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Abstract--The declining cost of solar Photovoltaics (P\3¢
generation is driving its worldwide deployment. As convention3p
generation with large rotating masses is being replaced byg
renewable energy such as PV, the power system’s inertia will
affected. As a result, the system’s frequency may vary more
dramatically in the case of a disturbance, and the frequeng
nadir may be low enough to trigger protection relays such
under-frequency load shedding. The existing frequency-wa40
function mandated in power inverters cannot provide grigh
frequency support in a loss-of-generation event, as PV plangs
usually do not have power reserves. In this paper, a novg
adaptive PV frequency control strategy is proposed to reserve th{
minimum power required for grid frequency support. A machin
learning model is trained to predict system frequency responé®
under varying system conditions, and an adaptive allocation 46
PV headroom reserves is made based on the machine learningy
model as well as real-time system conditions including inertigg
Case studies show the proposed control method meets t
frequency nadir requirements using minimal power reserv%s0
compared to a fixed headroom control approach. 51

Index Terms--Adaptive control, frequency response, frequen&2
nadir, machine learning, power system inertia, PV, wide-ard3
measurements 54
55
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ENEWABLE energy plays a critical role in enerdy
8\ security and sustainability. As fossil fuels face depletioh8
they are being replaced by renewable energy resourcés®
worldwide. Solar photovoltaics (PV) has gained a lot &P

I. INTRODUCTION

momentum in deployment, driven by enabling invertél
technologies, decreasing solar panel costs, as well &2
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decreasing energy storage system costs.

The United States has substantial solar resources [1]. The
Sunshot Initiative of the U.S. Department of Energy envisions
that solar PV will generate 14% of the total electrical energy
in the U.S. by 2030, and by 2050, solar PV will generate 27%
of the total electricity in the U.S. [2].

Driven by the continuing trend in solar PV deployment,
researchers have been studying the impact of increasing
renewable generation on power system stability, especially
inverter-based sources such as solar PV and some wind
turbines. Without proper control, the inverter-based sources
would be simply replacing conventional generators with
turbine governors and rotating masses, which would adversely
affect the system’s frequency response. Some preliminary
studies in the U.S. power grids demonstrated that overall
frequency response would deteriorate significantly with
increased renewable penetration [3]-[5]. Similar studies
showed that insufficient inertia would negatively influence the
frequency regulation in South Australia power grid with high
penetration of renewable generation [6]. In [7], the Irish power
grid faces challenges in operating at 50% penetration of wind
generation because of reduced inertia. Simulation studies in
the U.S. WECC system [8] reveal vulnerabilities brought by
extremely high wind penetrations and explores potential
mitigating approaches.

After reviewing system studies on several power grids with
increasing PV and wind penetrations, the North American
Electric Reliability Corporation (NERC) has determined that
additional control strategies and resources are required to meet
the primary frequency control demand as renewable
penetration increases [9]. As a result, the frequency-watt
function [10], which is analogous to the governors in
conventional generators, has become a standard requirement
in North American power grids. Moreover, studies show that
synthetic inertia control of inverters that emulate the inertia
response of synchronous generators help regulate the system’s
frequency response [11]-[17].

The majority of PV inverters online operate in grid-
following mode, where the inverter regulates the output
current magnitude and angle [18]. The other control mode is
the grid-forming mode, where the inverters control the output
voltage and frequency. While wind-turbines typically have the
ability to reserve power for frequency response [19], the
inverters are controlled to output the maximum available
power based on Maximum Power Point Tracking (MPPT) to
take advantage of the low marginal cost of PV generation
versus conventional generation, such as gas or coal. However,
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as the penetration of renewables such as PV increases, thef
may not be enough primary frequency response resources B9
an under-frequency event such as loss of generation, if there is
no real power reserve available in the PV inverters. While ti&0
power reserve control strategy is readily available at thg
inverter level [20], and frequency-watt curve has been studiggh
at the system level [21], there is a research gap in thes
determination and scheduling of PV real power reservegy
Although other grid resources, such as energy storage systengs;
and supercapacitors can be utilized to improve primagyg
frequency response [22]-[24], they require additiongl
planning, design, and investment. If there is insufficient regh
power reserve, especially in high renewable penetratiqgy
scenarios, the system risks lower frequency nadirs in severg,
contingencies, which may cause under-frequency tripping g%
loads and/or inverters. On the other hand, PV real power,
reserve means lost generation with low marginal costs.
Therefore, there is great importance and economic value from
the system’s frequency response standpoint in developing a
model that dispatches the PV real power reserves according to
system requirements and conditions.

The main contributions of this paper are twofold: we
reduce the error of inertia estimation using ambient PMU
measurements from 12% (the state-of-the-art method in thﬁ,’
literature) to 5%; based on the real-time system inertiéd
estimation, we propose a novel PV real power reserve dispatcrb
model leveraging real-time system inertia estimation angh
conventional generation dispatch signals. The goal of they
dispatch is to meet system frequency response requirements
utilizing minimal PV power reserve. A machine learning
model is trained using time-domain simulation data from gp
realistic power system model, and used to predict thg
frequency nadir of a predetermined contingency, given trgp
estimation of system inertia and dispatch of conventiongh
generators. For each set of system conditions (system inertigg
available non-PV generation participating in primags
frequency response), a one to one correlation between systegg
PV real power reserve and frequency response nadir of thgy
predetermined contingency can be established using thgg
machine learning model. The minimal PV power reserve thgp
keeps the frequency nadir above the predefined threshold is
selected as the optimal dispatch. Studies on a test syste
based on the U.S. Electric Reliability Council of Tex&l
(ERCOT) system shows that the PV real power resent?
dispatch maintains the system frequency response nadir abo\#3
the pre-determined threshold in the resource contingend4
criteria (RCC). The dispatch also generates a 50% savings PP
PV real power reserve compared to a dispatch that fixes tH0
PV real power reserve throughout the day. We also show th&f/
the control method performs well using noisy measuremen§8
on a power electronics converter-based grid emulator. 99

The remainder of the paper is organized as follows. T
design and implementation of our real-time inertia estimation
algorithm is introduced in Section Il. The adaptive PV
frequency control is proposed and explained in detail in
Section I11. Section 1V shows the validation case study on a
realistic large power system simulation model. The control

2

method is tested in a hardware-in-the-loop test platform in
Section V. The conclusions are given in Section VI.

Il. SYSTEM INERTIA VARIATION AND REAL-TIME ESTIMATION

Power system inertia consists mostly of the rotating inertia
in synchronous generators, some motor loads, and potentially
future renewable power plants if they provide synthetic
inertia, and can vary throughout the day. Fig. 1 shows the
projected daily and yearly inertia variations of the ERCOT
system at the current and future PV penetration scenarios. The
PV penetration is defined as the percentage of PV’s output
power in the system’s total load. With more PV generation
during the day, synchronous generators are displaced, and the
system inertia will drop, as indicated in Fig. 1 (b). The gap
between peak and bottom inertia grows larger as PV

penetration climbs higher.

Inertia (MVAxs) x10° Inertia (MVA xs) x10°

Dec
Nov
Oct
5 Sep
2, Aug

0246 810121416182022 0246 810121416182022
Hour of day Hour of day

(a) 10% peak PV power penetration (b) 50% peak PV power penetration
Fig. 1. Inertia variations in different levels of PV penetration®

Wide-area  measurement  systems  provide  time-
synchronized grid measurements that can be used to estimate
system inertia [25]-[29]. Although power system inertia
estimation has been heavily investigated in the literature, most
use frequency disturbance data, which suggests that inertia
was calculated offline. In this paper, we use ambient
frequency measurements to estimate the system inertia in real-
time, and increase the state-of-the-art accuracy of inertia
estimation using ambient  synchrophasor  frequency
measurements from 12% mean absolute percentage error [29]
to less than 5%. The estimation of inertia is at the system
level, which is the sum of the inertia of the generators (and
motor loads) in the system. This provides a solid basis for the
proposed adaptive PV frequency control.

A. Multivariate Random Forest Regression (MRFR)

In this study, we use the available inertia data, load profile,
extracted features in the ambient frequency measurements at
different locations, and weather data (average ambient
temperature) to train a multivariate regression model for
system inertia estimation. For application with very large
amounts of training data, we use Multivariate Random Forest
Regression (MRFR) as the machine learning model to
estimate the system inertia. MRFR is an ensemble of
regression trees trained by bootstrap sampling and random
feature selection. Due to the length restrictions of this paper,

! Available online:
https://www.energy.gov/sites/prod/files/2019/08/f65/3.2.d.%20-
%20SETO0%20Modeling%20Workshop%20-%200RNL.pdf
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interested readers are referred to [30].

It is worth noting that other machine learning algorithnf8
such as neural nets and support vector machines are also
applicable to this inertia estimation method. We chose MRF#8
in this study due to its high robustness to the input data, i
capability to avoid overfitting the training data, and its overall
best performance in terms of estimation accuracy. 52

We can sum up the data flow of the online inertfd
estimation algorithm, which is shown Fig. 2. Befoft
application, the MRFR s trained using available offline datgs
In real-time application, the trained MRFR will receive onlirgs
measurements and extracted features, and use them to estimaj
the total inertia of the power system. While the inertia data,
load profile, and weather data are readily available froRP
reliability coordinators and transmission operators, tHd
features from ambient frequency measurements need to be
extracted from the raw frequency data. It is worth mentionirg0
that by using the ambient frequency measurement, we are able
to account for virtual inertia emulated by inverter-interfacegil
renewable resources, since its effects on ambient frequendy?2
variations can be captured and converted to equivalent inerti63
In the next section, we will discuss the method to extraéy

features from ambient frequency data. 65
/20 Realtimedata ____ T 66
T 1 Ambient || ) 67
Load profile [— | Load || Ambient | yeather ! Model

: : profile ﬁquue‘nCy data | | inputs 68
Ambient Offline | variation I 69
frequency training 1 G il F--—--- . g 70

variation | Multivariate Random Forest X
: Regressor (MRFR) ! 71

1

eather data p— T N ! 72
. tH Inertia \| Model 3
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Fig. 2. Data flow of the inertia és_ti_rﬁa_ti_oh-a_ldo_ri.thm 75
B. Ambient Frequency Data Feature Extraction 76

The raw frequency time-series data from multiple PMUs iy
the power system is piped through a data pre-processin
process, which includes data continuity check, outli
detection, and temporal alignment. We use the processed da
to extract the frequency variations of the frequency time-seri
data measured from multiple PMUs across the power grié2
defined as the frequency deviation from the mean of trﬁ:3
frequency measurements. 84

Once the variation of the ambient frequency data from eadip
PMU is calculated, we use a series of time windows with fix
width to divide the time series data and use the Minimu
Volume Enclosing Ellipsoid (MVEE) [31]-[33] method
construct the characteristic ellipsoids and extract t
informative features from each data segment for inert
estimation. MVEE provides a novel method to monitor syste
status and estimate its dynamic behaviors by interpreting t
graphic parameters of a multi-dimensional closed eIIipsoig.
Such ellipsoid with minimum volume is calculated
enclosing a certain part of the system frequency trajectory igg
the phasor measurement space. We use the frequencys
measurement matrix @, defined as: 97

98

O1m

M)

[911
Oy=1": ,n<m
Bnl Bnm

where n is the number of PMUs, m is the length of the time
window imposed on the frequency measurements. An
ellipsoid (hyper-ellipsoid) that contains the measurements can
be expressed as:

Hyc=1{6 € Q™0 —c)TAO —¢) < 1} 2

where A is a positive definite matrix and @, ¢ are vectors of
n dimensions in the phasor measurement space. The volume of
the ellipsoid is expressed as

Vol(Hyo) = 2/ (I ("22) {/det (A)) ®)
where T is the gamma function:
r(n/2) = (n—2)tyn/20"1/2 4)

nx(n—2)x--x3x1, n>0, odd
nl=inx(n—-2)x-x4x2, n>0even (5
1, n=-10

We obtain the ellipsoid with minimum volume by
minimizing — In(det A), using interior-point methods.

The correlation between the parameters of the MVEE and
the trajectory of the system frequency measurements lies in
the volume and shape of the MVEE. We use simulated
ambient data from a power system model of the US Eastern
Interconnection with randomly varying loads under two inertia
levels — 100% and 50%. The inertia levels here are the relative
system inertia values, with 100% being the baseline. It should
be noted that the applied load variation is very small compared
to the base load. Two ellipsoids can be constructed from 60-
second frequency data. Due to the difficulties of representing
hyper-ellipsoids graphically, we used frequency measurements
from only three units. The ellipsoids are shown in Fig. 3. The
ellipsoids are constructed in the frequency space, and the
numbers in the figure are per unit values. We can observe
significant differences in the graphical parameters of the
ellipsoids.

Based on the above analyses, we can use the graphical
parameters of the MVEE, including volume, center vectors,
projections of the longest semi-axis along each dimension, and
the eccentricity as descriptive features to estimate the system
inertia. Based on the reporting rate of the available system
inertia data used for training, we divide the ambient frequency
measurements into the number of segments equal to the
number of inertia data points. In our case, we have inertia data
reported at 10-minute intervals. This means we have 144
segments in one day. For each of the 144 frequency segments,
we use a 5-minute sliding window with a 10-second step to
step through the segments and calculate the characteristic
ellipsoids. For each segment the descriptive features from the
characteristic ellipsoids are averaged and used as inputs to the
MRFR. More description on the inertia estimation method can
be found in [41].

C. Performance Evaluation

To evaluate the performance of the MRFR based real-time
inertia estimation algorithm, we use a testing dataset that’s
independent from the training dataset. The testing dataset
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spans a whole year and includes system inertia datd4
synchrophasor measurements of the U.S. WECC system frodb
GridEye [36], actual weather data (average ambiedt
temperature of six cities in WECC system, including Las7
Angeles, Phoenix, Salt Lake City, Denver, Las Vegas, antB

Seattle), and system generation 49
= x10% = x10% 50
£ 1 || * Frequency variation (pu)) < 1 || * Frequency variation (pu) 51
i = | 52
3 ° 3% 53
> > |
> >
g 1 g 1}‘ 56
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(a) 100% inertia level (b) 50% inertia level
Fig. 3. Minimum volume enclosing ellipsoids at different inertia levels

and load data. We used measurements from 20 Frequency
Disturbance Recorders (FDRs) [36] deployed in the WECC
system. More details on their geographical distribution can be
found online?.

During the training process, we used a 5-minute time
window and a 10-second step size. Since the reporting interval
of the inertia data is 10 minutes, 30 sets of MVEEs are
generated for each 10-minute interval and each measurement.
The graphical features of the MVEES are averaged within the
same 10-minute window and used to train the MRFR.

The metrics used for performance evaluation are absolute
percentage error (APE) and mean absolute percentage error

(MAPE), defined as: 61
. 62

APE, = |T‘| x 100% (68

MAPE = %2?;1 APE, ©)

where M; and M; denote the i-th estimated and measured
inertia, respectively, and m is the total number of points
estimated.

An example of inertia estimation result is given in Fig. 4.
The MAPE for the heavy load season day is 1.2%, and the
MAPE for the light load season day is 0.8%. We performed
daily inertia estimations for a whole year and evaluated the
APE of each estimation point (Fig. 5). The maximum APE gdg
the whole year is 8.7%, and the mean is 3.1%. (It is also foun
that the estimation errors are on similar levels as load changeg,
and the MAPE does not show significant correlation with the,
load levels.) Compared to the estimation performance of 12%
MAPE in [29], we have reduced the errors dramatically. It &8
worth mentioning that although the present work and [29] ug9
different test systems, both studies used actual system data if0
testing. 71

In this section, we discussed the system inertia estimatiof?
using labeled data. In the case inertia information is n@8
available or inaccurate (for example, uncertainties in loath
75
76
77

2 Available online: http://fnetpublic.utk.edu/

4

inertia and virtual inertia emulation), we can first classify the
system’s operation status using the characteristics from the
ambient frequency measurements. Then frequency event
(generation drop, load trip, etc.) can be utilized to benchmark
the system inertia level. As frequency events only happen
occasionally in the system, the machine learning-based inertia
estimation will require longer time to gather enough
measurements to include sufficient frequency event data.

The accuracies of the PMUs that are used to measure the
ambient frequency will be affected by the grid transients.
However, since our proposed method is based on ambient
frequency measurement, which usually does not have any
major events or phase jumps, the impacts should be minimal.
In addition, the work proposed in [42] developed a frequency
measurement technology that is immune to phase jumps in
grid transient conditions, which could be used to further
mitigate its impact.

5
75 x10
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" e Actual inertia
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Fig. 4. Estimated and measured inertia in WECC during heavy and light load
seasons
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Fig. 5. Inertia estimation error distribution over one year

I11. ADAPTIVE PV FREQUENCY CONTROL BASED ON REAL-
TIME SYSTEM INERTIA ESTIMATION

A. Control Architecture

Several system conditions, including system inertia and
system governor capacity affect the system’s frequency
response. It is well-established that the relation between
various system conditions and frequency nadir is nonlinear.
The system conditions also vary throughout the day,
especially in future high renewable penetration scenarios. To
handle the variabilities in the system conditions and the
nonlinearity of the control system, we propose an adaptive PV
frequency control method, shown in Fig. 6. There are four
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steps in this control: 51
1) Wide-area  synchrophasor data and weathé&?2
information are used for system inertia estimation. 53

2) System conditions including system inertia arf#
governor capacity are used to estimate the P%5
headroom requirements. 56

3) The PV headroom requirements are distributed to tHe/
PV plants through communication. 58

4) PV plants execute headroom setpoints to ensuf9
adequate system frequency response. If a PV plagD
cannot meet the headroom requirement, th@l
difference will be compensated by other PV plants. 62

System Governor Local

Capacity Frequency
Ambient Freq. 1 1
Meas. 63
. System Headroom| .,
Weather Data | SY™ | Taertia Py Setpoint PV Inverter|  p.,) p,
= Inertia Headroom Frequency = " Qutput
System Load | Estimation Estimation Control 65
—_
Frequency
Nadir Setpoint 67

Fig. 6. PV frequency control based on real-time inertia estimation ~ 68

We propose using two machine learning models back-t&9
back to achieve the adaptive PV frequency control instead df
using the end-to-end model that maps the frequencfd
measurements directly to the PV headroom requiremenf2
Although doing so will introduce additional uncertainty to the
model, the uncertainty can be regulated by increasing the
training dataset. On the other hand, the benefit of this setup is
that it can provide the system inertia information as an extra
output. The system inertia itself is a very important system
metric to ensure system stability and can be utilized by the3
system operator. 4

According to the NERC requirements, the PV plants shoults
already have the frequency-watt function, and are monitorings
the local frequency. The adaptive controller can bg,
implemented on top of the existing controller with somgg
modifications. The assigned headroom setpoint is transmittegh
to the local PV plant via Inter-Control  Centgyp
Communications Protocol (ICCP). Then the PV inverter wigh
regulate its output power based on the headroom setpoigh
through a power reserve control strategy. An example of suggs
control is presented in [20]. The distribution of PV headroogy
to multiple PV plants can be integrated into the securitgs
constrained economic dispatch (SCED). For simplicity, wgg
assumed that the headroom is distributed to multiple PV plangs;
according to a fixed percentage (of their real-time dispatch).

The main control target is the frequency nadir during a pregg
determined large contingency, such as the RCC in ERCOT.
This criterion gives operators relatively sufficient resources &
respond to an emergency without being overly conservativ@0
and inefficient. The control is designed to run continuousBi
with headroom setpoints updated periodically based on rea$2

time system conditions. 93
L 4
B. PV Headroom Estimation Model 35

One crucial process in the adaptive PV frequency control &g
to have an accurate estimate of the required PV headroowgy
given the system inertia, governor capacity, and frequenayg

5

response target. Since the relationship between system
conditions and frequency response nadir is nonlinear, machine
learning methods such as neural networks and random forests
can be used to accurately model the relationship between
system inertia, system governor capacity, PV frequency
control headroom, and system frequency nadir. Fig. 7 shows
the inputs and output of the machine learning model. It should
be noted that in a realistic large system, there are multiple
types of governors for different synchronous generators with
different control parameters such as droop and time delay. A
clustering step on the different governors helps reduce the
dimension of the inputs.

* System inertia \“\‘

* PV headroom s

* Governor capacity

— Frequency nadir

Fig. 7. Inputs and output of the machine learning model

For a given system, the machine learning model can be
trained using simulation data or historical data. The trained
machine learning model is an adaptive model that predicts the
frequency nadir of the RCC. Using the pre-trained model,
system inertia, and system governor capacity information, the
PV headroom requirement can be estimated for a given
frequency nadir target using the bisection method, as shown in
Fig. 8.

While predicted frequency nadir # target (with error tolerances):
Fig. 8. Real-time PV headroom requirement estimation

C. PV Headroom Distribution

After the PV headroom requirement is estimated, it is
distributed among the PV plants based on their forecast MPPT
power. Currently, the power reserve market for PV generation
has not yet been established [34]. Therefore, the distribution
of the PV headroom can be as simple as each PV plant
contributing the same percentage of PV headroom.
Conversely, the PV headroom distribution can be integrated
into the security-constrained economic dispatch model where
the PV headroom requirement is a constraint on the PV
generation dispatch. Due to the study scope limitation, the
method that distributes headroom reserve according to a
certain percentage is applied in this study.

PV
headroom
requirement
setpoint

Specified
frequency
nadir target

IV. SIMULATION CASE STUDY

A. Simulation System Overview

To evaluate the performance of the proposed adaptive PV
frequency control, a series of dynamic simulation is performed
on a 6,102-bus power system representing the ERCOT system.
The test system is a power system with extra-high
instantaneous PV power penetration capabilities, developed
and validated in [35]. The frequency response of the ERCOT
test system has been validated using both synchrophasor
measurements from FNET/GridEye [36] and information of
actual events provided by utilities. The model can be adjusted
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to represent different renewable penetration levels K3
displacing traditional synchronous generators and/or reducingg
the system inertia. Fig. 9 shows the frequency response of thts
test system under different renewable penetrations. Whetb
creating the training cases, the effect of varying renewabl/
penetrations is approximated by varying system inertia as wedB
as changing the amount of system turbine governor resources49

60 T T T T T 50
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Fig. 9. Frequency response of the ERCOT system under different renewabl%
penetrations 4
The PV frequency control is implemented in the mod&P
with the control gain set to 40. The PV headroom is also
parameter that can be modified in the simulation model.

B. PV Headroom Estimation Model

More than 13,000 training cases are created by varying the
amount of responsive generation capacity, system inertia, and
PV headroom. In each simulation case, the RCC, which is a
tripping of 2,750 MW generation in the South Texas Project
Nuclear Plant, is simulated, and the frequency response of the
system is recorded. A dataset containing governor capacity,
system inertia, and PV headroom as inputs and frequen%

. . - - 9
nadir as output is extracted from the simulation cases.
vanilla feedforward neural network is selected as the machine
learning algorithm for this study. While other maching
learning algorithms are available, the neural network is
selected for its wide array of applications backed by a matu|7e2
theoretical background. Namely, the Universal Approximatiof3
Theorem [37] states that a feedforward multilayer neurdf
network is capable of approximating any continuous functiof?
and provides a solid theoretical ground for applying thé®
bisection method. Another consideration when choosing/
neural networks over other machine learning methods is it
ease of tuning and better performance in the training sef9
Interested readers are referred to [38] for more information d#)
neural networks and its training using backpropagation. 81

After tuning the hyper-parameters such as the number &2
the hidden neurons, the number of hidden layers, activatict
function, we can achieve very high prediction accuracies. TH&
errors on the testing set are in the order of 1 mHz, indicatirép

good performance. 86

87
C. Adaptive PV Frequency Control Performance

After the machine learning model is trained, a realistic one-

6

day scenario in ERCOT is created to evaluate the performance
of the adaptive PV frequency control. The frequency nadir
target is set to 59.5 Hz, which is 0.2 Hz above the Under-
Frequency Load Shedding threshold specified by ERCOT.
The PV headroom required by the adaptive PV frequency
control algorithm is shown in Fig. 10. For reference, a more
conservative control strategy where the PV reserves a fixed
amount of power for primary frequency response is also
shown in Fig. 10.

The control effect of the adaptive PV frequency control is
tested against cases with no upward frequency-watt function
(no PV headroom), as well as fixed PV headroom. Fig. 11
shows the system average frequency response of the system at
different times in the day under different PV frequency control
strategies. The plots clearly show that without an upward
frequency-watt function, the system cannot keep the frequency
nadir above the 59.5 Hz threshold due to decreased system
inertia as well as the traditional generation with governors. If a
conservative PV reserve amount is kept throughout the day for
primary frequency response, some PV generation is forfeit
unnecessarily. The proposed adaptive PV frequency control
maintains the system frequency nadir above 59.5 Hz while
minimizing the PV real power reserve required to do so. A
comparison between the adaptive headroom setting and fixed
headroom setting shows 48% daily headroom saving.

0.6 B PV MPPT power
m PV headroom by fixed PV headroom control
0.5 m PV headroom by smart frequnency control
s 04
2
5 03

=

Y n[~-~,"‘iim

123456 7 8 910111213 141516 17 1819 202122 23 24
Time (h)
Fig. 10. PV headroom requirement using adaptive PV frequency control and
fixed headroom control

V. HARDWARE-IN-THE-LOOP (HIL) CASE STUDY

A. Introduction to CURENT Hardware Testbed (HTB)

The HIL test platform used to test the adaptive PV

frequency control is the CURENT HTB, which is built with
modular and programmable power converters to emulate
actual power systems [40]. The HTB is shown in Fig. 12.
In Section IV. , the adaptive PV frequency control method
has already been tested on a large-scale system. The main goal
of the HIL test is to validate the control algorithm in a close-
to-real system with measurement noises. To that end, a simple
two-area system is set up on HTB, shown in Fig. 13. The test
system includes two 200 MW synchronous generators (G1 and
G2), one 400 MW PV plant (PV1), and one 365 MW load
(L1). Due to the small scale of the test system, tripping either
G1 or G2 is likely to cause stability problems in the system.
Therefore, we emulate a load step of 80 MW on L1 to mimic a
generation drop contingency.
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Fig. 11. Frequency response curves of the study day with different PV frequency control strategies

One benefit of testing in a semi-physical testbed like the
CURENT HTB is the noisiness of the signals. Although the
system is in steady state, the frequency measurements still
contain background noises. The noise level is measured to be
around 5 mHz, which is similar to field measurements from
the FNET/GridEye system (Fig. 14). The low-pass filter
designed in the adaptive PV frequency control is to filter out
such high-frequency noises. A small time constant
corresponds to a high cut-off frequency, and reduces the low-
pass filter’s ability to filter high-frequency noises. On t
other hand, a large time constant will also filter out actugD
frequency transients and delay PV’s response to
contingencies. Considering the impacts of the time constant,
the parameter is set to 0.15. Prior to any implementation iy
actual systems, the measurement noise needs to (@2
characterized. The time constant is then set accordingly. The
control gain of the PV frequency control also impacts system
frequency response. A small control gain limits the PV plant’s
ability to use its power reserves for primary frequency
response. On the other hand, if the control gain is too large,
the control will be too susceptible to noise and become
unstable. In this test, the control gain is set to 100 to maximize
power reserve utilization without compromising the stability
of the control.

33
B. PV Headroom Estimation Model 34
Similar to the case study in Section IV. , training cases argz
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Fig. 14. Ambient frequency measurements in HTB (left) and FNET/GridEye
(right)

created by varying system inertia, governor response strength

(determined by the governor control gain), and PV headroom.

Each training case is created by changing the system setup and
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emulating the load step increase contingency. 50 frequen@0
response tests are performed on HTB. 31
A feed-forward neural network with one hidden layer argR
70 hidden neurons is trained using the data obtained from tf&3
frequency response tests. We use 5-fold cross-validation &4
validate the trained model. During each round, the training s&5
contains 40 data points, and the testing set contains tH&6
remaining 10 data points. The model is able to consistentB7
generate accurate estimates with errors less than 10 mHz.

C. Adaptive PV Frequency Control Performance

To test the performance of the adaptive PV frequency
control, two study scenarios consisting of hourly load and PV
output profiles in the WECC system are created. The base
values for load and PV output are scaled according to the test
system setup. The hourly profiles in a future (high penetration
of PV) summer day and winter day are shown in Fig. 15.
Cloud movement and its impact on PV generation are not
considered, since the PV profile is an aggregated profile over a
large geographical spread.

38
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Fig. 15. Test scenarios adopted from WECC system data 60

In actual large power systems, the system inertia &l
positively correlated with the total output of onlirg2
conventional generators. To imitate the actual inert&s
variations, the inertia value of each generator is scaleg
according to the dispatch of the conventional generator§5

output.

We set the frequency nadir target to 59.8 Hz in this
experiment. The PV headroom reserve plan is calculated and
shown by green bars in Fig. 16, along with the PV headroom
reserve plan based on the maximum PV headroom reserve
required (blue bars). Compared to the fixed PV headroom
reserves, the adaptive PV headroom reserve saves 26% on the
summer day and 34% on the winter day.

== PV headroom by smart frequency control
== PY headroom by fixed PV headroom contrel
350

PV MPPT power

300 y /—'\\
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(a) Summer day scenario

== PV headroom by smart frequency control

== PV headroom by fixed PV headroom control PV MPPT power

A

Power (MW)

: Jinidds,

12 3 45 6 7 8 9101112131415 1617 18 19 20 21 22 23 24
Time (k)
(b)  Winter day scenario
Fig. 16. PV headroom determined by adaptive PV frequency control and fixed
headroom control

The adaptive PV frequency control also keeps the
frequency nadir around the target, whereas the frequency nadir
will drop below target without any control. A comparison of
the frequency nadirs with and without the adaptive PV
frequency control is given in Fig. 17. Since the fixed approach
reserves the maximum amount of available PV headroom, it
can also meet the frequency nadir target, However, doing so
means reserving more PV headroom and economic loss. It
should be noted that due to frequency nadir estimation errors,
the actual frequency nadir may go below the target. In
practice, the frequency nadir target should be higher than the
UFLS threshold to avoid accidental load shedding.

It is also observed that the settling frequency (without
AGC) during high PV output periods (hoon to 2 pm) is lower
than that during low PV output periods (early morning, late
afternoon), as shown in Fig. 18. This is because the amount of
PV power reserve is smaller than the amount of conventional
generation reserve to achieve the same frequency nadir. It
indicates that PV is more effective in primary frequency
control than the conventional generation because of the faster
response speed.
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O With adaptive frequency control
ey aadr i e e 14 A novel adaptive PV frequency control method is presented
_ 5080790700 0 6706 0 00 e D g RS 15 in this paper. The adaptive PV frequency control is necessary
¥ x X 16 for grid frequency support as the power system moves towards

* * 17 higher PV penetration levels.

x x 18 Through study cases on a realistic large power system, we
19 show that the adaptive PV frequency control method is
x x 20 effective against changing system parameters and can
21 maintain the system frequency nadir above a certain threshold.
* 22 The simulation results also indicate that in high PV
59 23 penetration scenarios, the upward frequency-watt function,
1 68 0 Tirr::(h) A 24 which is not currently required, may be needed for primary
2 (a) Summer day 25 frequency response if primary frequency responsive resources
60 26 are insufficient. The adaptive frequency control method also

©  With adaptive frequency control

-_"._ﬁ‘i::ﬂ:ii;’i":!f.i‘:}?“@e”:;;:”z""' 27 saved daily system PV headroom requirement by 48%

50.86 -0 --0--0--0--0O-0--0--6--0--Q--R 28 compared to a conservative fixed PV headroom strategy.
O o . X 29 The adaptive PV frequency control method is also tested on
1 30 a power electronics converter-based grid emulator. We show
x 31 that by tuning the control gain and low-pass filter, the adaptive
] 32 PV frequency control method can handle measurement noises
x 33 in actual grid environments well, while providing sufficient
| 34 frequency response to limit the frequency nadir above the
x 35 frequency nadir target. In the HIL test, the adaptive PV
‘ ‘ ‘ ‘ 36 frequency control method is able to save on average 30% in
8 10 12 14 16 18 37 PV headroom reserves compared with a fixed PV headroom

(b)vTvi::?e(rhéay 38 based on the maximum PV headroom required.

) ) ) ) 39 In the future scenario where PV plants are required to
Fig. 17. Frequency nadirs of the test system with and without adaptive . K
frequency control 40 provide frequency support to the grid, plant owners can
41 minimize the PV curtailment amount by using the adaptive PV
42 frequency control method. It is worth mentioning that the
08:00 43 adaptive approach presents additional cost and complexity in
10:00 44 the training and controller implementation. However, the
14:00 45 complexity is limited due to the wide availability of machine
18:00 46 learning toolboxes including open-source packages in a
e ————— 47 variety of platforms, the fast computational speed, and

/ . 48 existing SCADA communication networks, as well as the
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59.85 49 wide access of training data provided by grid operators. In

50 conclusion, the economic benefits should be more than enough
51 to offset the additional cost and complexity brought by the
0 5 10 15 20 52 adaptive frequency controller.
7 Time (s) 53 In future high renewable penetration scenarios, the
8 (a) Summer day 54 proposed adaptive PV frequency control method should work
55 in conjunction with other frequency responsive resources,
| Time 56 such as conventional generators, battery energy storage
—— 0000 57 systems, wind turbines, etc. The proposed control method
12:00 58 provides a basis for coordinating different frequency
i 59 responsive resources in future work.
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