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 

Abstract—Numerical simulation is the key technique for 

large-scale power system analysis. Redistribution of global 

renewable power via international interconnections requires new 

simulation tools to study the interconnected systems with different 

nominal frequencies as a whole. This paper introduces an 

open-source simulation toolkit for electrical power systems 

(STEPS) hosted at Github. Its kernel is coded in C++ with major 

functions of power flow and electro-mechanical dynamic 

simulation. Flexible options are provided and configurable to 

improve power flow solution and dynamic simulation. Common 

devices and models are supported in STEPS for AC/DC hybrid 

system studies. The study of interconnected systems with different 

nominal frequencies is supported in STEPS for research of 

international interconnection. Application program interfaces are 

provided and wrapped with Python to enable high-level interfaces 

for general applications. STEPS is thread-safe, and parallel 

computation is supported in both kernel-level and task-level 

parallelization to accelerate simulation. It is portable and works 

on Windows and GNU/Linux platforms. Cases from small to 

large-scale systems are thoroughly tested to validate the toolkit 

with commercial packages as benchmarks. 

Index Terms—Power system, open-source, simulation package, 

power flow, electro-mechanical dynamic 

I. INTRODUCTION

OWER system is the most sophisticated and complex

artificial system supporting the operation of modern society. 

It is critical to keep the power system operating in a secure, 

stable, and economical mode[1]. Small power grids have been 

interconnected to form large-scale power grids via high voltage 

AC tie lines or DC links to achieve better efficiency [2]. The 

interconnection is further enhanced to redistribute clean but 

uneven renewable power such as wind and solar. The 

uncertainty of increasing renewable generation gives rise to 

more complex operation of modern power systems[3]. The 

stability margin of power systems is significantly depressed, 

and many blackouts occur in the last two decades[4][5]. It is 

essential to study the dynamics of the modern power system 

and improve its stability with sophisticated techniques. 

Currently, electro-mechanical dynamic simulation is the 

This work was supported by National Key R&D Program of China (No: 

2017YFB0902600), State Grid Corporation of China Project (No: 
SGJS0000DKJS1700840), and Young Scholars Program of Shandong 

University (No: 2018WLJH31). 

Changgang Li, Yue Wu, Hengxu Zhang, Hua Ye, and Yutian Liu are with 
the Key Laboratory of Power System Intelligent Dispatch and Control of the 

Ministry of Education (Shandong University), Jinan, 250061 China (e-mail: 

liuyt@sdu.edu.cn). 
Yiliu Liu is with the School of Electrical Engineering and Computer 

Scicence, the University of Tennessee, Knoxville, TN 37996-2250 （email: 

liu@utk.edu). 

major technique for studying power system stability. There are 

many commercial packages available for power system 

electro-mechanical studies, such as PSS/E, PSASP, BPA, 

DigSILENT/Power Factory, Eurostag, and PSLF. Those 

packages are sophisticated and well tested for industry 

applications. The advantage of those packages lies in reliability, 

function maturity, and model completeness. However, their 

pricy license and maintenance prevent them from broader 

usage. Besides, the protection of their intellectual property also 

prevents public availability of their source codes. The 

development of new functions for a specific application and 

bug fix is usually time-consuming. 

Aside from commercial software, some free packages have 

been developed, e.g., PST[6], PSAT[7], MATPOWER[8], 

MatDyn[9], PYPOWER[10], pypower-dynamics[11], 

PandaPower[12], PyPSA[13], PSST[14], and interPSS[15]. 

The PST, PSAT, MATPOWER, and MatDyn depend on 

commercial software Matlab. PYPOWER is a port of 

MATPOWER to Python with functions of power flow and 

optimal power flow (OPF). pypower-dynamics extends 

PYPOWER with dynamic simulation capability but provided 

very limited dynamic models. PandaPower is developed based 

on PYPOWER and focuses on static analysis. PyPSA provides 

power flow, OPF, security-constrained optimal power flow 

(SCOPF), and investment optimization. PSST is hosted on 

Github and focuses on Unit Commitment and Economic 

Dispatch. InterPSS is built with Java and XML to realize the 

online power flow and short circuit calculation. As a special 

case, the DOME project, which works only on the Fedora 

GNU/Linux platform, is a commercial package but provides a 

free version with a limited size up to 14 buses[16]. 

For large-scale power system studies, an easy-to-use 

simulation package should provide abundant models with 

robust expandability. It should also be portable to different 

platforms with high computation efficiency. Referring to the 

available open-source packages, we have started the STEPS 

project to build an open-source simulation package dating back 

to 2010. STEPS, the acronym of Simulation Toolkit of 

Electrical Power Systems, is open-source and now hosted at 

https://github.com/changgang/steps under MIT license. 

STEPS is focusing on power flow and dynamic simulation. 

Its major features can be summarized as follows. 1) Abundant 

models are supported for studying systems with conventional 

synchronous generators, renewable generation, and HVDC 

without capacity limitation. Joint simulation of interconnected 

systems with different nominal frequencies is supported to 

promote research of international interconnection. 2) STEPS 
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kernel is independent and coded with C++ to achieve high 

computation efficiency. A Python module named stepspy is 

developed to wrap the application program interfaces (API) for 

making STEPS easy to use. The stepspy module can be 

installed in Python from https://pypi.org/project/stepspy with 

standard pip utility. 3) STEPS is open-source and portable to 

different platforms. It has been tested to work in Windows and 

Linux operating systems on X64 and Loongson platforms. 4) 

STEPS is thread-safe with parallel computation capability 

based on OpenMP. Both kernel-level and task-level parallel 

computation are supported to accelerate simulation. 

The rest of this paper is organized as follows. Section II 

introduces the structure and major classes of STEPS. The two 

main functions, power flow solution and dynamic simulation, 

are discussed in sections III and IV. Section V introduces 

additional functions, including user-defined modeling and 

parallel simulation. In section VI, tests are carried out to verify 

the accuracy and efficiency of STEPS. Summary and plans are 

given in section VII. 

II. STRUCTURE AND DATABASE OF STEPS

A. Structure of STEPS

The general structure of STEPS is summarized and shown in 

Fig. 1. STEPS mainly includes three parts: STEPS kernel, APIs, 

and Python module stepspy. Third-party packages, including 

CSparse and CXSparse, are adopted to implement sparse 

matrix classes for storing real and complex matrix separately 

[17]. More than 1,300 unit tests have been passed to ensure the 

quality of the kernel. On the top layer of the STEPS kernel are 

APIs, which are linked to most functions defined in STEPS and 

can be called by external programs. A Python module named 

stepspy is provided to further encapsulate APIs' functions for 

simplifying the users' operation. 

Fig. 1.  Structure of STEPS. 

The kernel of STEPS is coded in C++ following 

object-oriented programming with all classes and functions 

named in a readable way. A class named STEPS is the major 

class for creating a simulation toolkit object. The STEPS class 

holds several major private objects:  

1) A power system database for storing all device data. It is

an object of class POWER_SYSTEM_DATABASE. 

2) A dynamic model database for storing dynamic model

data. It is an object of class DYNAMIC_MODEL_DATABASE. 

3) A network matrix for building network admittance matrix.

It is an object of class NETWORK_MATRIX. 

4) A power flow solver for solving power flow. It is an object

of class POWERFLOW_SOLVER. 

5) A dynamic simulator for running dynamic simulation. It is

an object of class DYNAMIC_SIMULATOR. 

Besides the above classes in the STEPS class, there are some 

other major classes defined in STEPS, such as: 

1) A real sparse matrix is an object of class

STEPS_SPARSE_MATRIX, and a complex sparse matrix is an 

object of class STEPS_COMPLEX_SPARSE_MATRIX. A 

Jacobian matrix is also an object of STEPS_SPARSE_MATRIX 

for solving power flow and running dynamic simulation. 

2) The Jacobian matrix for solving power flow is built by an

object of class JACOBIAN_BUILDER. 

3) Data importer and exporter for loading and exporting

power flow and dynamic data are implemented as objects of 

class DATA_IMEXPORTER. Currently, STEPS supports power 

flow data in PSS/E raw format and BPA dat format. For 

dynamic simulation, STEPS supports PSS/E dyr format. 

Details about the above classes and modules are discussed in 

the following subsections. Since power flow and dynamic 

simulation are the two major functions of STEPS, they are 

discussed in sections II and III in detail. 

B. Structure of class POWER_SYSTEM_DATABASE

The POWER_SYSTEM_DATABASE class holds all device

data of the power system and provides interfaces for setting and 

retrieving data. The following variables are included in class 

POWER_SYSTEM_DATABASE: 

1) system base power Sbase in MVA;

2) vectors for storing all device models;

3) indexing map of all devices.

Many types of devices are supported for building the power

system model. Table I shows the supported devices of STEPS 

and some other open-source packages. 

TABLE I 
COMPARISON OF SUPPORTED DEVICE MODELS IN OPEN-SOURCE TOOLS  

D
ev

ic
e 

m
o
d

el
s 

S
T

E
P

S
 

M
A

T
P

O
W

E
R

 

P
Y

P
O

W
E

R
 

P
S

A
T

 

P
y

P
S

A
 

p
an

d
ap

o
w

er
 

bus ● ● ● ● ● ● 

synchronous generator ● ● ● ● ● ● 

WT generator ● ○ ○ ● ○ ○ 

PV unit ● ○ ○ ○ ○ ○ 

energy storage ● ○ ○ ○ ● ○ 

load ● ● ● ● ● ● 

fixed shunt ● ● ● ● ● ● 

transmission line ● ● ● ● ● ● 

2-winding transformer ● ● ● ● ● ● 

3-winding transformer ● ○ ○ ● ○ ● 

HVDC ● ● ○ ● ● ● 

equivalent device ● ○ ○ ○ ○ ● 

Note: ● for supported, ○ for not supported. 

https://pypi.org/project/stepspy
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Supported devices are discussed as follows: 

1) Bus. Bus comprises the nodes for other devices to connect

to. Its properties include bus number, bus name, bus type, base 

voltage, base frequency, voltage magnitude, and voltage angle. 

In STEPS, all buses are indexed with bus numbers. The bus 

type can be one of the four basic types: out of service, P-Q, P-V, 

and slack. It is allowed in STEPS to set up multiple slack buses 

in a synchronized island. The initial voltage angle of slack 

buses can be non-zero to tune power flow. 

2) Power source. Synchronous generator, wind turbine (WT)

generator, photo-voltaic (PV) unit, and energy storage are 

supported power sources modeled in STEPS. They have similar 

properties, including bus number, source identifier, status flag, 

base capacity, active and reactive power generation, and active 

and reactive power limits. 

Synchronous generator, WT generator, PV unit, and energy 

storage are modeled in the raw file of the same type. An 

additional column is added to the end of each generator data in 

the raw file to distinguish them: 0 for synchronous generator, 1 

for WT generator, 2 for PV unit, and 3 for energy storage. 

3) Load. In STEPS, voltage-dependent ZIP load is modeled

with constant power, constant current, and constant impedance 

parts. The constant power part is transformed into constant 

current when load bus voltage V drops beyond threshold Vth to 

improve power flow convergence. Two types of transformation 

are supported in STEPS: elliptical (1) and linear (2): 
2 2

2 2

max

( )
1th

th

V V I

V I


   (1) 

max thI I V V (2) 

where I is the current of constant power load, Imax=SP0/Vth, and 

SP0 is the nominal constant power load. The typical value of Vth 

is 0.7 p.u. and can be configured in LOAD class. 

4) Fixed shunt. In STEPS, the fixed shunt is used to model

capacitor and inductor. Different from the constant impedance 

load, fixed shunts are included in the network matrix, while 

constant impedance loads are excluded. 

5) Transmission line. The AC transmission line is modeled in

the  form, as shown in Fig. 2(a). In the AC line model, R, X, G, 

and B are the resistance, reactance, conductance, and 

susceptance of the line. Bi and Bj are the susceptances of 

reactive compensation on i and j side of the line. 

(a) Transmission Line
(b) 2-winding 

Transformer
(c) 3-winding Transformer

Fig. 2.  Models of transmission line and transformer in STEPS. 

Line breakers are also modeled. For a line with one breaker 

open, say breaker at side i is open, it is possible to create an 

artificial bus to represent the point a in Fig. 2(a). However, this 

would lead to an increase of system bus number. To overcome 

the problem, STEPS uses an equivalent admittance Ye to 

represent the line looking from bus j into the line as in (3). 

e
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i
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R jX
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jB


  

 



(3)

6) Transformer. In STEPS, both two-winding and

three-winding transformers are modeled with the class 

TRANSFORMER. The two-winding transformer in STEPS is 

shown in Fig. 2(b), where Zij is the leakage impedance, Gm-jBm 

is magnetizing admittance, and k1 and k2 are the off-nominal 

turn ratio of the primary and secondary winding, respectively. 

The three-winding transformer is represented with magnetizing 

impedance at the artificial star bus s to model the excitation 

voltage, as shown in Fig. 2(c), where Zi, Zj, and Zk are leakage 

impedance of the primary, secondary, and tertiary windings, 

and k3 is the off-nominal turn ratio of the tertiary winding. 

Similar to line breakers, transformer winding breakers are 

also modeled to enable simulation of tripping or closing 

winding breakers. Equivalent circuits are also built to model the 

openness of winding breakers. 

7) HVDC. STEPS adopts the quasi-static HVDC model from

PSS/E[18] with the difference of determination of converter 

transformer tap. The converter transformer tap in STEPS is 

always optimized to minimize the firing angle to reduce 

reactive power consumption. However, for PSS/E, the 

converter transformer tap can be fixed even though excessive 

reactive power may be absorbed from the grid. In normal 

operation modes, the rectifier holds DC current or power 

command, and the inverter holds DC voltage or gamma angle. 

When the rectifier's AC voltage drops, the rectifier may fail to 

hold DC power or current command. In this case, the rectifier 

firing angle is held at its minimum value, and the inverter tries 

to hold DC current with a reduced current order. 

8) Equivalent Device. The equivalent device is used to

improve simulation flexibility by representing special devices 

with equivalent active and reactive power. It is modeled as a 

combination of equivalent ZIP load and voltage source. 

It should be emphasized that STEPS has no limit on the 

number of devices as long as the operating system and RAM 

support. The supported maximum number of devices can be 

configured via steps_config.json file or corresponding APIs. 

C. Structure of class DYNAMIC_MODEL_DATABASE

Dynamic models are vital to system's dynamic behavior. The

class DYNAMIC_MODEL_DATABASE is used to store all 

dynamic models except for the bus frequency model. Interfaces 

are provided for setting and retrieving data. Supported dynamic 

model categories in STEPS are listed as follows: 

1) Synchronous generator-related models: voltage 

compensator, stabilizer, exciter, turbine load controller, turbine 

governor, and synchronous generator. 

2) WT generator-related models: wind speed, relay, pitch,

aerodynamic, electrical, wind turbine, and WT generator. 

3) PV unit related models: converter. PV panel, electrical,

and irradiation models are under development. 

4) Energy storage-related models: converter. Models of

battery and its management systems are under development. 

5) Load-related models: static and dynamic load



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE
Transactions on Power Systems

4 

characteristics, under-frequency and under-voltage load 

shedding. 

6) HVDC-related models: quasi-static HVDC.

For the above dynamic model categories, some widely used

models are implemented in STEPS. Some of them are listed as 

follows: Synchronous generator: GENCLS, GENROU, and 

GENSAL of PSS/E; Exciter: IEEET1 of PSS/E, type 1 to 14 

exciter models of PSASP; Turbine governor: IEEEG1, IEEEG2, 

IEEEG3, IEESGO, and TGOV1 of PSS/E; Stabilizer: IEE2ST 

of PSS/E, type 1 to 6 PSS models of PSASP; WT generator: 

WT3G1 and WT3G2 of PSS/E, WT3G0; PV converter: 

PVGU1 of PSS/E; Load: IEEL and CIM6 of PSS/E; Load relay: 

UFLS, UVLS; HVDC: CDC6T of PSS/E[18][19]. 

To load dynamic data, DYNAMIC_MODEL_DATABASE 

allocates a contiguous memory space with a size defined by 

users. As shown in Fig. 3, dynamic models are continuously 

stored in this space to improve data locality for alleviating the 

cache miss problem [20][21]. Users can easily acquire the 

actual memory space occupied by dynamic models from the 

detailed log and adjust the memory space with API. 

Fig. 3.  Storage of dynamic models. 

The bus frequency model is used to calculate bus frequency 

for load characteristics and UFLS models. In STEPS, each bus 

is automatically equipped with a bus frequency model. It is 

implemented as a differential block with the input of bus 

voltage angle and the output of frequency deviation. The filter 

time constant is set as quadruple system simulation time step. 

To extend STEPS, more dynamic models should be added. 

To simplify the modeling procedure, commonly used blocks 

are implemented in STEPS, including proportional, integral, 

differential, PID, PI, PD, first-order, second-order, and lead-lag 

block. Besides, saturation block and continuous buffer are also 

implemented to simulate saturation characteristics and time 

latency of specific control. 

D. Structure of class NETWORK_MATRIX

The class NETWORK_MATRIX serves to build a network

matrix based on the devices in POWER_SYSTEM_DATABASE. 

It provides interfaces to build the following sparse matrix: 

1) full admittance matrix Y for power flow and dynamic

solution, which is stored as an object of class 

STEPS_COMPLEX_SPARSE_MATRIX; 

2) susceptance matrix B' and B" for active power-angle and

reactive power-voltage solution of fast decoupled power flow 

solution, which is stored as an object of class 

STEPS_SPARSE_MATRIX.  

The NETWORK_MATRIX class also provides interfaces to 

optimize bus ordering and store physical-internal bus pairs' 

mapping index. In STEPS, the initial Y matrix is first built by 

assigning an internal bus number to each bus according to the 

data importing sequence. The Y matrix is then optimized with 

the approximate minimum degree (AMD) algorithm to permute 

the internal bus numbers. It helps to reduce non-zero fill-in 

when solving linear algebraic equations[22]. 

E. APIs of STEPS and stepspy Module

APIs for the most commonly used functions are

implemented in STEPS to facilitate users to use high-level 

languages to call specific functions. Furthermore, multiple 

functions are combined and encapsulated into advanced APIs 

to reduce the coding burden significantly for using STEPS. 

Though APIs are easy to use, they require package 

compilation for building new applications. To avoid repeated 

compile and link of C++ codes, the STEPS package is first 

compiled into a dynamic link library (DLL) on the Windows 

platform or a shared object (SO) on Unix-like systems. Further 

applications can call the APIs in the DLL or SO file. 

Since Python language is popular and easy to use, a module 

named stepspy is developed to wrap the DLL or SO. Some 

high-level APIs are also developed to simplify the simulation. 

The stepspy module has been uploaded to the Python Package 

Index (PyPI) and can be installed via pip tool. Though stepspy 

can be used in Python 2, it is strongly suggested to use stepspy 

in Python 3 since Python 2 is no longer officially maintained. 

III. POWER FLOW SOLUTION

A. Basic Solutions

Class POWERFLOW_SOLVER provides functions to solve

power flow. Before solving power flow, it reads data from the 

power system database and network matrix. When solving 

power flow of AC system, Newton-Raphson (NR) and fast 

decoupled (PQ) methods can be called. For a hybrid AC/DC 

system, an alternate method is adopted in STEPS. In each 

iteration, each converter's AC power is calculated with the 

input of the solved AC voltage. Then, the AC power of each 

converter is added to AC bus power mismatch, and the AC 

voltage is updated with the NR or PQ method. 

B. Features of Power Flow Solution

To balance efficiency and convergence, STEPS provides

several configurations for the power flow solution. Besides 

basic options such as convergence tolerance and maximum 

iteration count, additional options listed as follows: 

1) flat start logic. In some open-source tools, only flat start is

supported, and power flow may diverge for large-scale systems. 

In STEPS, both flat start and non-flat start are supported to deal 

with this problem. 

2) var limit check logic. Power flow is difficult to converge if

reactive power is not locally balanced. When var limit check 

logic is enabled, reactive power on each P-V bus is compared 

with the limitation before each iteration. The bus type may be 

converted to P-Q type if reactive power exceeds the limit. By 

disabling the var limit check logic, power flow is easy to 

converge. Reactive imbalance can then be identified with the 

converged result. Therefore, for systems hard to converge, it is 

suggested to disable var limit check logic first and then enable it 
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to get the true result by tuning system configuration. 

3) iteration accelerator . The accelerator is used to update

the bus voltage and angle as follows: 

1

1

k k

k kV V V

   







  


  
(4) 

where k and Vk are the angle and voltage of the k-th iteration, 

and  and V are angle and voltage update calculated with NR 

or PQ iteration. is usually configured within (0.2, 2.0). For 

systems hard to converge, can be tuned to less than 1.0 to 

reduce the update of voltage and angle in each iteration. It can 

effectively improve power flow convergence.  

4) non-divergent solution logic. Enabling non-divergent

solution logic is another efficient way to improve the 

convergence for systems hard to converge. The logic is realized 

by changing the iteration accelerator automatically. It first 

updates bus voltage and angle to get initial voltage magnitude 

V0
k+1 and angle 0k+1 with: 

0

1 1

0

1 1

k k k

k k k

V V V
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 
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
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(5) 

Then the bus power mismatch is checked. If the maximum 

bus power mismatch exceeds that of the previous iteration,  is 

halved to update bus voltage angle and magnitude with: 
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(6) 

where i≥1. 

For the worst case, if is reduced to 0, bus voltage angle and 

magnitude are no longer updated, and the bus power mismatch 

is identical to the previous iteration. Therefore, with the 

non-divergent logic enabled, the power flow solver can be 

guaranteed to get a solution no worse than the initial solution. 

In STEPS,  is set to be halved by ten times at most. If the 

power flow solution exits with i=10, no further solution is 

attempted. The result of the last iteration can provide abundant 

information to find the bottleneck of system convergence. 

5) maximum increment of bus voltage angle and magnitude.

Sometimes, each step's updating values are too great.  It may 

lead to power flow blown-up even though is reduced or 

non-divergent solution logic is enabled. In this case, it is 

suggested to set the upper limit of V and  to further 

improve the convergence for solving large-scale power 

systems. 

6) export Jacobian logic. When solving power flow with NR,

the Jacobian matrix of each step can be exported as a csv file. It 

is helpful for studies such as static analysis, voltage and active 

power control, and sensitivity analysis. 

7) solving power flow cases with combined methods

successively. NR solution converges fast if proper initial values 

are given, and PQ solution is less sensitive to the initial values. 

Therefore, it is recommended to combine the two methods for a 

better power flow solution. First, PQ solution is performed for 

several iterations with flat start logic enabled. If the power flow 

is hard to converge, non-divergent solution logic should also be 

enabled. After several iterations, V and are probably close to 

the final solution, and convergence difficulty is reduced. The 

NR solution is then performed with flat start logic disabled to 

solve power flow with the bus voltage angle and magnitude 

solved by the PQ solution as initial values. Non-divergent 

solution logic can be disabled to improve solution speed. 

IV. DYNAMIC SIMULATION

With the initial steady-state provided by converged power 

flow, the DYNAMIC_SIMULATOR class provides functions to 

run dynamic simulations. It reads device data from the power 

system database, dynamic model data from the dynamic model 

database, and dynamic admittance matrix from the network 

matrix. Details about the dynamics simulation function are 

discussed in the following sections. 

A. Basics of the dynamic simulation method

For dynamic simulation, the core is to solve

differential-algebraic equations (DAE) as follows: 

 

 

,

0 ,

x f x y

g x y

 



(7) 

where x is the state variable, and y is the operational variable. 

For differential equations, there are two kinds of integration 

methods: explicit and implicit. In some software, explicit 

integration is used in dynamic simulation, such as Euler, 

Modified Euler, and Runge-Kutta. For implicit integration, the 

most common one is trapezoidal integration. The truncation 

error of trapezoidal integration is the same as that of Modified 

Euler and is easy to implement. Therefore, trapezoidal 

integration is selected as the default method to solve differential 

equations in STEPS. 

There are generally two kinds of methods to solve 

differential and algebraic equations: simultaneous and alternate. 

The simultaneous method usually accompanies the implicit 

integration rule. It first discretizes differential equations into 

difference equations and then combines them with the algebraic 

equation. With the trapezoidal integration rule, the 

simultaneous method can be modeled as: 

   
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1 1 1

1 1
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n n n n n n

n n

h
x x f x y f x y

g x y

  

 


       


 

(8) 

where h is the simulation time step, xn and yn are variables of the 

n-th step, and xn+1 and yn+1 are variables of the n+1-th step.

Then, the DAE solution problem becomes a nonlinear

algebraic equation solution problem. The idea of NR solution 

can be adopted to solve it. 

Although differential equations can be transformed into 

difference equations, there are still some problems. First, the 

number of equations in (8) will change when limiters are 

considered. Second, saturation in the generator or AC exciter 

models would lead to the change of coefficients in (8). To 

overcome these problems, the alternate method with implicit 

trapezoidal integration rule is adopted in STEPS. It can be 

expressed as follows: 
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(9) 

In (9), k is the count of DAE iterations in the n+1-th step, and 

the initial value is 0

1n nx x  , 0

1n ny y  . Since alternate error 

always exists in the alternate method, it is important to reduce 

alternate error by increasing k. Theoretically, if the maximum 

value of k is infinite, the alternate error can be reduced to 0. 

B. Dynamic Simulation Features

In STEPS, some key parameters can be configured to run the

dynamic simulation: 

1) allowed maximum bus power imbalance in MVA. It is

used to control whether the solution to the algebraic equations 

is converged or not. It can be represented by: 

max thS   (10) 

where Smax is the maximum bus power imbalance, th is the 

threshold. Typically, th can be set as 0.1 MVA. The criterion of 

maximum current imbalance Imax can also be used as (11) to 

reduce the calculation of nodal power imbalance: 

max th base/I S  (11) 

2) minimum and maximum DAE iteration count. It is

recommended to set the minimum value of k as 3 to guarantee 

simulation accuracy. DAE iteration should stop when (10) or 

(11) is satisfied. However, the mismatch can be huge when a

severe disturbance is applied. It may lead to a large number of

DAE iteration and slow down the simulation. To guarantee

simulation speed, the maximum DAE iteration count can be

limited. DAE iteration stops automatically when the iteration

count exceeds the maximum value. As a special case, the DAE

iteration count is fixed if the minimum and maximum values

are equal.

3) maximum network iteration count. It is similar to the

maximum iteration count of power flow and used to terminate 

the divergent iteration when solving algebraic equations. 

4) iteration accelerator and non-divergent logic. They

perform similar to the iteration accelerator and non-divergent 

logic used in the power flow solution. It is especially useful 

when events are applied and simulation is hard to converge. 

5) early exit of network solution. Although maximum

network iteration count can be set to exit network solution 

automatically, long time consumption is still observable if the 

network solution is always divergent. To solve this problem, 

STEPS enables users to set a divergent count threshold. 

Suppose the error of the current network iteration is greater 

than that of the previous one. In this case, the current iteration is 

treated as divergent, and the divergence count increases by one. 

Fig. 4 shows an example with the divergent count threshold of 4. 

If the network solution is divergent, the divergent count 

increases quickly and reaches the threshold. Then STEPS exits 

the network solution, as shown in case 2 of Fig. 4. 

Fig. 4.  Demonstration of the early exit of network solution. 

6) rotor angle stability surveillance logic and its threshold.

The maximum rotor angle difference of each synchronized 

electrical island can be monitored when the logic is enabled. 

Once the value exceeds the threshold, the system is judged as 

unstable. Then dynamic simulator quits, and no more 

simulation is conducted. The typical threshold is 360°. 

7) parallel computation. In STEPS, OpenMP is adopted for

parallel computation when running dynamic simulation[23]. 

The parallel thread number can be user-configured according to 

the number of CPU cores. Details of the kernel-level 

parallelization are discussed in section V.B. 

C. Events

The primary function of dynamic simulation is to analyze the

system response in case of disturbances or operations. Those 

disturbances and operations are collectively referred to as 

events in STEPS. Currently, supported events are: 

1) Bus related events: bus fault, bus fault clearance, trip bus;

2) Line related events: line fault, line fault clearance, trip line,

close line, trip line breaker, close line breaker; 

3) Transformer related events: trip transformer, close

transformer, trip transformer breaker, close transformer 

breaker; 

4) Generator related events: trip generator, shed generator,

manually change exciter reference, manually change turbine 

governor reference; 

5) Load related events: trip load, close load, scale load;

6) Fixed shunt related events: trip fixed shunt, close fixed

shunt; 

7) HVDC related events: manually bypass HVDC, manually

unbypass HVDC, manually block HVDC, manually unblock 

HVDC, manually change HVDC power order. 

In STEPS, events can be set at any time during the dynamic 

simulation. It is also allowed to set multiple events in a 

simulation, and different events can be set simultaneously. 

D. Meters

Meters can be defined to monitor system dynamics when

running dynamic simulations. The supported meters can be 

found in the implementation of class METER. The most 

commonly used meters are listed as follows:  

1) bus: voltage magnitude, voltage angle, frequency;

2) synchronous generator: terminal active and reactive power,

terminal current, rotor angle, rotor speed, excitation voltage, 

mechanical power;  

3) WT generator: active and reactive power, terminal current,

active power or current command, voltage or reactive current 

command, rotor and turbine speed, pitch angle; 
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4) PV unit: terminal active and reactive power, terminal

current, active power or current command, reactive voltage or 

current command; 

5) Line and transformer: active and reactive power, current,

apparent impedance; 

6) HVDC: firing angle, extinction angle, converter active

and reactive power, converter DC voltage, converter current; 

7) Load: active and reactive power, current, shed scale.

Theoretically, all variables in STEPS can be monitored. The

DAE iteration count, network iteration count, maximum power 

mismatch, and the bus with the maximum power mismatch of 

each step are automatically monitored as basic meters to check 

the DAE solution's convergence. They can help to validate 

dynamic simulation and tune dynamic simulation parameters 

for improving validity. All the monitored meters can be stored 

in a binary file or text files in csv and json format. 

V. ADDITIONAL FUNCTIONS

In addition to the two basic functions of power flow solution 

and dynamic simulation, STEPS also provides additional 

functions to improve scalability and efficiency. In this section, 

the implementation and usage of two additional functions, a.k.a. 

user-defined modeling and parallelization, are introduced. 

A. User-defined modeling

As mentioned in section II.C, basic blocks are provided in

STEPS for simplifying the modeling process. They can also be 

used for user-defined modeling. Procedures of user-defined 

modeling are as follows: 

1) Select the needed basic blocks according to the transfer

function block diagram of the user-defined model. 

2) Declare the definition of the user-defined model in a

header file. The header file should be put in the folder of the 

corresponding dynamic model category under header/model in 

the STEPS project. 

3) Implement the user-defined model. The implementation

file should be created in the folder of the corresponding 

dynamic model category under source/model in the STEPS 

project. All the functions defined in the header file must be 

implemented here. Of all the functions, the two most important 

ones are initialize() and run(). The former is used to acquire 

each block's initial state based on the initial outputs obtained 

from the power flow solution. The latter is used to integrate 

states and update outputs based on inputs in the time-domain 

simulation process. 

Based on the above extensions, the importing interface of the 

user-defined model can be updated in the class 

STEPS_IMEXPORTER. Codes for acquiring the user-defined 

model's memory consumption should be added in the function 

get_model_size() of class DYNAMIC_MODEL_DATABASE. 

To show the modeling process more specifically, IEEEG3 is 

taken as an example here. Fig. 5 shows that the needed basic 

blocks for building IEEEG3 include first-order, integral, 

lead-lag, proportional, and differential blocks. Then, the header 

and implementation files for IEEEG3 are created in folder 

header/model/sg_models/turbine_governor_model/ and 

source/model/sg_models/turbine_governor_model/, 

respectively. Users can check the specific implementation of 

IEEEG3 in the source code of STEPS. Finally, interface 

add_IEEEG3_model() is defined in class 

STEPS_IMEXPORTER, and codes for acquiring the size of 

IEEEG3 is implemented in DYNAMIC_MODEL_DATABASE. 

Fig. 5.  Transfer function block diagram of IEEEG3. 

Besides adding the above compulsory codes, it is also 

recommended to carry out unit tests for the user-defined model. 

Please refer to built-in unit tests in STEPS. 

Though the process of user-defined modeling is not 

complicated, users still need basic knowledge of C++. To 

further simplify user-defined modeling, compilation-free 

scripts for building dynamic models are under development. 

B. Kernel-level parallelization

As mentioned in section IV.B, kernel-level parallelization is

implemented with OpenMP in STEPS. It is supported in 

dynamic simulation but not in powerflow solution because the 

time consumption of power flow solution is much less than that 

of dynamic simulation. The working procedures of kernel-level 

parallelization in STEPS are as follows: 

1) Set the parallel thread number nk according to the number

of CPU cores N and the size of the test system. The selection of 

thread number is further discussed in section VI.D. 

Kernel-level parallelization is enabled when the thread number 

is greater than 1. When using the stepspy module, kernel 

parallelization can be enabled with the following codes: 
from stepspy import STEPS 

simulator = STEPS(is_default = True) 

simulator.set_parallel_thread_number(nk) #nk > 1 

2) Acquire the number of dynamic devices, Nm, which can be

easily obtained in POWER_SYSTEM_DATABASE. 

3) Allocate dynamic devices to parallel threads. In STEPS,

static scheduling is used to realize kernel-level parallelization. 

Each thread is statically allocated with about Nm/nk devices. 

It should be noted that the kernel-level parallelization is 

disabled automatically if multiple devices of the same category 

are connected to the same bus. If kernel-level parallelization is 

enabled, two or more threads with devices connecting to the 

same bus may write to the same current injection vector 

location at the same time. It is prone to cause write conflicts. 

Therefore, users should guarantee that no more than one device 

of the same category is connected to the same bus before 

enabling kernel-level parallelization. One possible solution is 

to add a zero impedance switch between multiple devices of the 

same category at the same bus. 

At present, STEPS only supports the parallelization on CPU. 

GPU-based parallelization is deserved to be developed in the 
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future to achieve higher performance [24]. 

C. Task-level parallelization

Task-level parallelization is implemented in STEPS by

creating multiple toolkits to deal with tasks at the same time. 

Therefore, it saves time only when multiple tasks are performed. 

When using the stepspy module, task-level parallelization can 

be realized with multiple processes and create STEPS object for 

each process with is_default option disabled. Procedures of the 

task-level parallelization are as follows: 

1) Set the number of parallel processes ns according to the

number of CPU cores and task number. When task-level 

parallelization is enabled, the kernel-level parallelization is 

usually disabled to maintain computation efficiency. If they are 

both enabled, ns should be no more than N/nk. 

2) Assign tasks to parallel processes. When the task in a

parallel process is finished, a new task will be automatically 

added to the parallel process until all tasks are completed. 

An example of performing some task for all buses using 

task-level parallelization is given as follows: 
from multiprocessing import Pool 

from stepspy import STEPS 

def run_task(bus): 

 sim2 = STEPS(is_default=False) 

# here goes details of the task 

if __name__==’__main__’: 

 sim = STEPS(is_default=True, log_file="demo.log") 

 sim.load_powerflow_data('demo.raw','PSS/E') 

 buses = sim.get_all_buses() 

 pool =Pool(processes=20) #create 20 processes 

 for bus in buses: 

  pool.apply_async(run_task, (bus,)) 

 pool.close() 

 pool.join() 

VI. CASE STUDIES

In this section, several cases are provided to show the 

accuracy and application scenarios of dynamic simulation in 

STEPS. All tests are performed with the stepspy module on a 

server with Intel Exon Gold 6148 CPU with 20 cores. 

A. Accuracy verification

To verify STEPS's accuracy, the IEEE 9-bus model and New 

England 39-bus model are tested with a three-phase fault 

applied on bus 6 at 0.2s and cleared at 0.4s. Results of STEPS 

and PSS/E are shown in solid and dotted lines separately. Rotor 

angle and frequency of the 9-bus model are shown in Fig. 6(a) 

and (b). Voltage and active power on transmission lines of the 

39-bus model are shown in Fig. 6(c) and (d). It can be found

that STEPS can produce almost the same result as PSS/E, and

the accuracy of STEPS can be guaranteed.

(a) Rotor angle (b) Bus frequency 

(c) Voltage (d) Active power

Fig. 6.  Dynamic simulation results in STEPS and PSS/E. 

Since the alternate solution is used to solve DAE, the alternate 

error is an important factor affecting dynamic simulation 

accuracy. To quantify the effect, 2, 3, 4, 5, 10 are set as the 

maximum DAE iteration number kmax on the IEEE 9-bus model. 

A three-phase fault is applied on bus 5 at 0.5s and cleared at 

0.7s. The voltage of bus 1 and 5 with different kmax are shown in 

Fig. 7(a). It is shown that the difference between voltage curves 

with different kmax is negligible. In other words, the alternate 

error is acceptable.  

(a) Voltage (b) Voltage mismatch 

Fig. 7.  Voltage and its mismatch with different kmax. 

To find the proper value of kmax, the voltage of all buses with 

kmax =20 is taken as reference, and the voltage mismatch with 

different kmax is shown in Fig. 7(b). It can be found that the 

mismatch is generally reduced by an order of magnitude with 

one more DAE iteration. For kmax = 3, the mismatch is less than 

10-3 p.u. and is reduced to less than 10-6 p.u. when kmax≥5.

B. Simulation of interconnected system with different base

frequencies

As mentioned in section II.C, each bus in STEPS is equipped 

with a nominal frequency and bus frequency model. Therefore, 

it is possible to check the interaction between physical systems 

with different nominal frequencies with STEPS. A simulation 

is carried out in a system with 169 buses to show an 

interconnected system's dynamics with two nominal 

frequencies. It has a 50Hz part with 130 buses and a 60 Hz part 

with 39 buses, and two HVDC links connect the two parts. Fig. 

8 shows that rectifiers are located in the 60Hz part at bus 3 and 

23, and inverters are located in the 50Hz part at bus 142. 

Fig. 8.  Diagram of the tested interconnected system. 

In the test system, the active power order of each HVDC is 

500MW. The HVDC linking bus 23 and 142 is blocked at 2s. 

The frequency of the two parts is shown in Fig. 9(a), and the 

voltage of bus 3 and 142 are shown in Fig. 9(b). It can be seen 

that the dynamics of both 50Hz and 60Hz parts can be obtained 

as a whole directly with STEPS. 
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(a) Bus frequency (b) AC voltage on DC nodes

Fig. 9.  Simulation results of a system with different base frequencies. 

Simulation results show STEPS’s capability of simulating 

systems with different base frequencies. Therefore, STEPS is 

promising to be used in the uniform study of international 

interconnection with multiple nominal frequencies. The 

uniform simulation can better illustrate interconnected systems' 

interactive response than tools with a single base frequency. 

C. Simulation of system with WT generators and HVDC

Currently, power electronic-based power source and 

transmission are developing rapidly. A provincial power grid of 

146 buses with 14 equivalent WT generators and 6 HVDC links 

is examined to demonstrate STEPS in complex systems with 

DFIG and HVDC. A three-phase fault is applied on bus 80 at 1s 

and cleared after five cycles. Parameters of WT generators on 

bus 9324 are set to abnormal values to show the activation of 

under-speed relay logic. The frequency, voltage, and rotor 

speed of WT generators are shown in Fig. 10(a) to (c) 

separately. The power of HVDC links is shown in Fig. 10(d). 

(a) Frequency (b) Voltage 

(c) Rotor speed (d) Power of HVDC links 

Fig. 10.  Dynamic simulation results in a system with renewable generation. 

Figures show that 4 HVDC links are bypassed, and 2 HVDC 

links are blocked, causing 4GW power loss and significant 

frequency drop. After the fault is cleared, 4 HVDC links 

recover, and the frequency begins to rise. During the dynamics, 

the rotor speed of WT generators is decreasing to increase 

power generation for supporting system frequency. However, 

the rotor speed of WT generators on bus 9324 drops beyond 0.3 

p.u. at about 6s and is then tripped due to the under-speed relay

logic in WTRLY0 model.

D. Simulation speed

The same dynamic simulations are carried out in STEPS and 

PSS/E separately to test the simulation speed. IEEE 9-bus 

model, New England 39-bus model, and a provincial grid 

model of 132 nodes are tested. The simulation time step is 2ms, 

and the simulation duration is 10s. Events and time 

consumption are shown in Table II. It can be found that the 

simulation speed of STEPS is about 1/4 to 1/2 of PSS/E. 
TABLE II 

COMPARISON OF SIMULATION TIME BETWEEN STEPS AND PSS/E 

Model event tPSS/E/s tSTEPS/s 

9-bus Line fault 1.214 2.105 

39-bus Line fault 1.512 2.935 
132-bus DC block 4.260 17.113 

Tests are also carried out to show the efficiency of OpenMP 

parallel computation. Test models are the 132-bus simplified 

provincial grid model, the 5261-bus East China Power Grid 

model, the 12515-bus East-Northwest China Power Grid model, 

and the 18648-bus East-North-Southwest China Power Grid 

model, having 39, 533, 1394, and 2186 generators, respectively. 

At 1s, two HVDC links are manually blocked. With a 

simulation duration of 10s, the simulation time with different 

parallel numbers of different test systems is shown in Fig. 11. 

(a) 132-bus simplified provincial grid (b) 5261-bus East China Power Grid

(c) 12515-bus East-Northwest China 

Power Grid 

(d) 18648-bus East-North-Southwest

China Power Grid 

Fig.  11.  Simulation time with different parallel thread numbers. 

It is shown in Fig. 11(a) that serial simulation is faster than 

parallel simulation when the system size is small. The 

parallelization efficiency increases with the increase of system 

size in general. Therefore, it is recommended to enable 

kernel-level parallelization for large-scale systems. Fig. 11(b) 

to (d) show that the maximum simulation speed when 

parallelization is enabled can reach about 1.5 times the serial 

simulation. It can also be seen from Fig. 11(b) to (d) that the 

simulation speed is slowed down if the thread number is greater 

than about 8. The main reason may lie in the limited cache of 

the CPU. With the increase of thread number, more data can be 

processed in a fixed time. However, if the thread number is too 

high, the cache size will be the bottleneck, and more time is 

required for the CPU to fetch missing data from RAM. Using 

CPUs with greater cache size and improving STEPS data 

structure will help to improve the parallelization efficiency. 

VII. CONCLUSION

The proposed power system dynamic simulation package 

STEPS is open-source software with an independent kernel. It 

provides functions of power flow and dynamic simulation. 

Plenty of options are provided in the power flow solver and 

dynamic simulator to guarantee accuracy and computing speed. 

To improve computational efficiency, OpenMP is adopted to 

enable parallel simulation. The APIs of STEPS and wrapped 

Python module stepspy provides the flexibility of running 

simulation with STEPS. With tests from small to large-scale 

power systems, the STEPS is proved to be a reliable package 

for research and education purposes. 
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STEPS currently stores devices in an array of structure (AoS) 

mode, which is friendly to coding but inefficient for heavy 

computation. The efficiency of kernel-level parallelization 

needs further improvement, and we are working on it. STEPS is 

actively updated and maintained on Github for higher 

performance, more models, and new functions, such as short 

circuit analysis, eigenanalysis, and graphical user interface. 
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