This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

1

STEPS: A Portable Dynamic Simulation Toolkit
for Electrical Power System Studies

Changgang Li, Member, IEEE, Yue Wu, Hengxu Zhang, Member, IEEE, Hua Ye, Member, IEEE,
Yutian Liu, Senior Member, IEEE, Yilu Liu, Fellow, IEEE

Abstract—Numerical simulation is the key technique for
large-scale power system analysis. Redistribution of global
renewable power via international interconnections requires new
simulation tools to study the interconnected systems with different
nominal frequencies as a whole. This paper introduces an
open-source simulation toolkit for electrical power systems
(STEPS) hosted at Github. Its kernel is coded in C++ with major
functions of power flow and electro-mechanical dynamic
simulation. Flexible options are provided and configurable to
improve power flow solution and dynamic simulation. Common
devices and models are supported in STEPS for AC/DC hybrid
system studies. The study of interconnected systems with different
nominal frequencies is supported in STEPS for research of
international interconnection. Application program interfaces are
provided and wrapped with Python to enable high-level interfaces
for general applications. STEPS is thread-safe, and parallel
computation is supported in both kernel-level and task-level
parallelization to accelerate simulation. It is portable and works
on Windows and GNU/Linux platforms. Cases from small to
large-scale systems are thoroughly tested to validate the toolkit
with commercial packages as benchmarks.

Index Terms—Power system, open-source, simulation package,
power flow, electro-mechanical dynamic

I. INTRODUCTION
OWER system is the most sophisticated and complex

artificial system supporting the operation of modern society.

It is critical to keep the power system operating in a secure,
stable, and economical mode[1]. Small power grids have been
interconnected to form large-scale power grids via high voltage
AC tie lines or DC links to achieve better efficiency [2]. The
interconnection is further enhanced to redistribute clean but
uneven renewable power such as wind and solar. The
uncertainty of increasing renewable generation gives rise to
more complex operation of modern power systems[3]. The
stability margin of power systems is significantly depressed,
and many blackouts occur in the last two decades[4][5]. It is
essential to study the dynamics of the modern power system
and improve its stability with sophisticated techniques.
Currently, electro-mechanical dynamic simulation is the

This work was supported by National Key R&D Program of China (No:
2017YFB0902600), State Grid Corporation of China Project (No:
SGJS0000DKJS1700840), and Young Scholars Program of Shandong
University (No: 2018 WLJH31).

Changgang Li, Yue Wu, Hengxu Zhang, Hua Ye, and Yutian Liu are with
the Key Laboratory of Power System Intelligent Dispatch and Control of the
Ministry of Education (Shandong University), Jinan, 250061 China (e-mail:
liuyt@sdu.edu.cn).

Yiliu Liu is with the School of Electrical Engineering and Computer
Scicence, the University of Tennessee, Knoxville, TN 37996-2250 (email:

liu@utk.edu).

major technique for studying power system stability. There are
many commercial packages available for power system
electro-mechanical studies, such as PSS/E, PSASP, BPA,
DigSILENT/Power Factory, Eurostag, and PSLF. Those
packages are sophisticated and well tested for industry
applications. The advantage of those packages lies in reliability,
function maturity, and model completeness. However, their
pricy license and maintenance prevent them from broader
usage. Besides, the protection of their intellectual property also
prevents public availability of their source codes. The
development of new functions for a specific application and
bug fix is usually time-consuming.

Aside from commercial software, some free packages have
been developed, e.g., PST[6], PSAT[7], MATPOWER]S],
MatDyn[9], PYPOWERJ10], pypower-dynamics[11],
PandaPower[12], PyPSA[13], PSST[14], and interPSS[15].
The PST, PSAT, MATPOWER, and MatDyn depend on
commercial software Matlab. PYPOWER is a port of
MATPOWER to Python with functions of power flow and
optimal power flow (OPF). pypower-dynamics extends
PYPOWER with dynamic simulation capability but provided
very limited dynamic models. PandaPower is developed based
on PYPOWER and focuses on static analysis. PyPSA provides
power flow, OPF, security-constrained optimal power flow
(SCOPF), and investment optimization. PSST is hosted on
Github and focuses on Unit Commitment and Economic
Dispatch. InterPSS is built with Java and XML to realize the
online power flow and short circuit calculation. As a special
case, the DOME project, which works only on the Fedora
GNU/Linux platform, is a commercial package but provides a
free version with a limited size up to 14 buses[16].

For large-scale power system studies, an easy-to-use
simulation package should provide abundant models with
robust expandability. It should also be portable to different
platforms with high computation efficiency. Referring to the
available open-source packages, we have started the STEPS
project to build an open-source simulation package dating back
to 2010. STEPS, the acronym of Simulation Toolkit of
Electrical Power Systems, is open-source and now hosted at
https://github.com/changgang/steps under MIT license.

STEPS is focusing on power flow and dynamic simulation.
Its major features can be summarized as follows. 1) Abundant
models are supported for studying systems with conventional
synchronous generators, renewable generation, and HVDC
without capacity limitation. Joint simulation of interconnected
systems with different nominal frequencies is supported to
promote research of international interconnection. 2) STEPS

mailto:liuyt@sdu.edu.cn
mailto:liu@utk.edu
https://github.com/changgang/steps

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

kernel is independent and coded with C++ to achieve high
computation efficiency. A Python module named stepspy is
developed to wrap the application program interfaces (API) for
making STEPS easy to use. The stepspy module can be
installed in Python from https://pypi.ora/project/stepspy with
standard pip utility. 3) STEPS is open-source and portable to
different platforms. It has been tested to work in Windows and
Linux operating systems on X64 and Loongson platforms. 4)
STEPS is thread-safe with parallel computation capability
based on OpenMP. Both kernel-level and task-level parallel
computation are supported to accelerate simulation.

The rest of this paper is organized as follows. Section 1l
introduces the structure and major classes of STEPS. The two
main functions, power flow solution and dynamic simulation,
are discussed in sections Il and IV. Section V introduces
additional functions, including user-defined modeling and
parallel simulation. In section VI, tests are carried out to verify
the accuracy and efficiency of STEPS. Summary and plans are
given in section VII.

Il. STRUCTURE AND DATABASE OF STEPS

A. Structure of STEPS

The general structure of STEPS is summarized and shown in
Fig. 1. STEPS mainly includes three parts: STEPS kernel, APlIs,
and Python module stepspy. Third-party packages, including
CSparse and CXSparse, are adopted to implement sparse
matrix classes for storing real and complex matrix separately
[17]. More than 1,300 unit tests have been passed to ensure the
quality of the kernel. On the top layer of the STEPS kernel are
APIs, which are linked to most functions defined in STEPS and
can be called by external programs. A Python module named
stepspy is provided to further encapsulate APIs' functions for
simplifying the users' operation.

Python stepspy module

Interfaces

Fig. 1. Structure of STEPS.

The kernel of STEPS is coded in C++ following
object-oriented programming with all classes and functions
named in a readable way. A class named STEPS is the major
class for creating a simulation toolkit object. The STEPS class
holds several major private objects:

1) A power system database for storing all device data. It is

2

an object of class POWER_SYSTEM_DATABASE.

2) A dynamic model database for storing dynamic model
data. It is an object of class DYNAMIC_MODEL_DATABASE.

3) A network matrix for building network admittance matrix.
It is an object of class NETWORK_MATRIX.

4) A power flow solver for solving power flow. It is an object
of class POWERFLOW_SOLVER.

5) A dynamic simulator for running dynamic simulation. It is
an object of class DYNAMIC_SIMULATOR.

Besides the above classes in the STEPS class, there are some
other major classes defined in STEPS, such as:

1) A real sparse matrix is an object of class
STEPS_SPARSE_MATRIX, and a complex sparse matrix is an
object of class STEPS_COMPLEX_SPARSE_MATRIX. A
Jacobian matrix is also an object of STEPS_SPARSE_MATRIX
for solving power flow and running dynamic simulation.

2) The Jacobian matrix for solving power flow is built by an
object of class JACOBIAN_BUILDER.

3) Data importer and exporter for loading and exporting
power flow and dynamic data are implemented as objects of
class DATA_IMEXPORTER. Currently, STEPS supports power
flow data in PSS/E raw format and BPA dat format. For
dynamic simulation, STEPS supports PSS/E dyr format.

Details about the above classes and modules are discussed in
the following subsections. Since power flow and dynamic
simulation are the two major functions of STEPS, they are
discussed in sections Il and 111 in detail.

B. Structure of class POWER_SYSTEM_DATABASE

The POWER_SYSTEM_DATABASE class holds all device
data of the power system and provides interfaces for setting and
retrieving data. The following variables are included in class
POWER_SYSTEM_DATABASE:

1) system base power Spase in MVA;

2) vectors for storing all device models;

3) indexing map of all devices.

Many types of devices are supported for building the power
system model. Table | shows the supported devices of STEPS
and some other open-source packages.

TABLE |
COMPARISON OF SUPPORTED DEVICE MODELS IN OPEN-SOURCE TOOLS

= o

g < @ 5

E o = S

8 e g S = g g

3 - -

[a}) = o a a o
bus .) . . ° °
synchronous generator ° . . ° ° .
WT generator ° o o ° o o
PV unit ° o o o o o
energy storage . o o o . o
load .) . . ° °
fixed shunt ° . . ° ° .
transmission line . ° ° ° ° .
2-winding transformer ° . .) ° .
3-winding transformer ° o o) o .
HVDC ° . o ° ° °
equivalent device ° o o o o °

Note: e for supported, o for not supported.

https://pypi.org/project/stepspy

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

Supported devices are discussed as follows:

1) Bus. Bus comprises the nodes for other devices to connect
to. Its properties include bus number, bus name, bus type, base
voltage, base frequency, voltage magnitude, and voltage angle.
In STEPS, all buses are indexed with bus numbers. The bus
type can be one of the four basic types: out of service, P-Q, P-V,
and slack. It is allowed in STEPS to set up multiple slack buses
in a synchronized island. The initial voltage angle of slack
buses can be non-zero to tune power flow.

2) Power source. Synchronous generator, wind turbine (WT)
generator, photo-voltaic (PV) unit, and energy storage are
supported power sources modeled in STEPS. They have similar
properties, including bus number, source identifier, status flag,
base capacity, active and reactive power generation, and active
and reactive power limits.

Synchronous generator, WT generator, PV unit, and energy
storage are modeled in the raw file of the same type. An
additional column is added to the end of each generator data in
the raw file to distinguish them: 0 for synchronous generator, 1
for WT generator, 2 for PV unit, and 3 for energy storage.

3) Load. In STEPS, voltage-dependent ZIP load is modeled
with constant power, constant current, and constant impedance
parts. The constant power part is transformed into constant
current when load bus voltage V drops beyond threshold Vi, to
improve power flow convergence. Two types of transformation
are supported in STEPS: elliptical (1) and linear (2):

_Vth)2 |2 _
v ®
I = Imaxv/vth (2)

where | is the current of constant power load, Inax=Spo/V, and
Spo is the nominal constant power load. The typical value of Vi
is 0.7 p.u. and can be configured in LOAD class.

4) Fixed shunt. In STEPS, the fixed shunt is used to model
capacitor and inductor. Different from the constant impedance
load, fixed shunts are included in the network matrix, while
constant impedance loads are excluded.

5) Transmission line. The AC transmission line is modeled in
the IT form, as shown in Fig. 2(a). In the AC line model, R, X, G,
and B are the resistance, reactance, conductance, and
susceptance of the line. Bj and B;j are the susceptances of
reactive compensation on i and j side of the line.

Re v o 7 i ki ZoZ Lk
i +] i E A r
H/I -(o" - \._."i *—r ey ¥ —-—K— = —e
= ko1 ;c:E 1:k, *_-.“_E = 2%
N B) T “ 2
I TN
= ° ~ | e |
. . b) 2-windin -
(a) Transmission Line ®) 9 (c) 3-winding Transformer
Transformer

Fig. 2. Models of transmission line and transformer in STEPS.

Line breakers are also modeled. For a line with one breaker
open, say breaker at side i is open, it is possible to create an
artificial bus to represent the point a in Fig. 2(a). However, this
would lead to an increase of system bus number. To overcome
the problem, STEPS uses an equivalent admittance Y. to
represent the line looking from bus j into the line as in (3).

3

. 1
REX+—57 8 O
1B +———

2

6) Transformer. In STEPS, both two-winding and
three-winding transformers are modeled with the class
TRANSFORMER. The two-winding transformer in STEPS is
shown in Fig. 2(b), where Zj; is the leakage impedance, Gn-jBm
is magnetizing admittance, and k; and k. are the off-nominal
turn ratio of the primary and secondary winding, respectively.
The three-winding transformer is represented with magnetizing
impedance at the artificial star bus s to model the excitation
voltage, as shown in Fig. 2(c), where Z;, Z;, and Zy are leakage
impedance of the primary, secondary, and tertiary windings,
and ks is the off-nominal turn ratio of the tertiary winding.

Similar to line breakers, transformer winding breakers are
also modeled to enable simulation of tripping or closing
winding breakers. Equivalent circuits are also built to model the
openness of winding breakers.

7) HVDC. STEPS adopts the quasi-static HYDC model from
PSS/E[18] with the difference of determination of converter
transformer tap. The converter transformer tap in STEPS is
always optimized to minimize the firing angle to reduce
reactive power consumption. However, for PSS/E, the
converter transformer tap can be fixed even though excessive
reactive power may be absorbed from the grid. In normal
operation modes, the rectifier holds DC current or power
command, and the inverter holds DC voltage or gamma angle.
When the rectifier's AC voltage drops, the rectifier may fail to
hold DC power or current command. In this case, the rectifier
firing angle is held at its minimum value, and the inverter tries
to hold DC current with a reduced current order.

8) Equivalent Device. The equivalent device is used to
improve simulation flexibility by representing special devices
with equivalent active and reactive power. It is modeled as a
combination of equivalent ZIP load and voltage source.

It should be emphasized that STEPS has no limit on the
number of devices as long as the operating system and RAM
support. The supported maximum number of devices can be
configured via steps_config.json file or corresponding APIs.

C. Structure of class DYNAMIC_MODEL_DATABASE

Dynamic models are vital to system's dynamic behavior. The
class DYNAMIC_MODEL_DATABASE is used to store all
dynamic models except for the bus frequency model. Interfaces
are provided for setting and retrieving data. Supported dynamic
model categories in STEPS are listed as follows:

1) Synchronous generator-related models: voltage
compensator, stabilizer, exciter, turbine load controller, turbine
governor, and synchronous generator.

2) WT generator-related models: wind speed, relay, pitch,
aerodynamic, electrical, wind turbine, and WT generator.

3) PV unit related models: converter. PV panel, electrical,
and irradiation models are under development.

4) Energy storage-related models: converter. Models of
battery and its management systems are under development.

5) Load-related models: static and dynamic load

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

characteristics, load
shedding.

6) HVDC-related models: quasi-static HVDC.

For the above dynamic model categories, some widely used
models are implemented in STEPS. Some of them are listed as
follows: Synchronous generator: GENCLS, GENROU, and
GENSAL of PSS/E; Exciter: IEEET1 of PSS/E, type 1 to 14
exciter models of PSASP; Turbine governor: IEEEG1, IEEEG2,
IEEEG3, IEESGO, and TGOV1 of PSS/E; Stabilizer: IEE2ST
of PSS/E, type 1 to 6 PSS models of PSASP; WT generator:
WT3G1 and WT3G2 of PSS/E, WT3GO0; PV converter:
PVGUL of PSS/E; Load: IEEL and CIM6 of PSS/E; Load relay:
UFLS, UVLS; HVDC: CDC6T of PSS/E[18][19].

To load dynamic data, DYNAMIC_MODEL_DATABASE
allocates a contiguous memory space with a size defined by
users. As shown in Fig. 3, dynamic models are continuously
stored in this space to improve data locality for alleviating the
cache miss problem [20][21]. Users can easily acquire the
actual memory space occupied by dynamic models from the
detailed log and adjust the memory space with API.

Generator 1 Generator 2 Generator n Load ; HVDC j

under-frequency and under-voltage

A N A 7
I A) T
ZH
gl2s g &)
g =
UEE|EE bz B 2 Empty allocated
Thsl=s [Elal 15l Y
- g S S | = - space In memory
SEE =
A] =
,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘,,,,, S

position 1 position 2 position #

Fig. 3. Storage of dynamic models.

The bus frequency model is used to calculate bus frequency
for load characteristics and UFLS models. In STEPS, each bus
is automatically equipped with a bus frequency model. It is
implemented as a differential block with the input of bus
voltage angle and the output of frequency deviation. The filter
time constant is set as quadruple system simulation time step.

To extend STEPS, more dynamic models should be added.
To simplify the modeling procedure, commonly used blocks
are implemented in STEPS, including proportional, integral,
differential, PID, PI, PD, first-order, second-order, and lead-lag
block. Besides, saturation block and continuous buffer are also
implemented to simulate saturation characteristics and time
latency of specific control.

D. Structure of class NETWORK_MATRIX

The class NETWORK_MATRIX serves to build a network
matrix based on the devices in POWER_SYSTEM_DATABASE.
It provides interfaces to build the following sparse matrix:

1) full admittance matrix Y for power flow and dynamic
solution, which is stored as an object of class
STEPS_COMPLEX_SPARSE_MATRIX;

2) susceptance matrix B' and B" for active power-angle and
reactive power-voltage solution of fast decoupled power flow
solution, which is stored as an object of class
STEPS_SPARSE_MATRIX.

The NETWORK_MATRIX class also provides interfaces to
optimize bus ordering and store physical-internal bus pairs'
mapping index. In STEPS, the initial Y matrix is first built by

4

assigning an internal bus number to each bus according to the
data importing sequence. The Y matrix is then optimized with
the approximate minimum degree (AMD) algorithm to permute
the internal bus numbers. It helps to reduce non-zero fill-in
when solving linear algebraic equations[22].

E. APIs of STEPS and stepspy Module

APIs for the most commonly used functions are
implemented in STEPS to facilitate users to use high-level
languages to call specific functions. Furthermore, multiple
functions are combined and encapsulated into advanced APIs
to reduce the coding burden significantly for using STEPS.

Though APIs are easy to use, they require package
compilation for building new applications. To avoid repeated
compile and link of C++ codes, the STEPS package is first
compiled into a dynamic link library (DLL) on the Windows
platform or a shared object (SO) on Unix-like systems. Further
applications can call the APIs in the DLL or SO file.

Since Python language is popular and easy to use, a module
named stepspy is developed to wrap the DLL or SO. Some
high-level APIs are also developed to simplify the simulation.
The stepspy module has been uploaded to the Python Package
Index (PyPI) and can be installed via pip tool. Though stepspy
can be used in Python 2, it is strongly suggested to use stepspy
in Python 3 since Python 2 is no longer officially maintained.

I1l. POWER FLOW SOLUTION

A. Basic Solutions

Class POWERFLOW_SOLVER provides functions to solve
power flow. Before solving power flow, it reads data from the
power system database and network matrix. When solving
power flow of AC system, Newton-Raphson (NR) and fast
decoupled (PQ) methods can be called. For a hybrid AC/DC
system, an alternate method is adopted in STEPS. In each
iteration, each converter's AC power is calculated with the
input of the solved AC voltage. Then, the AC power of each
converter is added to AC bus power mismatch, and the AC
voltage is updated with the NR or PQ method.

B. Features of Power Flow Solution

To balance efficiency and convergence, STEPS provides
several configurations for the power flow solution. Besides
basic options such as convergence tolerance and maximum
iteration count, additional options listed as follows:

1) flat start logic. In some open-source tools, only flat start is
supported, and power flow may diverge for large-scale systems.
In STEPS, both flat start and non-flat start are supported to deal
with this problem.

2) var limit check logic. Power flow is difficult to converge if
reactive power is not locally balanced. When var limit check
logic is enabled, reactive power on each P-V bus is compared
with the limitation before each iteration. The bus type may be
converted to P-Q type if reactive power exceeds the limit. By
disabling the var limit check logic, power flow is easy to
converge. Reactive imbalance can then be identified with the
converged result. Therefore, for systems hard to converge, it is
suggested to disable var limit check logic first and then enable it

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

to get the true result by tuning system configuration.
3) iteration accelerator a. The accelerator is used to update
the bus voltage and angle as follows:
0., =06, +aAb
{Vk+1 =V, + AV

where 6 and Vi are the angle and voltage of the k-th iteration,
and A@and AV are angle and voltage update calculated with NR
or PQ iteration. ais usually configured within (0.2, 2.0). For
systems hard to converge, « can be tuned to less than 1.0 to
reduce the update of voltage and angle in each iteration. It can
effectively improve power flow convergence.

4) non-divergent solution logic. Enabling non-divergent
solution logic is another efficient way to improve the
convergence for systems hard to converge. The logic is realized
by changing the iteration accelerator ¢ automatically. It first
updates bus voltage and angle to get initial voltage magnitude
V%1 and angle 8% with:

Vk(ll =V, +AV,,
€k0+1 = 0k + Aekﬂ.
Then the bus power mismatch is checked. If the maximum

bus power mismatch exceeds that of the previous iteration, « is
halved to update bus voltage angle and magnitude with:

Vg =V —aAV
Os =00 — A0 (6)
a, =05

(4)

©)

where i=1.

For the worst case, if « is reduced to 0, bus voltage angle and
magnitude are no longer updated, and the bus power mismatch
is identical to the previous iteration. Therefore, with the
non-divergent logic enabled, the power flow solver can be
guaranteed to get a solution no worse than the initial solution.
In STEPS, « is set to be halved by ten times at most. If the
power flow solution exits with i=10, no further solution is
attempted. The result of the last iteration can provide abundant
information to find the bottleneck of system convergence.

5) maximum increment of bus voltage angle and magnitude.
Sometimes, each step's updating values are too great. It may
lead to power flow blown-up even though «is reduced or
non-divergent solution logic is enabled. In this case, it is
suggested to set the upper limit of AV and A& to further
improve the convergence for solving large-scale power
systems.

6) export Jacobian logic. When solving power flow with NR,
the Jacobian matrix of each step can be exported as a csv file. It
is helpful for studies such as static analysis, voltage and active
power control, and sensitivity analysis.

7) solving power flow cases with combined methods
successively. NR solution converges fast if proper initial values
are given, and PQ solution is less sensitive to the initial values.
Therefore, it is recommended to combine the two methods for a
better power flow solution. First, PQ solution is performed for
several iterations with flat start logic enabled. If the power flow
is hard to converge, non-divergent solution logic should also be

5

enabled. After several iterations, V and @are probably close to
the final solution, and convergence difficulty is reduced. The
NR solution is then performed with flat start logic disabled to
solve power flow with the bus voltage angle and magnitude
solved by the PQ solution as initial values. Non-divergent
solution logic can be disabled to improve solution speed.

IV. DYNAMIC SIMULATION

With the initial steady-state provided by converged power
flow, the DYNAMIC_SIMULATOR class provides functions to
run dynamic simulations. It reads device data from the power
system database, dynamic model data from the dynamic model
database, and dynamic admittance matrix from the network
matrix. Details about the dynamics simulation function are
discussed in the following sections.

A. Basics of the dynamic simulation method

For dynamic simulation, the core is to solve
differential-algebraic equations (DAE) as follows:
x="f(xy
- (xy) @
O—Q(X:Y)

where x is the state variable, and y is the operational variable.

For differential equations, there are two kinds of integration
methods: explicit and implicit. In some software, explicit
integration is used in dynamic simulation, such as Euler,
Modified Euler, and Runge-Kutta. For implicit integration, the
most common one is trapezoidal integration. The truncation
error of trapezoidal integration is the same as that of Modified
Euler and is easy to implement. Therefore, trapezoidal
integration is selected as the default method to solve differential
equations in STEPS.

There are generally two Kkinds of methods to solve
differential and algebraic equations: simultaneous and alternate.
The simultaneous method usually accompanies the implicit
integration rule. It first discretizes differential equations into
difference equations and then combines them with the algebraic
equation. With the trapezoidal integration rule, the
simultaneous method can be modeled as:

hr - .
0 =_Xn+l +Xn +E[f (an yn)+ f (Xn+1' yn+1):|

o = g (Xn+1’ yn+1)
where h is the simulation time step, x, and y, are variables of the
n-th step, and X+1 and yn+1 are variables of the n+1-th step.

Then, the DAE solution problem becomes a nonlinear
algebraic equation solution problem. The idea of NR solution
can be adopted to solve it.

Although differential equations can be transformed into
difference equations, there are still some problems. First, the
number of equations in (8) will change when limiters are
considered. Second, saturation in the generator or AC exciter
models would lead to the change of coefficients in (8). To
overcome these problems, the alternate method with implicit
trapezoidal integration rule is adopted in STEPS. It can be
expressed as follows:

®)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

R KICSA L [CER N [N
0=g (x50 v:7)

In (9), k is the count of DAE iterations in the n+1-th step, and

the initial value is x7, =x,, yl.=y,. Since alternate error

always exists in the alternate method, it is important to reduce
alternate error by increasing k. Theoretically, if the maximum
value of k is infinite, the alternate error can be reduced to 0.

B. Dynamic Simulation Features

In STEPS, some key parameters can be configured to run the
dynamic simulation:

1) allowed maximum bus power imbalance in MVA. It is
used to control whether the solution to the algebraic equations
is converged or not. It can be represented by:

ASmax < gth (10)

where ASmax is the maximum bus power imbalance, &n is the
threshold. Typically, &n can be set as 0.1 MVA. The criterion of

maximum current imbalance Almax can also be used as (11) to
reduce the calculation of nodal power imbalance:

AIma>< < gth /Sbase (11)

2) minimum and maximum DAE iteration count. It is
recommended to set the minimum value of k as 3 to guarantee
simulation accuracy. DAE iteration should stop when (10) or
(112) is satisfied. However, the mismatch can be huge when a
severe disturbance is applied. It may lead to a large number of
DAE iteration and slow down the simulation. To guarantee
simulation speed, the maximum DAE iteration count can be
limited. DAE iteration stops automatically when the iteration
count exceeds the maximum value. As a special case, the DAE
iteration count is fixed if the minimum and maximum values
are equal.

3) maximum network iteration count. It is similar to the
maximum iteration count of power flow and used to terminate
the divergent iteration when solving algebraic equations.

4) iteration accelerator and non-divergent logic. They
perform similar to the iteration accelerator and non-divergent
logic used in the power flow solution. It is especially useful
when events are applied and simulation is hard to converge.

5) early exit of network solution. Although maximum
network iteration count can be set to exit network solution
automatically, long time consumption is still observable if the
network solution is always divergent. To solve this problem,
STEPS enables users to set a divergent count threshold.
Suppose the error of the current network iteration is greater
than that of the previous one. In this case, the current iteration is
treated as divergent, and the divergence count increases by one.

Fig. 4 shows an example with the divergent count threshold of 4.

If the network solution is divergent, the divergent count
increases quickly and reaches the threshold. Then STEPS exits
the network solution, as shown in case 2 of Fig. 4.

6

& — case |

d]'\ ergent case 2

) exit iteration
A A Y

mismatch
]

. .

v

iteration

Fig. 4. Demonstration of the early exit of network solution.

6) rotor angle stability surveillance logic and its threshold.
The maximum rotor angle difference of each synchronized
electrical island can be monitored when the logic is enabled.
Once the value exceeds the threshold, the system is judged as
unstable. Then dynamic simulator quits, and no more
simulation is conducted. The typical threshold is 360<

7) parallel computation. In STEPS, OpenMP is adopted for
parallel computation when running dynamic simulation[23].
The parallel thread number can be user-configured according to
the number of CPU cores. Details of the kernel-level
parallelization are discussed in section V.B.

C. Events

The primary function of dynamic simulation is to analyze the
system response in case of disturbances or operations. Those
disturbances and operations are collectively referred to as
events in STEPS. Currently, supported events are:

1) Bus related events: bus fault, bus fault clearance, trip bus;

2) Line related events: line fault, line fault clearance, trip line,
close line, trip line breaker, close line breaker;

3) Transformer related events: trip transformer, close
transformer, trip transformer breaker, close transformer
breaker;

4) Generator related events: trip generator, shed generator,
manually change exciter reference, manually change turbine
governor reference;

5) Load related events: trip load, close load, scale load;

6) Fixed shunt related events: trip fixed shunt, close fixed
shunt;

7) HVDC related events: manually bypass HVYDC, manually
unbypass HVDC, manually block HVDC, manually unblock
HVDC, manually change HVDC power order.

In STEPS, events can be set at any time during the dynamic
simulation. It is also allowed to set multiple events in a
simulation, and different events can be set simultaneously.

D. Meters

Meters can be defined to monitor system dynamics when
running dynamic simulations. The supported meters can be
found in the implementation of class METER. The most
commonly used meters are listed as follows:

1) bus: voltage magnitude, voltage angle, frequency;

2) synchronous generator: terminal active and reactive power,
terminal current, rotor angle, rotor speed, excitation voltage,
mechanical power;

3) WT generator: active and reactive power, terminal current,
active power or current command, voltage or reactive current
command, rotor and turbine speed, pitch angle;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

4) PV unit: terminal active and reactive power, terminal
current, active power or current command, reactive voltage or
current command;

5) Line and transformer: active and reactive power, current,
apparent impedance;

6) HVDC: firing angle, extinction angle, converter active
and reactive power, converter DC voltage, converter current;

7) Load: active and reactive power, current, shed scale.

Theoretically, all variables in STEPS can be monitored. The
DAE iteration count, network iteration count, maximum power
mismatch, and the bus with the maximum power mismatch of
each step are automatically monitored as basic meters to check
the DAE solution's convergence. They can help to validate
dynamic simulation and tune dynamic simulation parameters
for improving validity. All the monitored meters can be stored
in a binary file or text files in csv and json format.

V. ADDITIONAL FUNCTIONS

In addition to the two basic functions of power flow solution
and dynamic simulation, STEPS also provides additional
functions to improve scalability and efficiency. In this section,

the implementation and usage of two additional functions, a.k.a.

user-defined modeling and parallelization, are introduced.

A. User-defined modeling

As mentioned in section I1.C, basic blocks are provided in
STEPS for simplifying the modeling process. They can also be
used for user-defined modeling. Procedures of user-defined
modeling are as follows:

1) Select the needed basic blocks according to the transfer
function block diagram of the user-defined model.

2) Declare the definition of the user-defined model in a
header file. The header file should be put in the folder of the
corresponding dynamic model category under header/model in
the STEPS project.

3) Implement the user-defined model. The implementation
file should be created in the folder of the corresponding
dynamic model category under source/model in the STEPS
project. All the functions defined in the header file must be
implemented here. Of all the functions, the two most important
ones are initialize() and run(). The former is used to acquire
each block's initial state based on the initial outputs obtained
from the power flow solution. The latter is used to integrate
states and update outputs based on inputs in the time-domain
simulation process.

Based on the above extensions, the importing interface of the
user-defined model can be wupdated in the class
STEPS_IMEXPORTER. Codes for acquiring the user-defined
model's memory consumption should be added in the function
get_model_size() of class DYNAMIC_MODEL_DATABASE.

To show the modeling process more specifically, IEEEG3 is
taken as an example here. Fig. 5 shows that the needed basic
blocks for building IEEEG3 include first-order, integral,
lead-lag, proportional, and differential blocks. Then, the header
and implementation files for IEEEG3 are created in folder
header/model/sg_models/turbine_governor_model/ and
source/model/sg_models/turbine_governor_model/,

7

respectively. Users can check the specific implementation of
IEEEG3 in the source code of STEPS. Finally, interface
add_IEEEG3_maodel() is defined in class
STEPS_IMEXPORTER, and codes for acquiring the size of
IEEEG3 is implemented in DYNAMIC_MODEL_DATABASE.

I
P

Ve /e
1)

v
A{u—'bﬁ‘\\zl:;’{ ﬁ }—b % —

o first-order ',T/ml':(__!rul
o

(Q| o
dy, \+| a, - L [sT,,
L dy) P faa

1+a,sT,

N+ lead-lag
g’ proportional

+ 8T,
1+sT,

differential

Fig. 5. Transfer function block diagram of IEEEG3.

Besides adding the above compulsory codes, it is also
recommended to carry out unit tests for the user-defined model.
Please refer to built-in unit tests in STEPS.

Though the process of user-defined modeling is not
complicated, users still need basic knowledge of C++. To
further simplify user-defined modeling, compilation-free
scripts for building dynamic models are under development.

B. Kernel-level parallelization

As mentioned in section 1V.B, kernel-level parallelization is
implemented with OpenMP in STEPS. It is supported in
dynamic simulation but not in powerflow solution because the
time consumption of power flow solution is much less than that
of dynamic simulation. The working procedures of kernel-level
parallelization in STEPS are as follows:

1) Set the parallel thread number ny according to the number
of CPU cores N and the size of the test system. The selection of
thread number is further discussed in section VI.D.
Kernel-level parallelization is enabled when the thread number
is greater than 1. When using the stepspy module, kernel
parallelization can be enabled with the following codes:

from stepspy import STEPS
simulator = STEPS(is_default = True)
simulator.set parallel thread number (nk) #nk > 1

2) Acquire the number of dynamic devices, Nm, which can be
easily obtained in POWER_SYSTEM_DATABASE.

3) Allocate dynamic devices to parallel threads. In STEPS,
static scheduling is used to realize kernel-level parallelization.
Each thread is statically allocated with about N/nk devices.

It should be noted that the kernel-level parallelization is
disabled automatically if multiple devices of the same category
are connected to the same bus. If kernel-level parallelization is
enabled, two or more threads with devices connecting to the
same bus may write to the same current injection vector
location at the same time. It is prone to cause write conflicts.
Therefore, users should guarantee that no more than one device
of the same category is connected to the same bus before
enabling kernel-level parallelization. One possible solution is
to add a zero impedance switch between multiple devices of the
same category at the same bus.

At present, STEPS only supports the parallelization on CPU.
GPU-based parallelization is deserved to be developed in the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

future to achieve higher performance [24].

C. Task-level parallelization

Task-level parallelization is implemented in STEPS by
creating multiple toolkits to deal with tasks at the same time.

Therefore, it saves time only when multiple tasks are performed.

When using the stepspy module, task-level parallelization can
be realized with multiple processes and create STEPS object for
each process with is_default option disabled. Procedures of the
task-level parallelization are as follows:

1) Set the number of parallel processes ns according to the
number of CPU cores and task number. When task-level
parallelization is enabled, the Kkernel-level parallelization is
usually disabled to maintain computation efficiency. If they are
both enabled, ns should be no more than N/ny.

2) Assign tasks to parallel processes. When the task in a
parallel process is finished, a new task will be automatically
added to the parallel process until all tasks are completed.

An example of performing some task for all buses using
task-level parallelization is given as follows:

from multiprocessing import Pool
from stepspy import STEPS
def run_task(bus) :
sim2 = STEPS (is_default=False)
here goes details of the task

if name == main ':

sim = STEPS(is_default=True, log file="demo.log")

sim.load powerflow data('demo.raw', 'PSS/E')

buses = sim.get_all buses()

pool =Pool (processes=20) f#create 20 processes

for bus in buses:
pool.apply async (run_task,

pool.close()

pool.join()

(bus,))

VI. CASE STUDIES

In this section, several cases are provided to show the
accuracy and application scenarios of dynamic simulation in
STEPS. All tests are performed with the stepspy module on a
server with Intel Exon Gold 6148 CPU with 20 cores.

A. Accuracy verification

To verify STEPS's accuracy, the IEEE 9-bus model and New
England 39-bus model are tested with a three-phase fault
applied on bus 6 at 0.2s and cleared at 0.4s. Results of STEPS
and PSS/E are shown in solid and dotted lines separately. Rotor
angle and frequency of the 9-bus model are shown in Fig. 6(a)
and (b). Voltage and active power on transmission lines of the
39-bus model are shown in Fig. 6(c) and (d). It can be found
that STEPS can produce almost the same result as PSS/E, and
the accuracy of STEPS can be guaranteed.

BT — STEPS

--- PSS/E

62

~. o mh\:\ - PSSIE
Genertor 3 Geperator 2 / - al uss Bus
e
AT

(@) Rotof angle

(b) Bus fréquency

() Voitage (d) Active power
Fig. 6. Dynamic simulation results in STEPS and PSS/E.

Since the alternate solution is used to solve DAE, the alternate
error is an important factor affecting dynamic simulation
accuracy. To quantify the effect, 2, 3, 4, 5, 10 are set as the
maximum DAE iteration number kmax on the IEEE 9-bus model.
A three-phase fault is applied on bus 5 at 0.5s and cleared at
0.7s. The voltage of bus 1 and 5 with different kmax are shown in
Fig. 7(a). Itis shown that the difference between voltage curves
with different kmax is negligible. In other words, the alternate
error is acceptable.

12r BUS 6

o8l ot Bus | T o BUS 8
IR = BUS 1 = BUS 9
] s , BUS2 '
S | Buss € oo} B2
04} | ¥ s
| BUS 4 L
BUS S -

0 05 1 15 2 25 3 6 1 2 3 4 5 & 7 % 9 10
DAE iteration coun

(a) Voltage (b) Voltage mismatch
Fig. 7. Voltage and its mismatch with different kpax.

To find the proper value of kmax, the voltage of all buses with
kmax =20 is taken as reference, and the voltage mismatch with
different kmax is shown in Fig. 7(b). It can be found that the
mismatch is generally reduced by an order of magnitude with
one more DAE iteration. For kmax = 3, the mismatch is less than
1073 p.u. and is reduced to less than 10 p.u. when Kmax=5.

B. Simulation of interconnected system with different base
frequencies

As mentioned in section 11.C, each bus in STEPS is equipped
with a nominal frequency and bus frequency model. Therefore,
it is possible to check the interaction between physical systems
with different nominal frequencies with STEPS. A simulation
is carried out in a system with 169 buses to show an
interconnected system's dynamics with two nominal
frequencies. It has a 50Hz part with 130 buses and a 60 Hz part
with 39 buses, and two HVDC links connect the two parts. Fig.
8 shows that rectifiers are located in the 60Hz part at bus 3 and
23, and inverters are located in the 50Hz part at bus 142.

3
142
60Hz system 50Hz system
23

Fig. 8. Diagram of the tested interconnected system.

In the test system, the active power order of each HVDC is
500MW. The HVDC linking bus 23 and 142 is blocked at 2s.
The frequency of the two parts is shown in Fig. 9(a), and the
voltage of bus 3 and 142 are shown in Fig. 9(b). It can be seen
that the dynamics of both 50Hz and 60Hz parts can be obtained
as a whole directly with STEPS.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

= 50 \ £
49,98 \ — 0.983
49.96 \ ,/ BUS 3
49,94 \ S 14
pryss AV BUS 142
49.9 0.97

0 5 0 5 20 [1} £ 10 5 20
tis

(a) Bus frequency (b) AC voltage on DC nodes
Fig. 9. Simulation results of a system with different base frequencies.

Simulation results show STEPS’s capability of simulating
systems with different base frequencies. Therefore, STEPS is
promising to be used in the uniform study of international
interconnection with multiple nominal frequencies. The
uniform simulation can better illustrate interconnected systems'
interactive response than tools with a single base frequency.

C. Simulation of system with WT generators and HVDC

Currently, power electronic-based power source and
transmission are developing rapidly. A provincial power grid of
146 buses with 14 equivalent WT generators and 6 HVDC links
is examined to demonstrate STEPS in complex systems with
DFIG and HVDC. A three-phase fault is applied on bus 80 at 1s
and cleared after five cycles. Parameters of WT generators on
bus 9324 are set to abnormal values to show the activation of
under-speed relay logic. The frequency, voltage, and rotor
speed of WT generators are shown in Fig. 10(a) to (c)
separately. The power of HYDC Imks is shown in Fig. 10(d).

504 1.2
50 L1f
| : _.:7_..*"“\,,_/~ —

T T 1 Mk
i

BUS 10 BUS 9128 = BUS 10
BUS 60 BUS 9145 o1 BUS 60
BUS 9105 =ooeeeee BUS 0324 07t B T T p—

BUS 0128
BUS 9145
BUS 0324

10 15 20 25 30 0 5 10 15 20 23 30

@) Fredijency

BUS 9105
3 pal BUS 9128 = 2000 H HVDC | HVDC 4
- 2d [R — — BUS 9145 = L HVDC 2 HVDC 5
[BUS 9324 | e HVDC 3 +=vreees HVDC 6§

(©) Rotolr~ speed (d) Power of HVDC links

Fig. 10. Dynamic simulation results in a system with renewable generation.

Figures show that 4 HVDC links are bypassed, and 2 HVDC
links are blocked, causing 4GW power loss and significant
frequency drop. After the fault is cleared, 4 HVDC links
recover, and the frequency begins to rise. During the dynamics,
the rotor speed of WT generators is decreasing to increase
power generation for supporting system frequency. However,
the rotor speed of WT generators on bus 9324 drops beyond 0.3
p.u. at about 6s and is then tripped due to the under-speed relay
logic in WTRLYO model.

D. Simulation speed

The same dynamic simulations are carried out in STEPS and
PSS/E separately to test the simulation speed. IEEE 9-bus
model, New England 39-bus model, and a provincial grid
model of 132 nodes are tested. The simulation time step is 2ms,
and the simulation duration is 10s. Events and time
consumption are shown in Table Il. It can be found that the

simulation speed of STEPS is about 1/4 to 1/2 of PSS/E.
TABLE Il

9

COMPARISON OF SIMULATION TIME BETWEEN STEPS AND PSS/E

Model event tpss/E/S tSTEps/S
9-bus Line fault 1.214 2.105
39-bus Line fault 1.512 2.935
132-hus DC block 4.260 17.113

Tests are also carried out to show the efficiency of OpenMP
parallel computation. Test models are the 132-bus simplified
provincial grid model, the 5261-bus East China Power Grid
model, the 12515-bus East-Northwest China Power Grid model,
and the 18648-bus East-North-Southwest China Power Grid
model, having 39, 533, 1394, and 2186 generators, respectively.
At 1s, two HVDC links are manually blocked. With a
simulation duration of 10s, the simulation time with different
paraIIeI numbers of different test systems is shown in Fig. 11.

7 8 g 10 15 7 8 9 10 5
\I\ mbet I\I

imbet
@) 132 bus S|mpI|f|ed provmual grid (b) 5261-bus East Chlna Power Grid

1 2 3 4 5 6 7 8 9 101520 23 0405 6 7
parallel number parallel nu

mber
(c) 12515-bus East-Northwest China (d) 18648-bus East- North Southwest
Power Grid China Power Grid
Fig. 11. Simulation time with different parallel thread numbers.

8 9 10 15 20

It is shown in Fig. 11(a) that serial simulation is faster than
parallel simulation when the system size is small. The
parallelization efficiency increases with the increase of system
size in general. Therefore, it is recommended to enable
kernel-level parallelization for large-scale systems. Fig. 11(b)
to (d) show that the maximum simulation speed when
parallelization is enabled can reach about 1.5 times the serial
simulation. It can also be seen from Fig. 11(b) to (d) that the
simulation speed is slowed down if the thread number is greater
than about 8. The main reason may lie in the limited cache of
the CPU. With the increase of thread number, more data can be
processed in a fixed time. However, if the thread number is too
high, the cache size will be the bottleneck, and more time is
required for the CPU to fetch missing data from RAM. Using
CPUs with greater cache size and improving STEPS data
structure will help to improve the parallelization efficiency.

VII. CONCLUSION

The proposed power system dynamic simulation package
STEPS is open-source software with an independent kernel. It
provides functions of power flow and dynamic simulation.
Plenty of options are provided in the power flow solver and
dynamic simulator to guarantee accuracy and computing speed.
To improve computational efficiency, OpenMP is adopted to
enable parallel simulation. The APIs of STEPS and wrapped
Python module stepspy provides the flexibility of running
simulation with STEPS. With tests from small to large-scale
power systems, the STEPS is proved to be a reliable package
for research and education purposes.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3045102, IEEE

Transactions on Power Systems

STEPS currently stores devices in an array of structure (AoS)
mode, which is friendly to coding but inefficient for heavy
computation. The efficiency of kernel-level parallelization
needs further improvement, and we are working on it. STEPS is
actively updated and maintained on Github for higher
performance, more models, and new functions, such as short
circuit analysis, eigenanalysis, and graphical user interface.

REFERENCES

[1] IEEE Recommended Practice for the Design of Reliable Industrial and
Commercial Power Systems - Redline, IEEE Std 493-2007, 2007.

[2] R. Billinton, S. Aboreshaid, and M. Fotuhi-Firuzabad, "Well-being
analysis for HVDC transmission systems," IEEE Trans. Power Syst., vol.
12, no. 2, pp. 913-918, May. 1997, 10.1109/59.589765.

[3] Z. Wang and Z. Guo, "Uncertain models of renewable energy sources,"
The Journal of Engineering, vol. 2017, no. 13, pp. 849-853, 2017,
10.1049/joe.2017.0450.

[4] Anonymous author. Black system South Australia 28 September 2016. Au
stralian Energy Market Operator Ltd., Melbourne, AU. [Online]. Availabl
e: https://www.aemo.com.au/Media-Centre/-/media/9027D5FB69294D4
08E4089249F38A36D.ashx.

[5] Anonymous author. Technical report on the events of 9 August 2019. Nat
ional Grid ESO, Warwick, UK. [Online]. Available: https://www.national
grideso.com/document/152346/download.

[6] J.H.Chowand K. W. Cheung, "A toolbox for power system dynamics and

control engineering education and research," IEEE Trans. Power Syst., vol.

7, no. 4, pp. 1559-1564, Nov. 1992, 10.1109/59.207380.

[7] F. Milano, L. Vanfretti, and J. C. Morataya, "An Open Source Power
System Virtual Laboratory: The PSAT Case and Experience," |IEEE
Transactions on Education, vol. 51, no. 1, pp. 17-23, Feb. 2008,
10.1109/TE.2007.893354.

[8] R. D. Zimmerman, C. E. Murillo-S&chez, and R. J. Thomas,
"MATPOWER: Steady-State Operations, Planning, and Analysis Tools
for Power Systems Research and Education,” IEEE Trans. Power Syst.,
vol. 26, no. 1, pp. 12-19, Feb. 2011, 10.1109/TPWRS.2010.2051168.

[9] S.Cole and R. Belmans, "MatDyn, a new Matlab based toolbox for power
system dynamic simulation," IEEE Trans. Power Syst., vol. 26, no. 3, pp.
1129-1136, Aug. 2011, 10.1109/TPWRS.2010.2071888.

[10] PYPOWER 5.1.2. [Online]. Available: https://github.com/rwl/PYPOWE
R, accessed April 2, 2020.

[11] pypower-dynamics 1.1. [Online]. Available: https://pypi.org/project/pypo
wer-dynamics/1.1/, accessed April 2, 2020.

[12] L. Thurner et al., "Pandapower—An Open-Source Python Tool for
Convenient Modeling, Analysis, and Optimization of Electric Power
Systems," IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6510-6521, Nov.
2018, 10.1109/TPWRS.2018.2829021.

[13] T. Brown, J. H&sch, and D. Schlachtberger, "PyPSA: Python for Power
System Analysis," Journal of Open Research Software, vol. 6, no. 4, pp.
115, 2018.

[14] D. Krishnamurthy, "psst: An open-source power system simulation
toolbox in Python," in 2016 North American Power Symposium (NAPS),
Denver, USA, Sept. 2016, pp. 1-6.

[15] M. Zhou and S. Zhou, "Internet, Open-source and Power System
Simulation,” in 2007 IEEE Power Engineering Society General Meeting,
Tampa, USA, Jul. 2007, pp. 1-5.

[16] F. Milano, "A python-based software tool for power system analysis," in
2013 IEEE Power & Energy Society General Meeting, Vancouver,
Canada, Jul. 2013, pp. 1-5.

[17] SuiteSparse 5.6.0. [Online]. Available: http://faculty.cse.tamu.edu/davis/s
uitesparse.html, accessed April 2, 2020.

[18] PSS®E 33.4 Model Library, 4th ed., Siemens Power Technologies
International, Schenectady, NY, USA, 2013.

[19] PSASP 7.1 Dynamic Element Model Library User’s Manual, 1st ed.,
China Electric Power Research Institute Co., Ltd., Beijing, BJ, China,
2010.

[20] Q. G. Samdani and M. A. Thornton, "Cache resident data locality
analysis," in Proceedings 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(Cat. No.PR00728), San Francisco, USA, Aug. 2000, pp. 539-546.

10

[21] H. Tomiyama and H. Yasuura, "Size-constrained code placement for
cache miss rate reduction," in Proceedings of 9th International
Symposium on Systems Synthesis, La Jolla, USA, Nov. 1996, pp. 96-101.

[22] T. A. Davis, “Fill-Reducing Orderings,” in Direct methods for sparse
linear systems, 1st ed. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2006, ch.7, pp. 99-134.

[23] OpenMP. [Online]. Available: https://www.openmp.org/, accessed April
2,2020

[24] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-scale transient
stability simulation of electrical power systems on parallel GPUs,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 7, pp. 1255-1266, Jul. 2012,
10.1109/TPDS.2011.291.

BIOGRAPHY

Changgang Li (M’15) received the B.E. and Ph.D.
degrees in Electrical Engineering from Shandong University,
Jinan, China, in 2006 and 2012, respectively. He was a
research scholar with the School of Electrical Engineering
and Computer Science, the University of Tennessee,
Knoxville, from 2012 to 2014. He is now an Associate
Research Fellow with the School of Electrical Engineering,

o —~
PR

d b

Shandong University, China. His research interests are power system operation
and control.

Yue Wu received the B.E. degree in Electrical
Engineering from Zhengzhou University, Zhengzhou, China,
in 2018. He is now a graduate student with the School of
Electrical Engineering, Shandong University, China. His
research interests are power system frequency control.

Hengxu Zhang (M’06) received the B.E. degree in
Electrical Engineering from Shandong University of
Technology, China, in 1998, and the M.S. and Ph.D. degrees
in Electrical Engineering from Shandong University, China,
in 2000 and 2003, respectively. He is now a Professor with
the School of Electrical Engineering, Shandong University,
China. His main research interests are power system security
and stability assessment, power system monitoring, and
numerical simulation.

Hua Ye (M’13) received the B.Eng. and Ph.D. degrees in
electrical engineering from Shandong University, Jinan,
China, in 2003 and 2009, respectively. He is currently a
Professor with the Key Laboratory of Power System
<~ Intelligent Dispatch and Control of Ministry of Education,
Shandong University, Jinan, China. His research interests
include power system dynamic stability analysis and control
and cyberphysical systems.

Yutian Liu (SM’96) received the B.E. and M.S. degrees
in electrical engineering from the Shandong University of
Technology, Jinan, China, in 1984 and 1990, respectively,
and the Ph.D. degree in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1994. He is currently a
Chair Professor at the School of Electrical Engineering,
Shandong University, Jinan. His research interests include
power system analysis and control, renewable energy integration, and artificial
intelligence application to power system.

Yilu Liu (S’88-M’89-SM’99-F’04) received her M.S.
and Ph.D. degrees from the Ohio State University, Columbus,
in 1986 and 1989. She received the B.S. degree from Xian
Jiaotong University, China. Dr. Liu is currently the
Governor’s Chair at the University of Tennessee, Knoxville
and Oak Ridge National Laboratory (ORNL). Dr. Liu is
elected as the member of National Academy of Engineering
in 2016. She is also the Deputy Director of the DOE/NSF
cofunded engineering research center CURENT. Prior to joining UTK/ORNL,
she was a Professor at Virginia Tech. She led the effort to create the North
American power grid frequency monitoring network (FNET) at Virginia Tech,
which is now operated at UTK and ORNL as GridEye. Her current research
interests include power system wide-area monitoring and control, large
interconnection-level dynamic simulations, electromagnetic transient analysis,
and power transformer modeling and diagnosis.

https://www.aemo.com.au/Media-Centre/-/media/9027D5FB69294D408E4089249F38A36D.ashx
https://www.aemo.com.au/Media-Centre/-/media/9027D5FB69294D408E4089249F38A36D.ashx
https://www.nationalgrideso.com/document/152346/download
https://www.nationalgrideso.com/document/152346/download
https://github.com/rwl/PYPOWER
https://github.com/rwl/PYPOWER
https://pypi.org/project/pypower-dynamics/1.1/
https://pypi.org/project/pypower-dynamics/1.1/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://www.openmp.org/

