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Abstract—Frequency control from photovoltaic (PV) power 
plants has great potential to address the frequency response 
challenge of the power system with high penetrations of renewable 
generation. Using model-based approaches to determine the 
optimal PV headroom reserve, however, requires significant 
online computation and is intractable for an interconnection level 
system. This paper proposes a machine learning based strategy, 
that is suitable for real-time operation, to determine the optimal 
PV reserve for frequency control. The proposed machine learning 
algorithm is trained and tested on 1,987 offline simulations of a 
60% renewable penetration Western Electricity Coordinating 
Council (WECC) system. Furthermore, the proposed reserve 
determination strategy is applied on a realistic 1-day operation 
profile of the WECC system and demonstrates a savings of more 
than 40% PV headroom compared to a conservative approach. It 
is evident that the proposed strategy can efficiently and effectively 
determine the optimal PV frequency control reserve for realistic 
interconnection systems. 
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I. INTRODUCTION

Driven by aggressive renewable portfolio standards [1] as 
well as competitive costs of renewable generation technologies, 
renewable energy installation has increased in recent years at a 
record pace. Among various technologies, photovoltaic (PV) 
power has been a major contributor because of its increasing 
competitiveness against other technologies. Notably, the U.S. 
Department of Energy (DOE) SunShot vision study estimated 
that solar generation could provide up to 27% energy by 2050 
[2]. Under this scenario, the instantaneous PV penetration could 
reach 70% or more assuming a capacity factor of 0.2 [3]. 

Meanwhile, high penetration levels of inverter-based 
resource (IBR), such as PV, along with the retirement of 
synchronous generators, has brought new challenges to the bulk 
electric system. In particular, the frequency response will be 
negatively impacted as a result of reduced inertia and governor 
response from synchronous generators. A recent study observed 
deteriorated frequency responses of the three main U.S. 
interconnections under ultra-high penetrations of IBR [3]. 

One practical solution to address the frequency response 
challenge is to enable frequency control for inverter-based 
renewable energy resources. A comprehensive review of the 
technical capabilities of variable speed wind turbines and solar 
PV generators was given in [4]. Moreover, frequency control 
along with other controls was demonstrated on a 300 MW 

utility-scale PV power plant in California in [5], showing that 
PV power plants are technical capable of providing frequency 
response when necessary headroom is reserved. 

However, how much headroom should PV plants reserve 
during real-time operation in order to meet system performance 
requirements has rarely been explored. Throughout the course 
of a day, unit commitment and dispatch are constantly changing 
in response to load and renewable resource fluctuation. As a 
result, the online inertia and enabled governor capacity from 
synchronous generators can vary significantly, which makes it 
challenging for system operators to determine the PV headroom 
reserve requirement in real-time operation. 

Using model-based simulations of numerous scenarios to 
determine the reserve requirement in real time is computational 
intense and become intractable for interconnection level systems 
with tens of thousands of buses. Lacking the capability of real-
time assessment, system operators will need to procure a 
conservative amount of headroom reserve, which will incur 
opportunity costs of the overly procured PV headroom reserve 
not providing energy. 

To address the challenge of determining real-time PV 
reserve requirement, this paper proposes a machine learning-
based strategy that is applicable to interconnection level power 
systems. First, a large offline training database is created 
through dynamic simulations on the WECC 2022 60% IBR case 
developed under the DOE SunShot National Laboratory 
Multiyear Partnership (SuNLaMP) program [6]. Then an 
algorithm based on Artificial Neural Network (ANN) is trained 
and tested on this data set. Finally, to validate the effectiveness 
of the proposed strategy, it is applied to a realistic 1-day 
operation profile of the WECC system that is never seen by the 
machine learning model during the offline training. The results 
show that, on one hand, the PV headroom determination strategy 
generalizes well to the unseen one-day profile by meeting the 
required system frequency response; on the other hand, it 
achieves a savings of more than 40% PV reserve compared with 
a conservative strategy. 

The remainder of this paper is organized as follows. Section 
II introduces the proposed machine learning-based PV 
headroom determination strategy. Section III describes the 
offline training of the machine learning-based algorithm on the 
WECC system with high IBR penetration. Section IV 
demonstrates the online application of the proposed strategy 
during a realistic one-day operation. Section V concludes this 
paper. 

1 Samanvitha Murthy is also with Carnegie Mellon University. 



II. MACHINE LEARNING-BASED PV RESERVE
DETERMINATION STRATEGY FOR FREQUENCY CONTROL 

A. PV Frequency Control
The technical feasibility of using PV to provide frequency

control has been proven [3]–[5]. Broadly, frequency control 
injects power to help arrest the decline of system frequency 
during an under-frequency event such as generation trip. The 
inertia control and primary frequency control of the PV power 
plant used in this paper are shown in Fig. 1. The following 
control parameters are used: [Ki, Tlpwi, Twowi, Pmxwi, Pmnwi, Kg, 
Tlpwg, Twowg1, Twowg2, dbi, dbg] = [38, 0.5, 1.5, 0.1, 0, 20, 0.1, 0.3, 
0.5, 0, 0.0006]. 

Fig. 1. Block of PV frequency control 

To provide upward frequency control, PV plants are required 
to pre-curtail and maintain headroom. For a better illustration, 
Fig. 2 shows the system frequency nadirs of a small test system 
under the same generation trip but with different amounts of PV 
headroom reserve. As the PV headroom increases, the frequency 
nadir improves at the beginning but stays constant after a certain 
point at which the control cannot use 100% of the reserved 
headroom. It is beneficial to system frequency response to 
reserve more PV headroom until a certain point; however, 
because a PV plant does not have a fuel cost to generate 
electricity, reserving an excessive amount of PV headroom is 
uneconomic. Therefore, it is necessary to develop a method that 
can determine the appropriate amount of PV headroom. 

Fig. 2.  Frequency nadir under the generation trip with different PV headroom. 

B. Machine Learning-Based Strategy
One key performance metric in frequency stability analysis

is the frequency nadir, fnadir, which is defined as the minimum 
post-contingency frequency. In practice, the frequency nadir 
under the worst credible contingency should be maintained 
above the under-frequency load-shedding (UFLS) settings so 
that the worst contingency will not activate any load shedding. 
The proposed PV headroom dispatch strategy has the objective 

to choose the minimum PV headroom while meet the predefined 
frequency nadir. 

From the physical model of the power system, the total 
system inertia of online synchronous generators and the enabled 
governor capacity are the two main factors that impact the 
frequency nadir. Therefore, the machine learning algorithm is 
designed to use the input of the targeted frequency nadir, ftarget, 
online system inertia, Hsystem, and online governor capacity, Ggov, 
to determine the PV headroom, HRPV. 

After the objective and input to the machine learning-based 
strategy is clear, the strategy is further divided into offline 
training and online application modules, which is illustrated in 
Fig. 3. 

The offline training module consists of the creation of a 
frequency stability database, i.e. the training data, and the 
machine-learning model training process. Dynamic simulations 
of different combinations of (Hsyst, Ggov, HRPV) will be 
performed to generate the training data. Then the machine 
learning algorithm will be trained accordingly. 

In the online application module, the machine learning 
algorithm will be deployed in the control room. Real-time 
streaming data of totally system inertia and enabled governor 
capacity will be input to the machine learning algorithm. Also, 
the system operator will set a desired frequency nadir. The 
machine learning algorithm will determine an optimal amount 
of PV headroom, and then the system operator will distribute the 
headroom to the PV power plant controllers. 

Fig. 3.  Flow chart of the proposed strategy. 

III. OFFLINE TRAINING ON THE WECC SYSTEM

One challenge of directly training a regression model 
between (ftarget, Hsyst, Ggov) and HRPV is that, in the dynamic 
simulation, HRPV is naturally an independent variable, i.e. input 
to the simulation, and the frequency nadir, fnadir, is a dependent 
variable, i.e. a result of the simulation. As shown in Fig. 3, the 
training data set is structured to have three features (Hsyst, Ggov, 
HRPV) and one label fnadir. As a result, this creates a discrepancy 
between the training data structure and the regression model. To 
cope with this challenge, a two-step approach is proposed: 

Step 1: intuitively, a Neural Network (NN) regression model 
between (Hsyst, Ggov, HRPV) to fnadir is trained. 

Step 2: a binary search algorithm is developed that searches 
the minimum HRPV through the NN regression model to meet the 
ftarget under the input of (Hsyst, Ggov). 
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A. Create Frequency Stability Database
For a machine learning algorithm to achieve good

performance in online application, the training set needs to cover 
operation conditions in the field. In this application, this means 
realistic ranges of (Hsyst, Ggov, HRPV) needs to be simulated. 

The U.S. WECC system high PV model used in this project 
was developed by the SuNLaMP project 30844 and is a detailed 
planning model based on the 2022 light spring case. This case 
has 60% penetration of IBRs, including 45% PV and 15% wind. 
Because the current WECC system does not have such a high 
penetration of IBRs, the ranges of system inertia and enabled 
governor capacity of today’s system will differ from the ranges 
of the system in 2022; however, a reasonable projection of the 
future can be made based on current condition. 

A typical 1-day inertia trend of the current WECC system 
(from the North American Electric Reliability Corporation) is 
depicted by the blue curve in Fig. 4. As the PV penetration 
increases, more synchronous generators will be decommitted 
during the peak hours of PV which will lead to decreased Hsyst 
and Ggov. To reflect this impact, for every 1% PV penetration 
increase, 1% of inertia decrease and 1% of enabled governor 
capacity decrease are assumed. To project the future PV profile, 
a 24-hour PV profile of the California region is retrieved from 
the California Independent System Operator (CAISO) OASIS 
website [7] and is scaled to fit the PV generation of the high 
penetration case. This is depicted by the yellow curve on the 
right axis. As a result, the projected system inertia is calculated 
and depicted as the red curve. 

Based on the projected inertia profile, the range of inertia is 
chosen to be [260,000, 740,000] (MVA∙s) to cover the entire 
range of the projection. A step of 40,000 MVA∙s is chosen which 
leads to 13 steps. 

At the same time, the range of the enabled governor capacity 
is scaled proportional to the inertia and a range of [19,000, 
67,000] (MVA) is determined. A step of 3,000 MVA is chosen 
which leads to 17 steps. 

To determine the range of PV headroom, simulations on the 
system condition with lowest inertia and enabled governor 
capacity are performed by varying the PV headroom from 0% to 
4% with a 0.5% step. The average frequency responses of 22 
buses across the system are recorded and plot in Fig. 5. As 
shown, this range covers the frequency nadir from 59.4 Hz to 
59.9 Hz which creates a 0.5-Hz frequency range from which 
operators have the flexibility to choose the frequency target. 

Therefore, it is reasonable to simulate [0.0%, 4.0%]. A 0.5% 
step is used which lead to 9 steps.  

There are 13 inertia levels, 17 governor capacity levels, and 
9 headroom levels, which creates 1,989 combinations to 
simulate. For each simulation, the largest N-2 contingency— 
which is the loss of two generating units in the Palo Verde 
nuclear plant (2600 MW)—is simulated for 20 seconds. The 
average frequency of the selected 22 buses is calculated and 
frequency nadir is found as the lowest average frequency during 
the 20 seconds simulation. 

Simulations are performed through the GE Positive 
Sequence Load Flow (PSLF) software on a virtual machine 
equipped with Intel Xeon Gold 6148 CPU @ 2.40 GHz and a 
RAM of 6 GB. It took the virtual machine 14 days’ time to finish 
all 1,989 simulations. 

Note that only the inertia range of the 1-day profile is used 
to determine the range of the training data. The actual operating 
conditions of (Hsyst, Ggov, HRPV) throughout the day are never 
seen by the machine learning algorithms. 

B. Training Artificial Neural Network Regression Model
An ANN model is chosen as the regression model. Open-

source machine learning packages in Python language are used: 
the scikit-learn [8] package is used for the scaler, grid search, 
and cross validation process; the TensorFlow [9] package is used 
as the backend of the neural network algorithms; and Keras [10] 
package is used as the high-level application programing 
interface. 

Histograms of the four attributes of the 1,989 simulations are 
shown in Fig. 6. The three inputs, i.e. Hsyst, Ggov, and HRPV, are 
distributed evenly across the levels defined in subsection A. 
Except two outliers around 59.0 Hz, frequency nadirs, are 
distributed between [59.4, 59.95], which justifies the PV 
headroom range chosen in Subsection A. Further examination of 
the two outliers shows that the frequency of one bus is 
significantly distorted and thus unrealistically low compared 
with the frequencies of the other 21 buses. The two extreme low 
frequencies could be caused by the algorithm that calculates the 
bus frequency in PSLF and are removed from training or testing. 
Among the remaining 1,987 instances, 20% is set aside as the 
test set and the other 80% is used as the training set. 

In the ANN model, only one hidden layer is used because of 
the small number of inputs and output. The rectified linear unit 

Fig. 4.  Frequency responses under different headroom reserve levels  

Fig. 5.  One-day profile of the WECC system. 
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(ReLU) activation function is used in the hidden layer and linear 
activation function is used in the output layer. Mean square error 
is used as the loss function. To avoid overfitting, l2 
regularization is added in the model, and five-fold cross-
validation is implemented during training. 

To fine-tune the model, grid search on the following 
hyperparameters are performed to find the optimal settings: 
number of neurons in the hidden layer, nn: [25, 50, 100]; 
regularization parameter, λ: [0.01, 0.005, 0.001]; batch size, b: 
[10, 20, 30]; and number of epochs, ne: [50, 100, 150]. The best 
training result is achieved with [nn, λ, b, ne] = [50, 0.001, 10, 
150]. The prediction errors of the fine-tuned NN model on both 
the training and testing data are illustrated using the histograms 
shown in Fig. 7 and are bounded by ± 0.04 Hz.  The root mean 
square errors (RMSE) of the predictions on the training and 
testing set are 8.096E-03 Hz and 8.027E-03 Hz which are both 
less than 0.01 Hz. It is demonstrated that the ANN model 
performs consistently well on both training and testing data. 

C. Binary Search Algorithm
On top of the fine-tuned ANN model, a binary search

algorithm is developed to search the optimal PV headroom to 
meet the frequency nadir target, ftarget. The search algorithm is 
illustrated through the flowchart in Fig. 8. 

The algorithm takes the input of (ftarget, Hsyst, Ggov) and two 
parameters: headroom search lower bound, HRLB, and upper 
bound HRUB. Because 0% to 4% PV headroom is used in the 

training set, it is naturally to set [HRLB, HRUB] as [0%, 4%]. If 
the algorithm is to be applied to a different system, the two 
bounds need to be re-evaluated. 

After the input, the algorithm will start the search from the 
medium value of the upper and lower bounds, i.e. HRPV. This 
medium value is used as the headroom and is send to the ANN 
model together with the input value of (Hsyst, Ggov) to estimate 
the frequency nadir, fest.. If the fest. is equal to or close to the ftarget, 
the search is terminated and the current HRPV as well as the fest. 
are outputted. If fest. is larger than ftarget, the upper bound is set to 
HRPV, behind the rationale that the optimal headroom should be 
less than HRPV. If fest. is smaller than ftarget, the lower bound is set 
to HRPV, behind the rationale that the optimal headroom should 
be less than HRPV. After the bounds are updated, the search 
continues by updating the HRPV to the medium. 

Two parameters are introduced in this algorithm. The first is 
the ThresNadir, which is the criteria in determining that the fest. 
is equal to or close to the ftarget. In this study, 0.001Hz is used. 
Another parameter is ThresHR, which terminates the search if 
the whole range of [HRLB, HRUB] is searched but could not find 
a PV headroom so that fest. close enough to ftarget. In this study, 
0.01% of the PV headroom is used. 

IV. DEMONSTRATION OF ONLINE APPLICATION

After the machine learning based strategy is trained offline, 
the next step is to demonstrate the strategy in the online 
application module. Because current system does not have such 
a high PV penetration level or the frequency control enabled, 
simulations that mimic the real system behavior are turned to. 

The 1-day scenario shown in Fig. 4 is used. The profile 
comes with a 15-min interval and has a total of 96 intervals for 
the whole day. On this day, sunrise occurred at 5:00 and sunset 
at 19:30 which correspond to the input samples between the 
intervals 21 and 79. These 59 intervals are simulated. 

Note that the ANN model has never seen this 1-day profile 
during its training or testing. For example, at 12:00, the system 
has an inertia of 281,377 MVA∙s and an enabled governor 

Fig. 6.  Histograms of features. 

Fig. 7.  Prediction errors of training and testing cases. 

Fig. 8.  Flow chart for binary searching algorithm. 



capacity of 26,916 MVA, which is not in the training or testing 
set introduced in Section III A (also shown in Fig. 6). 

In this demonstration, the ftarget is chosen as 59.55 Hz. The 
under-frequency load-shedding in the WECC starts from 59.5 
Hz. This target is set 0.05 Hz higher to give some margin for 
errors. 

When the simulation advances to an interval: 1) the system 
inertia and enabled governor capacity of that interval along with 
the 59.55 Hz target are input to the algorithm to find the optimal 
PV headroom reserve; 2) the optimal PV headroom is deployed 
evenly to all PV power plants; and 3) the largest N-2 
contingency is simulated in PSLF to find the actual frequency 
nadir to validate the effectiveness of the proposed strategy. 

Fig. 9 shows the PV headroom determined through the 
proposed strategy (red dots) for all intervals. The headroom 
peaks around 1000 MW during the noon intervals when the 
system inertia is the lowest during the day (red line in Fig. 4). 
After 18:00, the optimal headroom found is 0 MW, which means 
that without the PV’s support, the system frequency is greater 
than 59.55 Hz. The blue dots in Fig. 9 illustrate the strategy to 
use the highest PV headroom reserve, which is an over-
conservative strategy if the online estimate algorithm is 
unavailable.  

Fig. 10 depicts in red dots the estimated frequency nadir the 
proposed strategy found, and the simulated frequency nadir 
through PSLF is shown as blue dots. The average error is 
0.004Hz with a standard deviation of 0.0029 Hz. Compared to 
the typical governor dead band of 0.036 Hz, the error is an order 
of magnitude smaller, which validates the performance of the 
proposed strategy. 

On the other hand, compared with the conservative strategy 
shown in Fig. 9, the proposed strategy can realize a 41% PV 
headroom reduction/saving which equivalently allows PV to 

produce 5,945 MWh more clean energy during this 1-day 
period. 

V. CONCLUSIONS

This paper proposed a machine learning based PV headroom 
determination strategy for frequency control. The proposed 
strategy, which consists of an ANN regression model and a 
binary search algorithm, was trained on 1,987 offline simulation 
cases of the WECC system and achieved prediction results with 
errors an order of magnitude smaller than the typical governor 
control dead band. Furthermore, a demonstration of online 
application during a one-day period was performed to validate 
the effectiveness of the proposed strategy. The optimal PV 
headroom determined by the proposed strategy satisfied the 
desired frequency response of the operator and achieved more 
than 40% PV headroom savings compared with a conservative 
strategy at the same time. Future works include optimal 
distribution of the determined PV headroom and adaptive 
control parameters for frequency control.  
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Fig. 9.  Optimal headroom vs. conservative headroom. 

Fig. 10.  Estimated vs. simulated frequency nadir. 


