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Abstract--The declining cost of solar Photovoltaics (PV) 2 
generation is driving its worldwide deployment. As conventional 3 
generation with large rotating masses is being replaced by 4 
renewable energy such as PV, the power system’s inertia will be 5 
affected. As a result, the system’s frequency may vary more 6 
dramatically in the case of a disturbance, and the frequency 7 
nadir may be low enough to trigger protection relays such as 8 
under-frequency load shedding. The existing frequency-watt 9 
function mandated in power inverters cannot provide grid 10 
frequency support in a loss-of-generation event, as PV plants 11 
usually do not have power reserves. In this paper, a novel 12 
adaptive PV frequency control strategy is proposed to reserve the 13 
minimum power required for grid frequency support. A machine 14 
learning model is trained to predict system frequency response 15 
under varying system conditions, and an adaptive allocation of 16 
PV headroom reserves is made based on the machine learning 17 
model as well as real-time system conditions including inertia. 18 
Case studies show the proposed control method meets the 19 
frequency nadir requirements using minimal power reserves 20 
compared to a fixed headroom control approach. 21 
 22 

Index Terms--Adaptive control, frequency response, frequency 23 
nadir, machine learning, power system inertia, PV, wide-area 24 
measurements 25 

I.  INTRODUCTION 26 

ENEWABLE energy plays a critical role in energy 27 

security and sustainability. As fossil fuels face depletion, 28 

they are being replaced by renewable energy resources 29 

worldwide. Solar photovoltaics (PV) has gained a lot of 30 

momentum in deployment, driven by enabling inverter 31 

technologies, decreasing solar panel costs, as well as 32 
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decreasing energy storage system costs. 33 

The United States has substantial solar resources [1]. The 34 

Sunshot Initiative of the U.S. Department of Energy envisions 35 

that solar PV will generate 14% of the total electrical energy 36 

in the U.S. by 2030, and by 2050, solar PV will generate 27% 37 

of the total electricity in the U.S. [2]. 38 

Driven by the continuing trend in solar PV deployment, 39 

researchers have been studying the impact of increasing 40 

renewable generation on power system stability, especially 41 

inverter-based sources such as solar PV and some wind 42 

turbines. Without proper control, the inverter-based sources 43 

would be simply replacing conventional generators with 44 

turbine governors and rotating masses, which would adversely 45 

affect the system’s frequency response. Some preliminary 46 

studies in the U.S. power grids demonstrated that overall 47 

frequency response would deteriorate significantly with 48 

increased renewable penetration [3]-[5]. Similar studies 49 

showed that insufficient inertia would negatively influence the 50 

frequency regulation in South Australia power grid with high 51 

penetration of renewable generation [6]. In [7], the Irish power 52 

grid faces challenges in operating at 50% penetration of wind 53 

generation because of reduced inertia. Simulation studies in 54 

the U.S. WECC system [8] reveal vulnerabilities brought by 55 

extremely high wind penetrations and explores potential56 

mitigating approaches. 57 

After reviewing system studies on several power grids with 58 

increasing PV and wind penetrations, the North American 59 

Electric Reliability Corporation (NERC) has determined that 60 

additional control strategies and resources are required to meet 61 

the primary frequency control demand as renewable 62 

penetration increases [9]. As a result, the frequency-watt 63 

function [10], which is analogous to the governors in 64 

conventional generators, has become a standard requirement 65 

in North American power grids. Moreover, studies show that 66 

synthetic inertia control of inverters that emulate the inertia 67 

response of synchronous generators help regulate the system’s 68 

frequency response [11]-[17]. 69 

The majority of PV inverters online operate in grid-70 

following mode, where the inverter regulates the output 71 

current magnitude and angle [18]. The other control mode is 72 

the grid-forming mode, where the inverters control the output 73 

voltage and frequency. While wind-turbines typically have the 74 

ability to reserve power for frequency response [19], the 75 

inverters are controlled to output the maximum available 76 

power based on Maximum Power Point Tracking (MPPT) to 77 

take advantage of the low marginal cost of PV generation 78 

versus conventional generation, such as gas or coal. However, 79 
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as the penetration of renewables such as PV increases, there 1 

may not be enough primary frequency response resources in 2 

an under-frequency event such as loss of generation, if there is 3 

no real power reserve available in the PV inverters. While the 4 

power reserve control strategy is readily available at the 5 

inverter level [20], and frequency-watt curve has been studied 6 

at the system level [21], there is a research gap in the 7 

determination and scheduling of PV real power reserves. 8 

Although other grid resources, such as energy storage systems 9 

and supercapacitors can be utilized to improve primary 10 

frequency response [22]-[24], they require additional 11 

planning, design, and investment. If there is insufficient real 12 

power reserve, especially in high renewable penetration 13 

scenarios, the system risks lower frequency nadirs in severe 14 

contingencies, which may cause under-frequency tripping of 15 

loads and/or inverters. On the other hand, PV real power 16 

reserve means lost generation with low marginal costs. 17 

Therefore, there is great importance and economic value from 18 

the system’s frequency response standpoint in developing a 19 

model that dispatches the PV real power reserves according to 20 

system requirements and conditions. 21 

The main contributions of this paper are twofold: we 22 

reduce the error of inertia estimation using ambient PMU 23 

measurements from 12% (the state-of-the-art method in the 24 

literature) to 5%; based on the real-time system inertia 25 

estimation, we propose a novel PV real power reserve dispatch 26 

model leveraging real-time system inertia estimation and 27 

conventional generation dispatch signals. The goal of the 28 

dispatch is to meet system frequency response requirements 29 

utilizing minimal PV power reserve. A machine learning 30 

model is trained using time-domain simulation data from a 31 

realistic power system model, and used to predict the 32 

frequency nadir of a predetermined contingency, given the 33 

estimation of system inertia and dispatch of conventional 34 

generators. For each set of system conditions (system inertia, 35 

available non-PV generation participating in primary 36 

frequency response), a one to one correlation between system 37 

PV real power reserve and frequency response nadir of the 38 

predetermined contingency can be established using the 39 

machine learning model. The minimal PV power reserve that 40 

keeps the frequency nadir above the predefined threshold is 41 

selected as the optimal dispatch. Studies on a test system 42 

based on the U.S. Electric Reliability Council of Texas 43 

(ERCOT) system shows that the PV real power reserve 44 

dispatch maintains the system frequency response nadir above 45 

the pre-determined threshold in the resource contingency 46 

criteria (RCC). The dispatch also generates a 50% savings in 47 

PV real power reserve compared to a dispatch that fixes the 48 

PV real power reserve throughout the day. We also show that 49 

the control method performs well using noisy measurements 50 

on a power electronics converter-based grid emulator. 51 

The remainder of the paper is organized as follows. The 52 

design and implementation of our real-time inertia estimation 53 

algorithm is introduced in Section II. The adaptive PV 54 

frequency control is proposed and explained in detail in 55 

Section III. Section IV shows the validation case study on a 56 

realistic large power system simulation model. The control 57 

method is tested in a hardware-in-the-loop test platform in 58 

Section V. The conclusions are given in Section VI. 59 

II.  SYSTEM INERTIA VARIATION AND REAL-TIME ESTIMATION 60 

Power system inertia consists mostly of the rotating inertia 61 

in synchronous generators, some motor loads, and potentially 62 

future renewable power plants if they provide synthetic 63 

inertia, and can vary throughout the day. Fig. 1 shows the 64 

projected daily and yearly inertia variations of the ERCOT 65 

system at the current and future PV penetration scenarios. The 66 

PV penetration is defined as the percentage of PV’s output 67 

power in the system’s total load. With more PV generation 68 

during the day, synchronous generators are displaced, and the 69 

system inertia will drop, as indicated in Fig. 1 (b). The gap 70 

between peak and bottom inertia grows larger as PV 71 

penetration climbs higher. 72 

73 
(a) 10% peak PV power penetration (b) 50% peak PV power penetration 74 

Fig. 1.  Inertia variations in different levels of PV penetration1 75 

Wide-area measurement systems provide time-76 

synchronized grid measurements that can be used to estimate 77 

system inertia [25]-[29]. Although power system inertia 78 

estimation has been heavily investigated in the literature, most 79 

use frequency disturbance data, which suggests that inertia 80 

was calculated offline. In this paper, we use ambient 81 

frequency measurements to estimate the system inertia in real-82 

time, and increase the state-of-the-art accuracy of inertia 83 

estimation using ambient synchrophasor frequency 84 

measurements from 12% mean absolute percentage error [29] 85 

to less than 5%. The estimation of inertia is at the system 86 

level, which is the sum of the inertia of the generators (and 87 

motor loads) in the system. This provides a solid basis for the 88 

proposed adaptive PV frequency control. 89 

A.  Multivariate Random Forest Regression (MRFR) 90 

In this study, we use the available inertia data, load profile, 91 

extracted features in the ambient frequency measurements at 92 

different locations, and weather data (average ambient 93 

temperature) to train a multivariate regression model for 94 

system inertia estimation. For application with very large 95 

amounts of training data, we use Multivariate Random Forest 96 

Regression (MRFR) as the machine learning model to 97 

estimate the system inertia. MRFR is an ensemble of 98 

regression trees trained by bootstrap sampling and random 99 

feature selection. Due to the length restrictions of this paper, 100 

1 Available online: 
https://www.energy.gov/sites/prod/files/2019/08/f65/3.2.d.%20-

%20SETO%20Modeling%20Workshop%20-%20ORNL.pdf 

https://www.energy.gov/sites/prod/files/2019/08/f65/3.2.d.%20-%20SETO%20Modeling%20Workshop%20-%20ORNL.pdf
https://www.energy.gov/sites/prod/files/2019/08/f65/3.2.d.%20-%20SETO%20Modeling%20Workshop%20-%20ORNL.pdf
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interested readers are referred to [30]. 1 

It is worth noting that other machine learning algorithms 2 

such as neural nets and support vector machines are also 3 

applicable to this inertia estimation method. We chose MRFR 4 

in this study due to its high robustness to the input data, its 5 

capability to avoid overfitting the training data, and its overall 6 

best performance in terms of estimation accuracy. 7 

We can sum up the data flow of the online inertia 8 

estimation algorithm, which is shown Fig. 2. Before 9 

application, the MRFR is trained using available offline data. 10 

In real-time application, the trained MRFR will receive online 11 

measurements and extracted features, and use them to estimate 12 

the total inertia of the power system. While the inertia data, 13 

load profile, and weather data are readily available from 14 

reliability coordinators and transmission operators, the 15 

features from ambient frequency measurements need to be 16 

extracted from the raw frequency data. It is worth mentioning 17 

that by using the ambient frequency measurement, we are able 18 

to account for virtual inertia emulated by inverter-interfaced 19 

renewable resources, since its effects on ambient frequency 20 

variations can be captured and converted to equivalent inertia. 21 

In the next section, we will discuss the method to extract 22 

features from ambient frequency data. 23 

 24 
Fig. 2. Data flow of the inertia estimation algorithm 25 

B.  Ambient Frequency Data Feature Extraction 26 

The raw frequency time-series data from multiple PMUs in 27 

the power system is piped through a data pre-processing 28 

process, which includes data continuity check, outlier 29 

detection, and temporal alignment. We use the processed data 30 

to extract the frequency variations of the frequency time-series 31 

data measured from multiple PMUs across the power grid, 32 

defined as the frequency deviation from the mean of the 33 

frequency measurements. 34 

Once the variation of the ambient frequency data from each 35 

PMU is calculated, we use a series of time windows with fixed 36 

width to divide the time series data and use the Minimum 37 

Volume Enclosing Ellipsoid (MVEE) [31]-[33] method to 38 

construct the characteristic ellipsoids and extract the 39 

informative features from each data segment for inertia 40 

estimation. MVEE provides a novel method to monitor system 41 

status and estimate its dynamic behaviors by interpreting the 42 

graphic parameters of a multi-dimensional closed ellipsoid. 43 

Such ellipsoid with minimum volume is calculated by 44 

enclosing a certain part of the system frequency trajectory in 45 

the phasor measurement space. We use the frequency 46 

measurement matrix , defined as: 47 

(1) 48 

where n is the number of PMUs, m is the length of the time 49 

window imposed on the frequency measurements. An 50 

ellipsoid (hyper-ellipsoid) that contains the measurements can 51 

be expressed as: 52 

(2) 53 

where A is a positive definite matrix and  are vectors of 54 

n dimensions in the phasor measurement space. The volume of 55 

the ellipsoid is expressed as 56 

(3) 57 

where  is the gamma function: 58 

(4) 59 

  (5) 60 

We obtain the ellipsoid with minimum volume by 61 

minimizing , using interior-point methods. 62 

The correlation between the parameters of the MVEE and 63 

the trajectory of the system frequency measurements lies in 64 

the volume and shape of the MVEE. We use simulated 65 

ambient data from a power system model of the US Eastern 66 

Interconnection with randomly varying loads under two inertia 67 

levels – 100% and 50%. The inertia levels here are the relative 68 

system inertia values, with 100% being the baseline. It should 69 

be noted that the applied load variation is very small compared 70 

to the base load. Two ellipsoids can be constructed from 60-71 

second frequency data. Due to the difficulties of representing 72 

hyper-ellipsoids graphically, we used frequency measurements 73 

from only three units. The ellipsoids are shown in Fig. 3. The 74 

ellipsoids are constructed in the frequency space, and the 75 

numbers in the figure are per unit values. We can observe 76 

significant differences in the graphical parameters of the 77 

ellipsoids. 78 

Based on the above analyses, we can use the graphical 79 

parameters of the MVEE, including volume, center vectors, 80 

projections of the longest semi-axis along each dimension, and 81 

the eccentricity as descriptive features to estimate the system 82 

inertia. Based on the reporting rate of the available system 83 

inertia data used for training, we divide the ambient frequency 84 

measurements into the number of segments equal to the 85 

number of inertia data points. In our case, we have inertia data 86 

reported at 10-minute intervals. This means we have 144 87 

segments in one day. For each of the 144 frequency segments, 88 

we use a 5-minute sliding window with a 10-second step to 89 

step through the segments and calculate the characteristic 90 

ellipsoids. For each segment the descriptive features from the 91 

characteristic ellipsoids are averaged and used as inputs to the 92 

MRFR. More description on the inertia estimation method can 93 

be found in [41]. 94 

C.  Performance Evaluation 95 

To evaluate the performance of the MRFR based real-time 96 

inertia estimation algorithm, we use a testing dataset that’s 97 

independent from the training dataset. The testing dataset 98 
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spans a whole year and includes system inertia data, 1 

synchrophasor measurements of the U.S. WECC system from 2 

GridEye [36], actual weather data (average ambient 3 

temperature of six cities in WECC system, including Los 4 

Angeles, Phoenix, Salt Lake City, Denver, Las Vegas, and 5 

Seattle), and system generation 6 
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7 
(a) 100% inertia level (b) 50% inertia level 8 

Fig. 3. Minimum volume enclosing ellipsoids at different inertia levels 9 

and load data. We used measurements from 20 Frequency 10 

Disturbance Recorders (FDRs) [36] deployed in the WECC 11 

system. More details on their geographical distribution can be 12 

found online2. 13 

During the training process, we used a 5-minute time 14 

window and a 10-second step size. Since the reporting interval 15 

of the inertia data is 10 minutes, 30 sets of MVEEs are 16 

generated for each 10-minute interval and each measurement. 17 

The graphical features of the MVEEs are averaged within the 18 

same 10-minute window and used to train the MRFR. 19 

The metrics used for performance evaluation are absolute 20 

percentage error (APE) and mean absolute percentage error 21 

(MAPE), defined as: 22 

   (6) 23 

      (7) 24 

where  and  denote the i-th estimated and measured 25 

inertia, respectively, and m is the total number of points 26 

estimated. 27 

An example of inertia estimation result is given in Fig. 4. 28 

The MAPE for the heavy load season day is 1.2%, and the 29 

MAPE for the light load season day is 0.8%. We performed 30 

daily inertia estimations for a whole year and evaluated the 31 

APE of each estimation point (Fig. 5). The maximum APE of 32 

the whole year is 8.7%, and the mean is 3.1%. (It is also found 33 

that the estimation errors are on similar levels as load changes 34 

and the MAPE does not show significant correlation with the 35 

load levels.) Compared to the estimation performance of 12% 36 

MAPE in [29], we have reduced the errors dramatically. It is 37 

worth mentioning that although the present work and [29] use 38 

different test systems, both studies used actual system data in 39 

testing. 40 

In this section, we discussed the system inertia estimation 41 

using labeled data. In the case inertia information is not 42 

available or inaccurate (for example, uncertainties in load 43 

2 Available online: http://fnetpublic.utk.edu/ 

inertia and virtual inertia emulation), we can first classify the 44 

system’s operation status using the characteristics from the 45 

ambient frequency measurements. Then frequency event 46 

(generation drop, load trip, etc.) can be utilized to benchmark 47 

the system inertia level. As frequency events only happen 48 

occasionally in the system, the machine learning-based inertia 49 

estimation will require longer time to gather enough 50 

measurements to include sufficient frequency event data. 51 

The accuracies of the PMUs that are used to measure the 52 

ambient frequency will be affected by the grid transients. 53 

However, since our proposed method is based on ambient 54 

frequency measurement, which usually does not have any 55 

major events or phase jumps, the impacts should be minimal. 56 

In addition, the work proposed in [42] developed a frequency 57 

measurement technology that is immune to phase jumps in 58 

grid transient conditions, which could be used to further 59 

mitigate its impact. 60 

61 
Fig. 4. Estimated and measured inertia in WECC during heavy and light load 62 

seasons 63 
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Fig. 5. Inertia estimation error distribution over one year 65 

III. ADAPTIVE PV FREQUENCY CONTROL BASED ON REAL-66 

TIME SYSTEM INERTIA ESTIMATION 67 

A.  Control Architecture68 

Several system conditions, including system inertia and 69 

system governor capacity affect the system’s frequency 70 

response. It is well-established that the relation between 71 

various system conditions and frequency nadir is nonlinear. 72 

The system conditions also vary throughout the day, 73 

especially in future high renewable penetration scenarios. To 74 

handle the variabilities in the system conditions and the 75 

nonlinearity of the control system, we propose an adaptive PV 76 

frequency control method, shown in Fig. 6. There are four 77 

http://fnetpublic.utk.edu/
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steps in this control: 1 

1) Wide-area synchrophasor data and weather 2 

information are used for system inertia estimation.  3 

2) System conditions including system inertia and 4 

governor capacity are used to estimate the PV 5 

headroom requirements.  6 

3) The PV headroom requirements are distributed to the 7 

PV plants through communication. 8 

4) PV plants execute headroom setpoints to ensure 9 

adequate system frequency response. If a PV plant 10 

cannot meet the headroom requirement, the 11 

difference will be compensated by other PV plants. 12 

 13 
Fig. 6.  PV frequency control based on real-time inertia estimation 14 

We propose using two machine learning models back-to-15 

back to achieve the adaptive PV frequency control instead of 16 

using the end-to-end model that maps the frequency 17 

measurements directly to the PV headroom requirement. 18 

Although doing so will introduce additional uncertainty to the 19 

model, the uncertainty can be regulated by increasing the 20 

training dataset. On the other hand, the benefit of this setup is 21 

that it can provide the system inertia information as an extra 22 

output. The system inertia itself is a very important system 23 

metric to ensure system stability and can be utilized by the 24 

system operator. 25 

According to the NERC requirements, the PV plants should 26 

already have the frequency-watt function, and are monitoring 27 

the local frequency. The adaptive controller can be 28 

implemented on top of the existing controller with some 29 

modifications. The assigned headroom setpoint is transmitted 30 

to the local PV plant via Inter-Control Center 31 

Communications Protocol (ICCP). Then the PV inverter will 32 

regulate its output power based on the headroom setpoint 33 

through a power reserve control strategy. An example of such 34 

control is presented in [20]. The distribution of PV headroom 35 

to multiple PV plants can be integrated into the security-36 

constrained economic dispatch (SCED). For simplicity, we 37 

assumed that the headroom is distributed to multiple PV plants 38 

according to a fixed percentage (of their real-time dispatch). 39 

The main control target is the frequency nadir during a pre-40 

determined large contingency, such as the RCC in ERCOT. 41 

This criterion gives operators relatively sufficient resources to 42 

respond to an emergency without being overly conservative 43 

and inefficient. The control is designed to run continuously 44 

with headroom setpoints updated periodically based on real-45 

time system conditions. 46 

B.  PV Headroom Estimation Model 47 

One crucial process in the adaptive PV frequency control is 48 

to have an accurate estimate of the required PV headroom 49 

given the system inertia, governor capacity, and frequency 50 

response target. Since the relationship between system 51 

conditions and frequency response nadir is nonlinear, machine 52 

learning methods such as neural networks and random forests 53 

can be used to accurately model the relationship between 54 

system inertia, system governor capacity, PV frequency 55 

control headroom, and system frequency nadir. Fig. 7 shows 56 

the inputs and output of the machine learning model. It should 57 

be noted that in a realistic large system, there are multiple 58 

types of governors for different synchronous generators with 59 

different control parameters such as droop and time delay. A 60 

clustering step on the different governors helps reduce the 61 

dimension of the inputs. 62 

63 
Fig. 7.  Inputs and output of the machine learning model 64 

For a given system, the machine learning model can be 65 

trained using simulation data or historical data. The trained 66 

machine learning model is an adaptive model that predicts the 67 

frequency nadir of the RCC. Using the pre-trained model, 68 

system inertia, and system governor capacity information, the 69 

PV headroom requirement can be estimated for a given 70 

frequency nadir target using the bisection method, as shown in 71 

Fig. 8. 72 

73 
Fig. 8.  Real-time PV headroom requirement estimation 74 

C.  PV Headroom Distribution 75 

After the PV headroom requirement is estimated, it is 76 

distributed among the PV plants based on their forecast MPPT 77 

power. Currently, the power reserve market for PV generation 78 

has not yet been established [34]. Therefore, the distribution 79 

of the PV headroom can be as simple as each PV plant 80 

contributing the same percentage of PV headroom. 81 

Conversely, the PV headroom distribution can be integrated 82 

into the security-constrained economic dispatch model where 83 

the PV headroom requirement is a constraint on the PV 84 

generation dispatch. Due to the study scope limitation, the 85 

method that distributes headroom reserve according to a 86 

certain percentage is applied in this study. 87 

IV. SIMULATION CASE STUDY88 

A.  Simulation System Overview 89 

To evaluate the performance of the proposed adaptive PV 90 

frequency control, a series of dynamic simulation is performed 91 

on a 6,102-bus power system representing the ERCOT system. 92 

The test system is a power system with extra-high 93 

instantaneous PV power penetration capabilities, developed 94 

and validated in [35]. The frequency response of the ERCOT 95 

test system has been validated using both synchrophasor 96 

measurements from FNET/GridEye [36] and information of 97 

actual events provided by utilities. The model can be adjusted 98 
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to represent different renewable penetration levels by 1 

displacing traditional synchronous generators and/or reducing 2 

the system inertia. Fig. 9 shows the frequency response of the 3 

test system under different renewable penetrations. When 4 

creating the training cases, the effect of varying renewable 5 

penetrations is approximated by varying system inertia as well 6 

as changing the amount of system turbine governor resources. 7 

 8 
Fig. 9. Frequency response of the ERCOT system under different renewable 9 

penetrations 10 

The PV frequency control is implemented in the model 11 

with the control gain set to 40. The PV headroom is also a 12 

parameter that can be modified in the simulation model. 13 

B.  PV Headroom Estimation Model 14 

More than 13,000 training cases are created by varying the 15 

amount of responsive generation capacity, system inertia, and 16 

PV headroom. In each simulation case, the RCC, which is a 17 

tripping of 2,750 MW generation in the South Texas Project 18 

Nuclear Plant, is simulated, and the frequency response of the 19 

system is recorded. A dataset containing governor capacity, 20 

system inertia, and PV headroom as inputs and frequency 21 

nadir as output is extracted from the simulation cases. A 22 

vanilla feedforward neural network is selected as the machine 23 

learning algorithm for this study. While other machine 24 

learning algorithms are available, the neural network is 25 

selected for its wide array of applications backed by a mature 26 

theoretical background. Namely, the Universal Approximation 27 

Theorem [37] states that a feedforward multilayer neural 28 

network is capable of approximating any continuous function, 29 

and provides a solid theoretical ground for applying the 30 

bisection method. Another consideration when choosing 31 

neural networks over other machine learning methods is its 32 

ease of tuning and better performance in the training set. 33 

Interested readers are referred to [38] for more information on 34 

neural networks and its training using backpropagation. 35 

After tuning the hyper-parameters such as the number of 36 

the hidden neurons, the number of hidden layers, activation 37 

function, we can achieve very high prediction accuracies. The 38 

errors on the testing set are in the order of 1 mHz, indicating 39 

good performance. 40 

C.  Adaptive PV Frequency Control Performance 41 

After the machine learning model is trained, a realistic one-42 

day scenario in ERCOT is created to evaluate the performance 43 

of the adaptive PV frequency control. The frequency nadir 44 

target is set to 59.5 Hz, which is 0.2 Hz above the Under-45 

Frequency Load Shedding threshold specified by ERCOT. 46 

The PV headroom required by the adaptive PV frequency 47 

control algorithm is shown in Fig. 10. For reference, a more 48 

conservative control strategy where the PV reserves a fixed 49 

amount of power for primary frequency response is also 50 

shown in Fig. 10. 51 

The control effect of the adaptive PV frequency control is 52 

tested against cases with no upward frequency-watt function 53 

(no PV headroom), as well as fixed PV headroom. Fig. 11 54 

shows the system average frequency response of the system at 55 

different times in the day under different PV frequency control 56 

strategies. The plots clearly show that without an upward 57 

frequency-watt function, the system cannot keep the frequency 58 

nadir above the 59.5 Hz threshold due to decreased system 59 

inertia as well as the traditional generation with governors. If a 60 

conservative PV reserve amount is kept throughout the day for 61 

primary frequency response, some PV generation is forfeit 62 

unnecessarily. The proposed adaptive PV frequency control 63 

maintains the system frequency nadir above 59.5 Hz while 64 

minimizing the PV real power reserve required to do so. A 65 

comparison between the adaptive headroom setting and fixed 66 

headroom setting shows 48% daily headroom saving. 67 

68 
Fig. 10. PV headroom requirement using adaptive PV frequency control and 69 

fixed headroom control 70 

V. HARDWARE-IN-THE-LOOP (HIL) CASE STUDY71 

A.  Introduction to CURENT Hardware Testbed (HTB)72 

The HIL test platform used to test the adaptive PV 73 

frequency control is the CURENT HTB, which is built with 74 

modular and programmable power converters to emulate 75 

actual power systems [40]. The HTB is shown in Fig. 12. 76 

In Section IV.  , the adaptive PV frequency control method 77 

has already been tested on a large-scale system. The main goal 78 

of the HIL test is to validate the control algorithm in a close-79 

to-real system with measurement noises. To that end, a simple 80 

two-area system is set up on HTB, shown in Fig. 13. The test 81 

system includes two 200 MW synchronous generators (G1 and 82 

G2), one 400 MW PV plant (PV1), and one 365 MW load 83 

(L1). Due to the small scale of the test system, tripping either 84 

G1 or  G2 is likely to cause stability problems in the system. 85 

Therefore, we emulate a load step of 80 MW on L1 to mimic a 86 

generation drop contingency. 87 
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1 
Fig. 11. Frequency response curves of the study day with different PV frequency control strategies 2 

One benefit of testing in a semi-physical testbed like the 3 

CURENT HTB is the noisiness of the signals. Although the 4 

system is in steady state, the frequency measurements still 5 

contain background noises. The noise level is measured to be 6 

around 5 mHz, which is similar to field measurements from 7 

the FNET/GridEye system (Fig. 14). The low-pass filter 8 

designed in the adaptive PV frequency control is to filter out 9 

such high-frequency noises. A small time constant 10 

corresponds to a high cut-off frequency, and reduces the low-11 

pass filter’s ability to filter high-frequency noises. On the 12 

other hand, a large time constant will also filter out actual 13 

frequency transients and delay PV’s response to 14 

contingencies. Considering the impacts of the time constant, 15 

the parameter is set to 0.15. Prior to any implementation in 16 

actual systems, the measurement noise needs to be 17 

characterized. The time constant is then set accordingly. The 18 

control gain of the PV frequency control also impacts system 19 

frequency response. A small control gain limits the PV plant’s 20 

ability to use its power reserves for primary frequency 21 

response. On the other hand, if the control gain is too large, 22 

the control will be too susceptible to noise and become 23 

unstable. In this test, the control gain is set to 100 to maximize 24 

power reserve utilization without compromising the stability 25 

of the control. 26 

B.  PV Headroom Estimation Model 27 

Similar to the case study in Section IV.  , training cases are 28 

29 
Fig. 12. CURENT Hardware Testbed (HTB) 30 

31 
Fig. 13. Test system in HTB 32 

33 
Fig. 14. Ambient frequency measurements in HTB (left) and FNET/GridEye 34 

(right) 35 

created by varying system inertia, governor response strength 36 

(determined by the governor control gain), and PV headroom. 37 

Each training case is created by changing the system setup and 38 
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emulating the load step increase contingency. 50 frequency 1 

response tests are performed on HTB. 2 

A feed-forward neural network with one hidden layer and 3 

70 hidden neurons is trained using the data obtained from the 4 

frequency response tests. We use 5-fold cross-validation to 5 

validate the trained model. During each round, the training set 6 

contains 40 data points, and the testing set contains the 7 

remaining 10 data points. The model is able to consistently 8 

generate accurate estimates with errors less than 10 mHz. 9 

C.  Adaptive PV Frequency Control Performance 10 

To test the performance of the adaptive PV frequency 11 

control, two study scenarios consisting of hourly load and PV 12 

output profiles in the WECC system are created. The base 13 

values for load and PV output are scaled according to the test 14 

system setup. The hourly profiles in a future (high penetration 15 

of PV) summer day and winter day are shown in Fig. 15. 16 

Cloud movement and its impact on PV generation are not 17 

considered, since the PV profile is an aggregated profile over a 18 

large geographical spread. 19 

20 
(a) Summer day scenario21 

22 
(b) Winter day scenario 23 

Fig. 15. Test scenarios adopted from WECC system data 24 

In actual large power systems, the system inertia is 25 

positively correlated with the total output of online 26 

conventional generators. To imitate the actual inertia 27 

variations, the inertia value of each generator is scaled 28 

according to the dispatch of the conventional generators’ 29 

output. 30 

We set the frequency nadir target to 59.8 Hz in this 31 

experiment. The PV headroom reserve plan is calculated and 32 

shown by green bars in Fig. 16, along with the PV headroom 33 

reserve plan based on the maximum PV headroom reserve 34 

required (blue bars). Compared to the fixed PV headroom 35 

reserves, the adaptive PV headroom reserve saves 26% on the 36 

summer day and 34% on the winter day. 37 

38 
(a) Summer day scenario39 

40 
(b)  Winter day scenario 41 

Fig. 16. PV headroom determined by adaptive PV frequency control and fixed 42 
headroom control 43 

The adaptive PV frequency control also keeps the 44 

frequency nadir around the target, whereas the frequency nadir 45 

will drop below target without any control. A comparison of 46 

the frequency nadirs with and without the adaptive PV 47 

frequency control is given in Fig. 17. Since the fixed approach 48 

reserves the maximum amount of available PV headroom, it 49 

can also meet the frequency nadir target, However, doing so 50 

means reserving more PV headroom and economic loss. It 51 

should be noted that due to frequency nadir estimation errors, 52 

the actual frequency nadir may go below the target. In 53 

practice, the frequency nadir target should be higher than the 54 

UFLS threshold to avoid accidental load shedding. 55 

It is also observed that the settling frequency (without 56 

AGC) during high PV output periods (noon to 2 pm) is lower 57 

than that during low PV output periods (early morning, late 58 

afternoon), as shown in Fig. 18. This is because the amount of 59 

PV power reserve is smaller than the amount of conventional 60 

generation reserve to achieve the same frequency nadir. It 61 

indicates that PV is more effective in primary frequency 62 

control than the conventional generation because of the faster 63 

response speed. 64 

65 
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1 
(a) Summer day2 

3 
(b) Winter day4 

Fig. 17. Frequency nadirs of the test system with and without adaptive 5 
frequency control 6 

7 
(a) Summer day8 

9 
(b) Winter day10 

Fig. 18. System frequency response at different times with adaptive PV 11 
frequency control 12 

VI. CONCLUSIONS13 

A novel adaptive PV frequency control method is presented 14 

in this paper. The adaptive PV frequency control is necessary 15 

for grid frequency support as the power system moves towards 16 

higher PV penetration levels.  17 

Through study cases on a realistic large power system, we 18 

show that the adaptive PV frequency control method is 19 

effective against changing system parameters and can 20 

maintain the system frequency nadir above a certain threshold. 21 

The simulation results also indicate that in high PV 22 

penetration scenarios, the upward frequency-watt function, 23 

which is not currently required, may be needed for primary 24 

frequency response if primary frequency responsive resources 25 

are insufficient. The adaptive frequency control method also 26 

saved daily system PV headroom requirement by 48% 27 

compared to a conservative fixed PV headroom strategy. 28 

The adaptive PV frequency control method is also tested on 29 

a power electronics converter-based grid emulator. We show 30 

that by tuning the control gain and low-pass filter, the adaptive 31 

PV frequency control method can handle measurement noises 32 

in actual grid environments well, while providing sufficient 33 

frequency response to limit the frequency nadir above the 34 

frequency nadir target. In the HIL test, the adaptive PV 35 

frequency control method is able to save on average 30% in 36 

PV headroom reserves compared with a fixed PV headroom 37 

based on the maximum PV headroom required. 38 

In the future scenario where PV plants are required to 39 

provide frequency support to the grid, plant owners can 40 

minimize the PV curtailment amount by using the adaptive PV 41 

frequency control method. It is worth mentioning that the 42 

adaptive approach presents additional cost and complexity in 43 

the training and controller implementation. However, the 44 

complexity is limited due to the wide availability of machine 45 

learning toolboxes including open-source packages in a 46 

variety of platforms, the fast computational speed, and 47 

existing SCADA communication networks, as well as the 48 

wide access of training data provided by grid operators. In 49 

conclusion, the economic benefits should be more than enough 50 

to offset the additional cost and complexity brought by the 51 

adaptive frequency controller. 52 

In future high renewable penetration scenarios, the 53 

proposed adaptive PV frequency control method should work 54 

in conjunction with other frequency responsive resources, 55 

such as conventional generators, battery energy storage 56 

systems, wind turbines, etc. The proposed control method 57 

provides a basis for coordinating different frequency 58 

responsive resources in future work. 59 
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