitriy.fradkin@siemens.com
mailto:yubo.wang@siemens.com
mailto:sindhu-suresh@siemens.com

source of big data for text analytics with over six million
articles and three billion words, consists of around 17GB
(compressed) [7]. Open Images Dataset [8], containing almost
two million annotated images is potentially the largest public
dataset for image analytics with total size of 561GB.

Folder structure: The data was provided in 17396 parquet
files with snappy compression, each one ~1GB in size. Files
were organized into three folders, one for each of three
interconnections (ICs), referred to as A, B and C, where each
one corresponds to a separate power grid with its own set of
PMUs. Table 1 presents more information about each IC,
including what actual interconnection it corresponds to, the
number of PMUs, date range, data volume and number of files
associated to the corresponding datasets. In terms of data
points, dataset for IC B alone has over 93 billion records.

Table 1 - Data characteristics for each interconnect

Interconnection A B C
Actual IC Texas IC Western IC Eastern IC
Start Date 2018-07-21 | 2016-01-01 | 2016-01-01
End Date 2019-08-24 | 2017-12-31 | 2017-12-31

PMU Number 215 43 188

Data Volume ~3TB ~5TB ~11.5TB
File Count 2576 4365 10496

The data for each IC is further organized into folder
hierarchy by year, then by month, then by day. The data covers
six-week periods followed by omitted two-week periods. The
omitted data will be provided by DOE at a future time for
testing and validation. Therefore, it must be noted that the
complete dataset will be considerably larger than what is
described here. Each folder corresponding to a day contains
multiple parquet files, each one containing data from all PMUs
for a period of that day. The number of such files per folder
differs across interconnections and dates.

File Structure: The structure of the parquet files is always
the same and consists of 24 columns: utc, vp_m, va_m, vb_m,
vc_m, vp_a, va_a, vb_a, vc_a, ip_m, ia_m, ib_m, ic_m, ip_a,
ia_a, ib_a, ic_a, f, df, status, id, interconnect, theHour,
theMinute. Here letters v and i indicate voltage and current
respectively, while m and a correspond to magnitude and
angle. Letter p means positive sequence and a, b and ¢ are
phases. Columns f and df contain frequency and time
difference in frequency respectively. Original values for all
columns except status, theHour and theMinute are strings, so
conversion to numbers is required. Column status is discussed
in more details below, and columns theHour and theMinute
correspond to the hour and minute values of the timestamp
associated to each sample. Current magnitudes were recorded
in Amperes, while voltage magnitudes were recorded in Volts.
Column id refers to PMU id, which is an artificial identifier
created to preserve anonymity of data providers. Column utc
presents timestamps in UTC. Sampling frequency is either
30Hz or 60Hz for each PMU. It must be noted that each row in
the original dataset corresponds to measurements from a single
PMU. Therefore, processing is also required for synchronizing
the data across multiple PMUSs.

Column status provides PMU status values as defined in
IEEE Standard for Synchrophasor Data Transfer for Power
Systems [9]. Python library PyMU [10] was adapted to
process the available status codes in the data. From each status
code, 9 fields were extracted as described in the referenced
IEEE Standard: STAT, PMUSYNC, SORTING, PMUTrigger,
ConfigChange, DataModified, TimeQuality, UnlockTime and
TriggerReason. Based on discussions with domain experts, it
was determined that valid measurements should have STAT
value of GOOD and PMUSYNC value of UTCSOURCE. More
details about how this information was employed to filter the
data are presented in a later section.

Data Quality: Preliminary analysis of the data indicated
various issues that had to be dealt with, including:

e Overlap in time between files
e Duplicate rows
e Unaligned timestamps for different PMUs

e Many missing values or, in some cases, columns which are
completely missing for certain PMUs

Pre-processing and data preparation for ML model training
must take all those characteristics into account.

Event Log Data: Besides the PMU data, some associated
event log information has also been provided to help identify
when events took place and what type of event they correspond
to. This data was generated from the combination of records
from different data providers. Each data provider has its own
methods for collecting the logs, which in general involves
some level of manual evaluation by domain experts. The
combination of the data was also a manual process where the
goal was to standardize as much as possible the contributions
from all data providers. A complete event log record contains
the following information:

e Start and end time of the event

e Category: type of event (e.g. frequency deviation,
oscillation) or type of associated equipment (generator,
line, transformer, bus)

e Cause: cause of the event, such as: planned service, trip,
lightning, equipment

o Descriptors: more details about the event, such as which
phases are affected

Information varies significantly among interconnections.
For instance, there are only 29 event log records for IC A and
only the date is provided, i.e. no time information is given,
while IC B has 4854 records and minute resolution for start and
end times of most records. IC C has 1884 records with minute
resolution for start time but no information about end
date/time.

Although the event log data presents invaluable
information for identifying relevant power grid events, it must
be noted that it is not adequate for direct use as labels for
machine learning training. The main factors that justify this
claim are:

1. the dataset is generated by multiple levels of manual
processing, which is an error prone process.

2. Event categories and causes do not necessarily uniquely
map to physical phenomena/patterns, i.e., multiple
categories may correspond to the same underlying
phenomena and certain categories may correspond to a
variety of underlying phenomena. Similarly, reported
event durations often cover the consequence of the event,
e.g. the resulting power outage, and not the event itself
which created the issue.

3. There is no information about which PMUs are affected.
Since each interconnect covers a large area, even big
events will usually affect only part of the PMUs. Also, the
same type of event may happen in multiple locations with
different consequences.

Therefore, additional analysis must be performed before
this event log data can be employed in training of ML models.
As part of the project, we have developed a web application
which facilitates the evaluation and annotation of events by a
domain expert thereby enabling the use of the log information
for training ML models. More information about this topic is
presented in section I1I.

B. Computational Infrastructure

A significant aspect of our work is the constraint of using a
single GPU server for processing of the data. This was a
project decision aiming to avoid the overhead associated with
the creation of a dedicated cluster for the task and the costs of
cloud-based computing. The employed server can be
considered a typical configuration for a machine used for
training of ML models which should be similar to various
setups employed across industry and academia. Therefore,
discussions about handling big data using such a server can be
very useful for the research community.

The specifications for the GPU server employed in this
work are described below:

e Processor: Intel® Xeon® Silver 4210, with 40 cores
e 196GB of RAM

e 4 NVIDIA Quadro RTX 6000 GPUs, each with 24GB of
RAM

o 2TB NVMe drive for operating system
e 42TB of HDD space for data storage
e Ubuntu 18.04.2 LTS operating system

I11. DATA STORAGE, PRE-PROCESSING AND VISUALIZATION

A. Data storage

In terms of data storage, two options were considered:
using a time series database or using the original files directly.
Test of a time series database was performed based on
influxDB [11] open source version installed as a single node in
the server. The associated Python package was used for testing
the data ingestion. However, the ingestion of each file took ~13
minutes and therefore more than 5 months would be required

for ingestion of the complete dataset. Thus, our choice was to
process parquet files directly.

B. Pre-processing

Given the characteristics of the problem, an effort was
made to pre-process the files as efficiently as possible while
producing as much useful information as possible. Besides
adjustments to the data itself, such as type conversion,
summary statistics of the data were also calculated during the
pre-processing step in order to enable more efficient
exploration of its contents to guide the ML model training. As
Python was the language of choice for ML model
development, it was also employed for the pre-processing
steps. The pre-processing pipeline comprised the following
operations for each original data file:

1) loading original parquet file

2) converting numerical fields type (originally stored as
strings)

3) converting empty values to null

4) removing columns which are all null

5) converting timestamp type (originally stored as
strings)

6) indexing the data based on the timestamp

7) calculating and saving statistics

8) synchronizing the data from all PMUs for each
timestamp.

9) sorting by timestamp

10) saving the pre-processed data as a new parquet file

In order to implement such pre-processing, a comparison
between the use of CPU and GPU for the task was performed.
For the CPU option, parallel processing was employed, in
which case the computer memory limited the maximum of the
number of files that could be processed simultaneously. Based
on testing, this maximum number was identified as 4 and the
processing time for 4 files in parallel took ~10min, i.e.
~2.5min/file.

GPUs are commonly used for efficient computation in
specialized tasks such as DL model training, but their
application in general data processing was traditionally very
limited as this required implementation of the processing
routines based on CUDA! [12]. However, the recent release of
RAPIDS cuDF provided adequate tools for this task. cuDF is a
Python package that provides an interface that approximates
that of the traditional Pandas library [14] but using GPU-based
operations. Since such package is still experimental, required
functionalities were double-checked against their Pandas
counterpart before use. GPU-based pre-processing of the files
using cuDF took around 2min/file on a single GPU. Therefore,
it was chosen as the option for pre-processing. The main
limitation of the GPU-based processing is memory. Files
requiring more memory than that available in the GPU, e.g.
those for interconnections with a large number of PMUs, were
broken into smaller chunks for processing.

Statistics calculation comprised the production of summary
statistics for each measurement of each PMU and for the
occurrence of the various status codes for each PMU. The

1 CUDA iis specific to NVIDIA GPUs

choice was to aggregate the whole set of statistics for every
minute, which was considered a good tradeoff between
resolution and efficient handling of data in large time windows
for visualization and exploration. The use of this resolution
was also facilitated by the existence of theHour and theMinute
fields in the dataset. The following statistics were calculated
for each numerical field:

count

mean

min, max

quantiles: 10%, 25%, 50% (median), 75%, 90%

Concerning the status codes, statistics comprised the count
of occurrence of each applicable status code for each PMU at
each minute. Information about the time range covered by each
file was also compiled in the process. All statistics information
was stored in JSON files.

As a consequence of the definition of valid status codes
described in section Il and also the findings about clear outliers
described below in sub-section C, additional data pre-
processing was performed so that invalid data could be
removed from calculations. Instead of removing invalid
measurements directly from the data, the option chosen was to
generate a binary mask for each data file, indicating what are
valid measurements. This provides more flexibility for dealing
with the invalid measurements. Besides, masks can be
efficiently applied when preparing the datasets and results in a
small cost in terms of disk space, as each mask file is only a
few MB in size.

The criteria for defining valid measurements are then the
valid status and valid ranges for the measurements defined with
support from a domain expert. Values that don’t fulfill such
requirements are indicated in the corresponding binary masks
as invalid. Using IC B dataset as a reference, generation of
mask file takes ~11.5s per preprocessed data file using a single
GPU.

Invalid status codes correspond to ~4% of the data. Outliers
as defined above occur on less than 0.01% of the frequency
values and even less on magnitudes and angles. Phase currents
are missing in almost 80% of measurements. Other
measurements are missing less than 10% of the time.

C. Data Visualization and Annotation

Data visualization tools were created for exploring the data
and aggregated statistics. A set of functionalities was
developed to facilitate the creation of static plots for
visualization of selected measurements from selected PMUs.
Fig. 1 presents a sample heatmap plot of normalized mean
values for positive sequence voltage magnitude for all PMUs in
interconnection B during 1 year.

01-01 00:00
01-07 22:37
01-28 21:13
02-04 19:47
02-1118:29
02-1817:14
02-25 16:00

03-2513:24
04-0112:28
04-08 11:22
04-15 10:04
04-22 08:46
04-29 07:51
05-20 06:43
05-27 05:33
06-03 04:15
06-10 02:57
06-17 01:42
06-24 00:33

.

=
07-14 2322
07-2122:14 ='

(00T FIRRRID | A T

datetime

07-28 20:56 =|
08-04 19:44 =

09-29 12:00 4
10-06 10:48]
10-13 09:21 =
11-03 07:56 &5
11-10 06:37 i

12-08 01:30

EEVIRTT 1 T T T T TR A

8450 -1 NN 000 N 0 101 T

SRR TTTIT T WA T
B750 - 111 I NN A 00 o I 111

Fig. 1. Heatmap plot of normalized mean values for positive sequence voltage
magnitude for all PMUs in interconnect B during one year

Interactive web-based plotting tools were also created since
they are more convenient for some tasks, such as exploration
and discussions with domain experts, as they enable users to
perform operations such as adding/removing data and zooming
in and out. We have developed and made use of interactive
dashboards using the Dash framework for Python [15].

One of the developed tools enables the creation of
aggregated statistics plots based on the following information
specified by the user, as presented in Fig. 2:

A set of PMUs

A time range

A statistic for a specific measurement

Frequency of aggregation and aggregation function
Options for normalizing the data or applying log
transformations.

<« C O @ 127.0.0.1:8050

MindSynchro Data Statistics

Select PMUs:

* B3z2e B337 | = B

@ |[@
R
@

= BY3r * Br40 = B

= BA38| * BOGE = B9

Select a range (last day is not included): | 01/01/2016 —» 12142017

max__ip_m max
Statistic Aggregation Function;

Normallze:Use Log Scale (on Scatter Plot only):
-

Data Frequency 1D

SHOW |

Fig. 2. Sensor statistics exploration tool: configuration screen

-08

00

Boxplot: max__ip_ m

_ B126
10°

B B161

N M e17s

10° B eio3

N I B209
24

ix W B232

. B308
18

0 [B326

. B328

B337

™ :3?

242:8 » 1ee |8 4 (TR} - LY X =70

1 % o se|d o . T- . o W B450

. [l B4s7

@ ®
[-
o w u

T ® oo ®
)
o w U @

3

849
39
689
69

roed
0sbe

Zotd
9
Z669

Fig. 3. Sensor statistics exploration tool: sample box plot of the maximum
values of positive sequence current magnitudes for a subset of PMUs in
interconnect B. Occurrence of outliers is clearly identified for some of the

PMUs.

o o 0 U P W N OO WSRO W

The project team has used those visualization for analyzing
the data and discussing it with domain experts.

One example of important findings enabled by the
visualization was the existence of clear outlier values. While
determining what constitutes normal and abnormal values for a
specific measurement often requires domain expertise and/or
statistical analysis, it was possible to immediately identify
extreme values on multiple PMUs of interconnect B as
presented in Fig. 3. Corresponding values clearly indicate
errors in measurement.

Another example of relevant findings based on this analysis
correspond to issues on PMU voltage levels. Voltages in the
system are supposed to remain within 10% of a nominal value.
Rare outliers could indicate anomalies/events. However, it was
verified that for some PMUs the nominal voltage value
changed over time, as illustrated in Fig. 4. One possible reason
for this behavior could be that those PMUs may have been
relocated to perform different measurements over time.

Scatter: median__vp_m

. B370
. * B464
- * B661

. L e o "% ecn % pu 0 ez

.
o TS CET oD e s e O sE

Jan 2016 Jul 2016 Jan 2017 Jul 2017

Fig. 4. Evidence of changes in voltage levels for PMUs over time. Plots
present voltage magnitudes over the complete time range covered by the
dataset. Voltage values are hidden to preserve anonymity of data providers.

The web-based visualization tool has also been converted
into an annotation tool to capture information from domain
experts about validation of event logs. This enables the proper
use of this information as labels for ML training, given the
issues discussed in section Il. For each event log entry, a
domain expert can perform one of the following actions:

e Confirm presence of a relevant event in the data that
matches the event description, map it to a specific

physical phenomenon, and provide additional information
such as PMUs affected and more precise times

e Confirm presence of an event which is different from
what is described in the logs, also mapping it to the
corresponding phenomenon and additional information.

e Mark the event as not observed in the data

The list of physical phenomena used for mapping the log
events, also defined with support from the domain expert, is:
short circuit, trip (no short circuit), line down, islanding, heavy
load, low load, reactive power shortage, transmission corridor
congestion, power plant controller issue, frequency event,
oscillation event.

Fig. 5, Fig. 6 and Fig. 7 show the annotation tool. It has the
following features/capabilities:

e Presents a list of the event logs for selection and
indications of whether or not each one has already been
annotated (Fig. 5)

e Selection of various parameters (Fig. 5) for plotting data
associated to the event under review. The tool provides
plotting of multiple features from a single PMU (Fig. 6)
or single feature and multiple PMUs (Fig. 7)

e Annotation fields are used to record the annotation (Fig.
5). They can be adapted to the specific scenario and set of
events.

e Backend Efficiency: it is important for the tool to be fast
and responsive, to avoid causing frustration to the user and
to allow efficient annotation. This is a challenge given
large amounts of data needed for labelling events. We use
data aggregation and fast access storage of both original
and aggregated data based on caching [16] to achieve
adequate performance.

We have provided access to this tool to a domain expert
from Siemens Digital Grid who annotated a subset of events on
IC B for use in ML model training and validation.

< C 0@ @ localhost:8050

2016-81-02716: 24100 2016-91-02T18:43:00 Line
2016-81-03T15:54:00 2016-91-03T19:15:00 Line
2016-01-05T02:20:00 2016-01-25T02:20:00 Line
2016-81-05T10:14:00 2016-91-05T10:15:00 Line
2016-81-06T07:06:00 2016-01-06T07:06:00 Line
2016-01-06T07:06:00

2016-01-06T07:06:08 Transformer

80 events in the table. Displaying page 1 of 8

Aggregation Function (if half-window > 30s):
max

Aggregation Frequency: 18
‘Window Half-Size(s); 180
Time Window Center;

Plot

Annotation:
Other Event(s):
Involved PMUs:

True Event Time:
Enter Comments (don't use Tabs):

Save Comment

Fig. 5. Plotting parameters and annotation fields

< C O @ localhost:8050
Features to Show:
ip_m vp_m f d e
Plot Data for a single PMU (best with <6 features):
B126

B126 Plot

16:42 16:43 16:44 16:45 16:46 16:47 16:48

Fig. 6. Individual PMU plot with feature selection

& C O O localhost8050

Plot max vp_m: 2016-01-01 16:45:00 Line : Tree

(Jan 1, 2016, 16:43, 355.424k)|

Plot max ip_m: 2016-01-01 16:45:00 Line : Tree

1200

800

Fig. 7. Feature plots for multipie PMljsTWVBftééeT/z;fJgs-éfe hidden to preserve
anonymity of data providers.

IV. MACHINE LEARNING DEVELOPMENT

A. Machine Learning Pipeline

In order to perform training and testing of a variety of ML
model types and configurations for such a volume of data, a
proper processing pipeline must be developed.

The framework of choice for ML model development was
tensorflow 2 [17] which is one of the most popular tools for
creation of DL models, leveraging all the processing power of
GPUs for the task.

Although all the PMU data had already been pre-processed,
it requires additional preparation before it can be used for ML
model development. Such preparation is not incorporated into
pre-processing as it may differ for different modeling tasks. In
order to create an efficient pipeline, data preparation is
performed in CPU in parallel to model training in GPU as
illustrated in Fig. 8. Each block in the figure corresponds to a
processing task employing either CPU or GPU and block
widths correspond to processing duration.

CPU Data Data Data
Preparation @ Preparation Preparation
GPU Model Training Model Training
t

Fig. 8. Schematic of processing pipeline developed for model training where
data preparation happens in CPU in parallel to model training in GPU. Block
widths correspond to processing durations.

Data preparation consists of a series of processing tasks
which transform pre-processed files into batches of data for
model training. Developed data preparation consists of the
following steps:

1) load parquet metadata from pre-processed file and
corresponding valid data mask

2) filter columns to specific PMUs if needed

3) load corresponding columns for data and mask

4) apply valid data mask to the data

5) eliminate regions of overlap with other files

6) unwrap phase angles (optional)

7) fill missing columns with token value

8) resample to 30Hz

9) forward fill and then back fill missing values

10) eliminate extra rows that won't fit in batch

11)normalize values based on pre-defined ranges for each
measurement

12) reshape data to batch format

13)adjust all angle values to the same reference in each batch
(optional)

14) replace token value from missing columns with zeros

Unwrapping in step 6 is performed to eliminate the abrupt
changes in phase angles as they are originally represented in
the range between -180 and 180 degrees. Adjustment of phase
angle values to the same reference as presented in step 13 is
performed because the most important information from the
phase is not in its absolute value but in the phase difference
among different measurements.

Resulting batch consists of a tensor which is a collection of
samples, each sample comprising a time window of
measurements. Figure 9 presents a heatmap depicting one such
sample which consists of a 2D array with dimensions 300x18,
corresponding respectively to time (10s of data at 30Hz) and
the 18 measurements. One of the main challenges corresponds
to dealing with missing data. Whole measurements may be
missing for each PMU in which case they are replaced with
zeros. Values are normalized to pre-defined ranges. Data
preparation is performed in CPU as described above. With no
parallel processing, it takes from ~0.4s to ~2.5s to convert all
data from one PMU in one file into batches, depending on how
many PMUs are considered on the same file.

-10

-0.8

..... Iy -0.0

E‘m‘mlmlm‘EE mlmmu"ﬁ

EEE EE om0
g'g'e'y'83 8 ¥ alnlslylamay

Fig. 9. Heatmap presenting a sample for model training resulting from data
preparation. It corresponds to 300 seconds (y-axis) of normalized values for all
measurements (x-axis) from one PMU.

The processing pipeline also comprises facilitated means
for definition of multiple model architectures and
configurations related to data preparation and training, so that
multiple options can be easily tried for hyperparameter tuning.
Each such option can be created as a folder containing two
files: a Python script defining the model architecture based on
tensorflow and a configuration file which defines parameters
for data preparation, such as:

files/data to use for training

time window length

options such as angle corrections and randomization of files
values to use for normalization

And hyperparameters and options related to model training,
such as:

number of epochs

use of early stopping or regularization

validation split

method specific hyperparameters such as dimensionality of
the latent space in autoencoder

B. ML Models and Sample Results

In order to create models for relevant power grid event
detection based on the available PMU data, a deep semi-
supervised learning approach is employed [18]. Based on such
approach, the large amount of unlabeled data can be combined
with a reduced set of labeled data to potentially achieve
performance in the classification tasks which is superior to that
achieved using the labeled data alone. One approach employed
in this work is based on an autoencoder architecture as
depicted in Fig. 10. The standard autoencoder architecture
comprises the encoder and decoder presented in the figure,
where the deep neural network (DNN) is trained to produce an
estimate of its own input X, which in this case corresponds to a

multivariate time window of fixed length as presented in Fig.
9. In our work, various approaches have been tested where
encoder and decoder are created using convolutional neural
networks (CNN) or long short-term memory (LSTM)
networks. The autoencoder presents a bottleneck which is a
latent space, also referred to as code, which has reduced
dimensionality compared to X. Once trained, the encoder can
produce such code for new input samples. The difference
between the standard autoencoder and the semi-supervised
architecture employed in this work is in the classification head,
as presented in Fig. 10. This classification head comprises
additional DNN layers which receive as input the code and
provide as output an estimate of the class to which the input
sample belongs to. In this case, classes are associated to normal
operating conditions and different types of anomalous events.
Training of the standard autoencoder (encoder and decoder) is
unsupervised, therefore it can be performed using all the big
data from PMU measurements so that the DNN can learn to
produce the best code to represent the information in the
samples. The classifier, which includes the classification head
as well as the encoder, is trained using the reduced set of
labeled data containing ground truth information about sample
classes.

Decoder)?

Classification ~
Head ¢

Fig. 10. Semi-supervised autoencoder architecture.

=

Here we describe a sample experiment employing a CNN-
based semi-supervised autoencoder. A dataset consisting of
370143 samples produced by applying the data preparation
process described above is used for the unsupervised learning
task. These samples correspond to a randomly selected subset
of the complete dataset from 24 IC B PMUs covering 2 years
of operation. Data labeled by a domain expert corresponding to
the occurrence of short circuit events are used to train the
classifier. The labeled dataset contains 221 labels in total of
which 29 correspond to the occurrence of short circuits.
Twenty percent of the samples stratified by class (short circuit
or no short circuit) are used as hold-out data for validation and
calculation of performance metrics. All training was performed
in a single GPU and each training epoch consisted of one step
of autoencoder training, taking ~40s to complete, and multiple
steps of classifier training taking ~0.3s each. This approach
resulted in a perfect result with 100% accuracy.

V. CONCLUSION

In this paper we have presented the application of big data
processing for the development of ML models for detection of
relevant events in power grid operations. All data processing of
the almost 20TB of phasor measurement unit data has been
performed using a single GPU server, which is a typical

configuration for ML development. Despite the many
challenges faced due to the large data volume and issues
normally associated to real world data, we have successfully
employed GPUs to scale the processing power to enable the
development of ML models, not only on the model training
and testing tasks but throughout the whole data processing
pipeline.

This is part of an ongoing project, and the main tasks
planned for future work include: exploration of other ML
approaches, introduction of physics-based features in ML
model development, application of weak supervision
approaches for a more scalable extraction of labels from event
logs, analysis of complete dataset of all interconnects including
additional test data which will be provided by DOE at a future
time.

ACKNOWLEDGMENT AND DISCLAIMER

This material is based upon work supported by the
Department of Energy under Award Number DE-OE0000917.
This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] B. P. Bhattarai, et al. "Big data analytics in smart grids: state-of-the-art,
challenges, opportunities, and future directions.” IET Smart Grid, vol. 2,
no. 2, pp. 141-154, 2019

[2] A. Shahsavari, M. Farajollahi, E. M. Stewart, E. Cortez and H.
Mohsenian-Rad, "Situational Awareness in Distribution Grid Using
Micro-PMU Data: A Machine Learning Approach,"” in IEEE
Transactions on Smart Grid, vol. 10, no. 6, pp. 6167-6177, Nov. 2019,
doi: 10.1109/TSG.2019.2898676.

[3] Hug, Gabriela, and Joseph Andrew Giampapa. "Vulnerability
assessment of AC state estimation with respect to false data injection
cyber-attacks." IEEE Transactions on smart grid 3, no. 3 (2012): 1362-
1370.

[4] Almasabi, Saleh, and Joydeep Mitra. "An overview of synchrophasors
and their applications in smart grids." In 2016 International Conference
on Intelligent Control Power and Instrumentation (ICICPI), pp. 179-183.

IEEE, 2016.
[5] North America SynchroPhasor Initiative, “Synchrophasor technology
fact sheet”, available at:

https://www.naspi.org/sites/default/files/reference_documents/33.pdf?fil
elD=1326

[6] Siemens Energy, SIGUARD® PDP, available at:
https://new.siemens.com/global/en/products/energy/energy-automation-
and-smart-grid/power-quality-measurement/grid-monitoring-using-
synchrophasors-siguard-pdp.html

[7]1 Wikipedia: Size of Wikipedia, available at:
https://en.wikipedia.org/wiki/Wikipedia:Size_of Wikipedia

[8] Open Images Dataset, available at:
https://storage.googleapis.com/openimages/web/index.html

[9] IEEE Standard for Synchrophasor Data Transfer for Power Systems, in
IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005) , pp.1-
53, 28 Dec. 2011, doi: 10.1109/IEEESTD.2011.6111222.

[10] PyMU documentation, available at: https://pythonhosted.org/PyMU/

[11] Influxdata. InfluxDB, available at:
https://www.influxdata.com/products/influxdb-overview/

[12] NVIDIA. About CUDA, available at:
https://developer.nvidia.com/about-cuda

[13] RAPIDS. cuDF documentation, available at:
https://docs.rapids.ai/api/cudf/stable/

[14] The pandas development team. Pandas, available at:

https://pandas.pydata.org/
[15] Dash framework, available at: https://dash.plotly.com/
[16] Flask-Caching, available at: https://pythonhosted.org/Flask-Caching/
[17] TensorFlow, available at: https://www.tensorflow.org/

[18] Y. Ouali et al. An overview of deep semi-supervised learning. 2020.
Available at: https:/arxiv.org/abs/2006.05278

https://www.naspi.org/sites/default/files/reference_documents/33.pdf?fileID=1326
https://www.naspi.org/sites/default/files/reference_documents/33.pdf?fileID=1326
https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/power-quality-measurement/grid-monitoring-using-synchrophasors-siguard-pdp.html
https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/power-quality-measurement/grid-monitoring-using-synchrophasors-siguard-pdp.html
https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/power-quality-measurement/grid-monitoring-using-synchrophasors-siguard-pdp.html
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://storage.googleapis.com/openimages/web/index.html
https://pythonhosted.org/PyMU/
https://www.influxdata.com/products/influxdb-overview/
https://developer.nvidia.com/about-cuda
https://docs.rapids.ai/api/cudf/stable/
https://pandas.pydata.org/
https://dash.plotly.com/
https://pythonhosted.org/Flask-Caching/
https://www.tensorflow.org/
https://arxiv.org/abs/2006.05278

