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Abstract 

Understanding the governing principles behind organisms’ metabolism and growth underpins their 

effective deployment as bioproduction chassis. A central objective of metabolic modeling is predicting how 

metabolism and growth are affected by both external environmental factors and internal genotypic 

perturbations. The fundamental concepts of reaction stoichiometry, thermodynamics, and mass action 

kinetics have emerged as the foundational principles of many modeling frameworks designed to describe 

how and why organisms allocate resources towards both growth and bioproduction. This review focuses on 

the latest algorithmic advancements that have integrated these foundational principles into increasingly 

sophisticated quantitative frameworks. 

1. Introduction 

Metabolic engineering has long been applied to modify cellular activities in order to improve the production 

of metabolite or protein products by altering pathway flux distributions and rates through the manipulation 

of cellular enzymatic, transport and regulatory functions [1]. The field has rapidly progressed, growing 

from the groundbreaking development of genetic engineering of Pseudomonas species to biodegrade 

aromatic hydrocarbons [2] into successful commercialized operations such as the recent process to produce 

1,4-butanediol in Escherichia coli [3]. Metabolic models have emerged as both structured repositories of 

information and prediction tools to support the objectives of metabolic engineering, by providing 

quantitative predictions of cell function in response to both biological and environmental changes and tools 

to direct the redesign of metabolism. The fundamental concepts of reaction stoichiometry, thermodynamics, 

and kinetics form the foundational principles of such modeling frameworks. 

Reaction stoichiometry encapsulates the network connectivity arising from metabolite transports 

and biochemical conversions that take place in a system. Early efforts by Papoutsakis on acetone-butanol 

fermentation that provided a theoretical framework for yield analysis [4] and by Watson on computerized 

models of microbial central metabolism during steady-state growth [5, 6] have since blossomed into 

genome-scale metabolic (GSM) models and their associated analyses. Only ten years after publication of 

the first GSM model in 1999 for Haemophilus influenzae RD [7], 45 GSM models of 34 organisms had 



been constructed [8]. By 2019 that number had grown dramatically to encompass as many as 6,239 

organisms across all domains of life with GSM models, of which 183 have manually curated models [9]. 

Thermodynamic information encoded by reaction free energy of change provides insight on 

reaction and pathway reversibility thus constraining the feasible phenotypic space for flux balance analysis 

(FBA) on metabolic models [10]. Significant research has been undertaken to elucidate and apply 

thermodynamic constraints for metabolic reactions [11]. The standard Gibbs free energy change (Δ௥𝐺௢) is 

available for approximately 400 reactions in the Thermodynamics of Enzyme-Catalyzed Reactions 

Database [12]. This covers only a small portion of reactions in metabolic models. Early work by Burton 

introduced a procedure which infers the unknown apparent equilibrium constants (𝐾ᇱ) of a reaction through 

the linear combination of two or more reactions with known Δ௥𝐺௢ using the first law of thermodynamics 

[13, 14]. Although this method has continued to be applied for expanding tables of thermodynamic 

parameters [15], the free energy of change for most reactions remains unresolved. To this end, Benson and 

Buss developed a group contribution method [16] to approximate the free energy of change of biochemical 

reactions in aqueous solutions [17]. To this day, various versions of the group contribution method remain 

the most prevalent technique for estimating the Δ௥𝐺௢ [18]. 

Kinetic models of metabolism introduce mechanistic descriptions of enzyme kinetics into 

metabolic models and enable the prediction of transient responses to perturbations using a variety of 

formalisms. One of the first structured single-cell models, by Heinmets, consisted of 19 simultaneous 

differential equations with 31 rate constants [19] and was later examined via digital computer simulations 

[20]. Subsequently, more involved single-cell models and analyses emerged, such as the Cornell Single-

Cell Model [21] that could quantitatively predict the dependence of E. coli growth rate and cell size, shape 

and composition on external concentrations of glucose. Model sizes and scopes have continued to expand, 

with the recent publication of a whole-cell model of E. coli [22] that draws data from over 1200 

publications; among its 19,119 parameters involved in more than 10,000 mathematical equations in 19 

modules are 639 kinetic parameters governing the activity of 404 metabolic reactions. Such comprehensive 

models encompassing various hierarchical levels help accelerate biological discovery and engineering. 

Increases in computational power [23] were leveraged to keep up with the flood of genomic [24] 

and phenotypic data alongside improved algorithms and approaches. A common strategy to unraveling 

cellular phenotypes has been to study aspects of metabolism independently (i.e., fluxome, metabolome, 

proteome) from one of several viewpoints (i.e., stoichiometry, thermodynamics, kinetics). However, 

increases in computation power, improved genomic [25-27] and automated analytical tools [28], and 

availability of multiple datasets have finally enabled the development of holistic modeling frameworks for 

describing metabolism. It is now possible to weave a more coherent narrative about the fluxomic, 

metabolomic, and proteomic phenotypes in greater detail. In this review, therefore, we focus on recent 



advancements in the stoichiometric, thermodynamic, and kinetic modeling of metabolism that have fueled 

discoveries in biology and metabolic engineering. We begin with current developments in the methods of 

metabolic model reconstruction and curation, followed by integration of models with high-throughput 

omics data to increase model scope and predictions. We next describe developments in the methods of 

thermodynamics predictions using both group contribution methods and quantum mechanics and kinetic 

formalisms along with parameterization techniques. We contextualize these latest modeling frameworks 

against earlier developments in the field, and discuss the insights they enable in metabolic engineering. 

2. Stoichiometric models of metabolism 

A defining feature of metabolic models is the organization of metabolites and the reactions in which they 

are involved into a stoichiometric matrix S. These stoichiometric models are typically augmented with 

additional information, such as gene-protein-reaction (GPR) associations [29] that are Boolean logic 

statements describing what gene(s) need to be expressed to assemble a protein (or assembly of protein 

subunits) to support the enzymatic catalysis of a particular reaction. Determining the GPR associations is a 

cornerstone of GSM model reconstruction; a well-established and detailed manual protocol describes how 

to reconstruct GSM models using genome annotation data and how to curate the models with 

experimentally obtained information [30], as indicated in Figure 1(a). Manual GSM reconstruction is both 

time and labor intensive. In this section, we describe recent tools for automating reconstruction and aiding 



curation of these models, incorporating experimental data to improve phenotype predictions, and 

prospecting metabolic pathway design computationally.  

2.1. Tools for reconstructing and curating stoichiometric models of metabolism 

A recent review of GSM models and their applications [9] provides a phylogenetic tree of 6,239 organisms 

for which a GSM model exists. Most of these models were generated by using software tools that automate 

the process of GSM model reconstruction. Recently created or updated tools include Path2Models [31], 

Figure 1. Overview of stoichiometric metabolic model construction, augmentation by incorporating large-scale experimental 
datasets, and applications. (a) General workflow for constructing stoichiometric models of metabolism for microbes and multi-
cell eukaryotes. The workflow begins with genome annotation, from which metabolic functions are extracted and cast as 
biochemical reactions using databases such as KEGG, ModelSEED, and MetaCyc. The resulting draft model is subjected to an 
iterative curation cycle to produce a final genome-scale metabolic model. (b) Summary of the types of data that can be incorporated 
into GSM models. Gene/protein expression (transcriptomics/proteomics), metabolite levels (metabolomics), single-nucleotide 
polymorphisms (genomics), and gene-regulatory networks can be integrated within GSM models to increase their prediction scope 
and fidelity. (c) Select applications of stoichiometric models of metabolism. GSM models can inform multi-scale simulations, 
evaluate interactions in a community, and predict overall phenotype by considering genetic and/or environmental perturbations. 



ModelSEED [32], merlin [33], kBase [34], RAVEN 2.0 [35], CarveMe [36], AuReMe [37], AutoKEGGRec 

[38], PathwayTools [39] and MetaDraft [40]. In general, these tools programmatically perform genome 

annotation, extract subsets of metabolic genes, catalog the associated enzymes and biochemical 

conversions, and define GPR associations. Some may also fill network gaps to ensure connectivity. This 

reconstruction process is iterative, either manually or automatically, until the GSM satisfies pre-determined 

metabolic criteria, which typically involve biomass constituent synthesis. Because of the plethora of 

automated tools currently available, it is imperative to be cognizant of their respective advantages and 

pitfalls. 

The first step of genome annotation can be performed in multiple ways and can impact the final 

reaction content and resulting model fidelity. AutoKEGGRec and RAVEN import metabolic functions from 

KEGG [41] whereas KBase and ModelSEED use RAST [42]. CarveMe and MetaDraft use the entire BiGG 

database [43], and the rest allow for internal annotations – merlin uses BLAST [44] or HMMER [45], 

Pathway Tools uses PathoLogic [46], and AuReMe allows the user to select from a variety of tools such as 

pantograph  [47] or OrthoMCL  [48]. A pivotal step where candidate reactions can be added is during gap-

filling, where network connectivity is evaluated to ensure that known/expected metabolic functions are 

successfully captured. Although a number of gap-filling algorithms exist [49-52], only CarveMe and 

ModelSEED allow the user to define a media composition, and AuReMe and PathwayTools allow setting 

known metabolic products. The remaining automated tools rely on the initial genome annotation and source 

database of reactions, and thus may be unable to incorporate spontaneous or exchange reactions necessary 

to create a functional GSM model. Finally, software availability, licensing, and/or GUI vs command line 

usage are important considerations when selecting a GSM-reconstruction platform. KBase, ModelSEED, 

MetaDraft, Merlin, and PathwayTools offer graphical interfaces but only the first three are open-source. 

The rest offer command-line interfaces. Both AutoKEGGRec and RAVEN are compatible with the 

COBRA toolbox [53]. The interested reader is directed to Mendoza et al. [54]  and Faria et al. [55], for 

detailed analyses and comparisons of output for automated reconstruction platforms. 

As part of the curation process, subjecting the models to recent test suites such as MEMOTE [56] 

and minimum inconsistency under parsimony (MIP) [57] can help achieve high-quality reconstructions. 

MEMOTE aims to increase GSM model consistency and reuse by running a series of checks for 

stoichiometric inconsistencies including unbounded cycles, biomass production under different conditions, 

and number of blocked reactions. MEMOTE flags any elemental or charge unbalanced reactions, and 

scrutinizes all model elements for annotations that link to public databases. Although MEMOTE only 

examines the syntactic, logical and topological components of a GSM model, through use of its reports and 

scores, MEMOTE allows for comparisons between models creating a benchmark for model quality in this 

broader context. MIP [57] uses elemental balances for internal metabolic reactions to determine the 



molecular weight (MW) of the biomass drain flux in a GSM model. Biomass MW discrepancies from a 

value of 1 gram dry weight mmol-1 create inaccurate estimates of the substrates needed for the predicted 

growth. This problem becomes particularly important when modeling microbial communities, as the 

abundance of a microbe with an under-weighted biomass molecular weight would be over-estimated in the 

community; those over-weighted would be similarly under-estimated. 

2.2. Incorporating experimental data increases both model prediction scope and fidelity 

Optimization-based analysis frameworks such as FBA are generally used to assess GSM models, and by 

invoking a pseudo-steady-state assumption for the intracellular metabolites, they compute fluxes which 

quantify the rates of the corresponding reactions. However, FBA simply using the stoichiometric matrix 

and GPR associations cannot compute a unique flux distribution. Thus, a number of methods leverage 

additional biological information to reduce the solution space and thereby improve the precision and 

accuracy of predictions. Here we present the latest algorithms that seek to incorporate constraints based on 

experimental data such as gene or protein expression, labeled isotopes, and genetic variability. 

2.2.1.  Incorporating gene/protein expression 

Although mRNA abundance and metabolic fluxes are only moderately correlated [58-60], incorporating 

transcriptomics into GSM models has been shown to increase their predictive capability [61, 62]. One of 

the earliest uses of transcriptomics data to inform metabolic models was to tighten reaction bounds using 

absolute gene expression levels (E-flux [63]). However, this approach results in variable allowable bounds 

leading to complications in the inference of a specific metabolic response. To lessen this limitation, E-flux2 

[64] incorporates a follow-up L2-norm minimization procedure under the assumption that the cell 

maximizes (or minimizes) the biological objective in an energy- and resource-efficient manner, as an added 

step beyond simply including constraints based on transcript level. This approach is similar to the 

parsimonious FBA (pFBA) procedure minimizing the L1-norm, which has been shown to be quite effective 

at predicting flux distributions [65]. Its contemporary LBFBA [66] also constrains reaction bounds using 

linear functions of the expression data regressed from a training set with an even higher accuracy than 

pFBA. However, LBFBA requires both expression (i.e., transcriptomics and/or proteomics) and fluxomics 

data during training. 

An early data-intensive algorithm in this domain is Metabolic Adjustment by Differential 

Expression (MADE), requiring multiple gene expression datasets as input [67]. MADE uses the statistical 

significance of change in expression between conditions to define a sequence of best-fitting binary gene 

states. The weighted sum of inferred gene expression states and p-value of differential expression between 

conditions is maximized to extract functioning metabolic models. Thus, the final models are such that the 

differences between successive states most-resemble those seen between mean expression levels. The 

recent approach Mathematical explOration of ‘Omics data on a MetabolIc Networks (MOOMIN [68]) 



improves upon the frequentist approach in MADE (i.e., using p-values to identify significant gene 

expression changes) by inferring reaction weights from a differential expression analysis. A significant 

change in the expression of a gene carries a positive weight, whereas unchanging genes are assigned a 

negative weight. The sum of these weights is subsequently maximized to identify the flux distribution 

associated with a feasible change between growth conditions. 

A notable advantage of both LBFBA and MOOMIN is the absence of a priori defined biological 

objective function, thereby broadening their applicability to an increased number of organisms and 

experimental conditions. This increased scope, however, comes at the cost in some cases of predicting no 

growth in disagreement with experimental observations [62]. Choice of modeling framework is largely 

dictated by the available data and assumptions. Both E-flux2 and LBFBA can be parameterized using 

steady-state data collected from one or more growth conditions, whereas both MADE and MOOMIN 

require multiple expression datasets.  

Metabolic models can also be used to enhance network features gleaned from omics studies using 

conventional differential expression analysis. Samal et al. [69] used sparse group lasso (SGL) to find 

pathways associated with a given phenotype by integrating omics data with GSM models. Within this 

framework, elementary flux modes are first calculated using the PoCaB software [70] and mapped to gene 

sets across multiple expression datasets. SGL is then used to select a sparse set of genes that is the best 

predictor of a given phenotype.   

Phenotype prediction can be further enhanced by adding Boolean type constraints to GSM models 

to help incorporate regulation [71] (e.g., under aerobic or anaerobic conditions), as indicated in Figure 1(b). 

However, reconstructing a gene regulatory network (GRN)  from high-throughput data remains 

challenging, as elucidated by the DREAM project for over 30 network inferences methods on E. coli, 

Saccharomyces cerevisiae, and Staphylococcus aureus [72]. One of the first efforts to impose GRNs as an 

additional layer atop GSM models without using stringent Boolean functions was probabilistic regulation 

of metabolism (PROM) [73]. PROM assigns conditional probabilities to gene states and gene-TF 

interactions based on expression data for transcription factors (TFs) and target genes. Those conditional 

probabilities are then are used to scale fluxes through all metabolic reactions based on their corresponding 

GPR associations. Although PROM can predict organism growth rate with high accuracy (0.95 correlation 

coefficient), its major drawback is the requirement of a large number of transcriptomics datasets. The 

Integrated Deduced And Metabolism (IDREAM) formalism [74], improves on PROM by introducing 

GRNs constructed by EGRIN [75] with PROM to predict metabolic phenotypes across a variety of 

conditions. EGRIN first identifies conditionally co-regulated genes, and then uses linear regression to 

estimate the expression of a target gene from the mRNA levels of associated TFs. By integrating conditional 

co-regulation instead of relying solely on conditional probabilities inferred from gene expression profiles, 



IDREAM outperformed PROM over several metabolic networks and environmental conditions. Finally, 

TRFBA [76] integrates GRNs with GSMs by constraining the expression of a gene to be lower than the 

sum of the expression levels of its regulating TFs. Reaction flux bounds in the model are constrained 

proportionally to the expression of genes encoding the catalyzing enzyme, with TRFBA out-performing 

PROM at growth rate predictions. Thus, high-throughput omics data when used in conjunction with 

metabolic models can help increase the prediction fidelity, scope, and purview (Figure 1(c)). 

2.2.2.  Incorporating isotopic labeling data into flux elucidation 
13C-metabolic flux analysis (MFA) uses stable isotope tracing from substrates to intracellular metabolites 

to elucidate intracellular carbon flow in steady-state flux estimation [77]. An atom mapping model is used 

to describe the carbon transitions from substrates to products for all reactions in a metabolic network. 

Differences in label incorporation arise from differences in carbon transitions in alternative pathways for 

the conversion of substrate to metabolic intermediates. MFA is formulated as a nonlinear least-squares 

regression problem which minimizes the difference between predicted labeling pattern (estimated as a 

function of metabolic flux solved through a system of algebraic equations assuming metabolic and isotopic 

steady-states) and experimental labeling distributions. MFA has been further expanded to include 

isotopically nonstationary data [78]. Several experimental techniques can be used to determine the mass 

distribution vector (MDV) for each labeled metabolite including NMR [79], mass spectrometry [80], and 

tandem mass spectrometry [81]. Flux ranges obtained through MFA are generally narrower than those 

obtained using purely stoichiometric FBA. Amino acid fragments from hydrolyzed proteins are the most 

commonly measured metabolites, but in the last few years measurement of hydrolyzed glycogen and RNA 

has been shown to help better-resolve upper glycolytic and pentose phosphate pathway fluxes in both E. 

coli and CHO cells [82]. Alternatives to the confidence interval estimation [83] have also been proposed to 

estimate flux uncertainty [84]. Numerous open source and commercial software tools exist for assembling 

atom mapping models and performing MFA. As indicated in Table 1, METRAN [85], WUFlux [86], 

OpenFlux [87], and INCA [88] are free for educational use and have graphical user interfaces useable within 

MATLAB. 13CFLUX2 [89], OpenMebius [90], and GS-MFA [91] are also free for educational use, but 

offer a command line interface within MATLAB. FluxML is an open source program which provides a 

formalized markup language for organizing MFA stoichiometric and atom mapping models. 

Several current methodological advances have helped expand the scope of MFA and further narrow 

flux ranges, while parallel advances have allowed for network scale-up to the genome-scale. COMPLETE-

MFA [92] exploits that different positional labeling patterns of substrates tend to better resolve flux ranges 

in different portions of metabolism. Thus, elucidating flux ranges from multiple labeling experiments 

simultaneously, each with different substrate tracer scheme, results in the narrowest possible flux ranges 

across metabolism [92]. The method was demonstrated using 14 parallel labeling experiments in E. coli, 



and resolved exchange flux ranges for nine of 22 reactions across central carbon metabolism [93]. Steps 

have also been taken towards extending the application of MFA to include microbial consortia, as opposed 

to only monoculture organisms, as it has been demonstrated that model compartmentalization can be used 

to reliably elucidate fluxes for distinct E. coli mutant strains in co-culture [94]. 

A primary challenge to network scale-up in MFA has been the need for an organism-specific 

genome-scale atom mapping model. Although atom mapping can be gleaned from existing genome-scale 

mapping models [91, 95-97] or online repositories such as KEGG [41] and MetaCyc [98], manual curation 

tends to be time consuming, tedious, and prone to human error. Thus, a class of tools has been developed 

which identify putative mappings using parsimony [99-104]. These tools have demonstrated over 90% 

prediction accuracy with regard to mapping, making them useful for rapidly expediting the process of 

genome-scale atom mapping model construction. At the same time, algorithmic improvements have 

allowed for reduced computational time, facilitating MFA with large networks. Flux coupling analysis 

[105] was applied as pre-processing step to reduce the number of confidence intervals requiring evaluation. 

In the case of E. coli, this resulted in a 73% reduction in the number of reactions requiring confidence 

interval estimation in order to fully elucidate flux ranges at genome-scale [91]. This reduction in the number 

of calculated confidence intervals is particularly important in the case of non-stationary MFA, where the 

solution of large systems of ordinary differential equations (ODEs) (i.e., simultaneous evaluation of 8.4 x 

105 ODEs in the case of Synechocystis PCC 6803  [95, 106], for example) establishes a significant 

computational burden to confidence interval estimation. 

2.2.3.  Incorporating single nucleotide polymorphism data 

Integrating genomics marker data (mainly as single-nucleotide polymorphisms or SNPs) into metabolic 

models is a nascent field (see Figure 1(b)). Some of the earliest examples arose in the context of medical-

related studies. In the first, putative oncometabolites were predicted by analyzing loss- or gain-of-function 

mutations in enzymes from their metabolic pathways [107]. Nine types of cancer were analyzed and a total 

of 15 compounds and 23 substructures of potential oncometabolites were predicted. In the second, 

metabolomics data identified the functionality of SNPs in three members of Mycobacterium tuberculosis 

complex (MTBC) [108]. In this study, exometabolome data was used to constrain exchange fluxes and the 

activity of a SNP was computed by minimizing the flux difference between strains, the reference fluxes, 

and the effect of each SNP. 

A similar mechanistic approach towards deciphering the activity of a SNP using metabolic models 

is SNPeffect [109]. SNPeffect was used to explain differential growth rates, metabolite accumulation, and 

phenotypes in A. thaliana and P. trichocarpa as the result of point mutations in enzyme-coding genes. A 

parsimonious set of functional SNPs and their final effect on plant metabolism (i.e., increasing/decreasing 

reaction flux) was thus determined. Marker data has also been used to increase the capability of genomic 



selection models. Tong et al. [110] created A. thaliana accession-specific models by constraining the 

biomass flux proportionally to marker data. The genotype-specific reaction flux predictions thus obtained 

were used to augment genomic selection models, resulting in a ~33% increase in accuracy.  

2.3. Tools for computational metabolic pathway design 

Computational metabolic pathway design tools aim at identifying energy and carbon efficient pathways and 

thereby enable the production of a biomolecule either using enzymatic reactions available in nature or 

through designing de novo pathways using reaction rules derived from known reactions. These pathways 

can then be evaluated in the context of the production host’s metabolism by modifying existing or adding 

new entries in the model’s stoichiometric coefficients. Pathway design algorithms were recently reviewed, 

sorted by reaction network representation and search algorithm [111]. Since that review, notable efforts 

have been made to improve de novo pathway predictions by deriving simplified reaction rules which 

represent pathways involving complex molecules (e.g. oligosaccharides in glycosylation) [112] and 

applying mixed-integer linear programming (MILP) [113] or reinforcement learning (RL) [114] to guide 

the search in the complex uncharted chemical space. To enable broader uptake of pathway design tools, 

user-friendly web applications have been developed [115]. Another emerging direction for pathway design 

is unifying biochemical retrosynthesis with chemical total synthesis into a single workflow [116]. Here, 

enzymatic reactions are used to handle regioselectivity whereas chemical reactions are preferred in the 

context of avoiding toxic intermediate metabolites. However, computational tools to tackle this challenge 

remain elusive and many industrial-scale applications are still based on expert knowledge [116].  

3. Determining thermodynamic properties of metabolic reactions 

Incorporating thermodynamics information such as reaction and pathway reversibility can improve 

predictions from stoichiometric descriptions of metabolic networks [10] and also provide novel insights for 

rational design. For example, the  Max-min Driving Force (MDF) algorithm has been developed and applied 

to study the thermodynamic bottleneck of ED/EMP pathways [117], other glycolytic alternatives [118], and 

genome-scale metabolic networks [119]. The identified thermodynamic bottlenecks highlighted the 

opportunities to engineer alternative production pathways or swap co-factors for reaching a higher yield of 

the target product [120]. A recent study revealed the upper limits on Gibbs energy dissipation rate of E. coli 

and S. cerevisiae using a network-based approach [121]. The Gibbs energy dissipation rate was shown to 

govern the rewiring of intracellular metabolic fluxes when the cell increases glucose uptake rate. 

Applications such as these ones require knowledge of relevant thermodynamic properties which must be 

measured directly or estimated computationally. At the core of all thermodynamic analysis is the accurate 

prediction of the change in the Gibbs free energy of reactions Δ୰𝐺௢. Thus, in this section we focus on 



reviewing recent progress and tools developed within the past decade that improve the way of directly 

measuring or predicting Δ୰𝐺௢, as summarized pictorially in Figure 2.  

3.1. Data availability for standard Gibbs free energy change of reactions (𝚫𝐫𝑮𝒐) 

A collection of thermodynamic information of biochemical reaction, the Thermodynamics of Enzyme-

catalyzed Reactions Database (TECRDB) was published in 2004 and includes data for approximately 400 

reactions [12]. The number of reactions has since then been expanded to approximately 600 reactions 

(Figure 2(a)). Information on the free energy of formation of metabolites has also been compiled [122] from 

thermodynamics tables as additional data to expand the current breadth of knowledge. Despite the expanded 

TECRDB database and availability of free energy of formation for many metabolites, data availability is 

Figure 2. Overview of experimental approaches and computational tools to determine the 
thermodynamic properties of metabolic reactions. (a) 𝛥௥𝐺௢ information can be obtained from NIST
TECRDB, thermodynamics tables, and deuterium labeling metabolic flux analysis. (b) Group 
contribution methods expand the coverage of 𝛥௥𝐺௢ by decomposing metabolite into groups,
capturing the mixture of pseudoisomers, and applying regression analysis to estimate the Gibbs free
energy contribution of the functional groups. (c) Quantum thermochemical methods require
geometric conformers and solvation models as input to extrapolate the 𝛥௥𝐺௢ estimation further. 



still the major limitation for thermodynamics analysis of all enzymatic reactions (e.g. 11,437 reactions exist 

in the KEGG database alone). 

Experimentally elucidated metabolic fluxes with narrow ranges offer another data type for directly 

characterizing reaction thermodynamics of reactions (Figure 2(a)). Δ௥𝐺௢ can be determined by the forward 

and reverse flux ratios elucidated from metabolic flux analysis (MFA) and absolute metabolite 

concentrations (െ𝑅𝑇𝑙𝑛 ቀ
௩శ

௩ష
ቁ ൌ Δ୰𝐺௢ ൅ 𝑅𝑇𝑙𝑛ሺΠ𝑋௜

ௌ೔ሻ. In recent years, deuterium labeling has been 

incorporated into 13C-MFA (i.e. 13C/2H MFA) to constrain ranges of exchange fluxes so as to reliably 

estimate Δ௥𝐺௢ of reactions across central carbon metabolism [123]. Notably, Jacobson et al. resolved 

forward/reverse flux ratios for 22 central carbon metabolic reactions in Zymomonas mobilis [123]. This is 

an improvement over MFA with only 13C-labeled tracers, as previously using COMPLETE-MFA with 14 

parallel 13C-labeling experiments Crown et al. [93] were able to resolve only 9 of 22 reversible reactions in 

E. coli. Deuterium labeling in MFA has been further applied to understand the thermodynamic bottlenecks 

governing ethanol formation in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum 

[124], and study the Δ௥𝐺௢ of reactions in central carbon metabolism for mammalian cell line, S. cerevisiae, 

E. coli, and Clostridium cellulolyticum [125]. Because deuterium-incorporated MFA is used to elucidate 

fluxes for an entire metabolic network, it can be used with genome-scale metabolic network/atom mapping 

model [106] to provide additional Δ୰𝐺௢ information for reactions beyond central carbon metabolism in the 

future. 

3.2. Thermodynamic estimation of new reactions using group contribution method 

In order to expand the prediction of Δ୰𝐺௢ to the reactions that are not included in the experimental 

measurements, many computational tools have been developed [18]. Most of them rely on the concept of 

additive schemes of functional groups fitted from experimental data – group contribution method. It remains 

the most widely used method to extrapolate Gibbs free energy estimations. 

3.2.1.  Decomposing metabolites into groups 

The groups defined in the commonly used group contribution methods for enzymatic reactions are based 

on a predefined list of chemical substructures (Figure 2(b)). Specifically, all of them rely on the functional 

groups assembled by Mavrovouniotis [126]. Despite the fact that these groups were observed to have small 

standard mean square error based on cross-validation analysis, the decomposition method still has many 

limitations, as recently reviewed by Du et al. [18]. For example, many metabolites are non-decomposable 

due to incomplete coverage of groups; large variation exists in reactions sharing the same group changes 

(such as dehydrogenase reactions); the method is insufficient to estimate Δ୰𝐺௢ for reactions with no net 

change in functional groups (such as isomerase and kinase reactions), despite significant non-zero  Δ୰𝐺௢. 



Development of group decomposition schemes to more effectively predict the contribution of 

functional groups to chemical properties is an ongoing effort in the field. Many group decomposition 

schemes such as Joback, Klincewicz, Lydersen, Sedlbauer-Majer, and UNIFAC [127] have been applied to 

group contribution methods of chemical reactions. Salmina et al. showed that an extended group 

decomposition scheme can improve the prediction accuracy of the chemical and biochemical properties 

(e.g. toxicity and solubility) of a molecule [128]. Also, an automated non-overlapping fragmentation 

method was recently developed [129] to rapidly evaluate the accuracy of new group decomposition 

schemes. 

In addition to the manually derived non-overlapping group fragmentation schemes, many 

automated overlapping fragmentation methods have been developed, including molecular signatures [130],  

ISIDA fragment descriptors [131], ECFP fingerprints [132], and circular fingerprints [133]. These 

representations of molecules include the group interaction factors (i.e. the overlapped atoms/bonds between 

groups) within the group decomposition scheme, which are ignored in the component contribution method 

[134]. Overlapping fragmentation methods have been applied extensively in machine learning algorithms 

to extract features from chemical molecules [135]. Recently, Alazmi et al. [136] showed that molecular 

fingerprints can be used to improve Δ୰𝐺௢prediction accuracy. 

3.2.2.  Ionization and tautomer 

The exact protonation state of a metabolite inside of a cell is typically a mixture of pseudoisomers with 

different protonation states (Figure 2(b)). The presence of pseudoisomers further confounds group 

contribution methods, as pseudoisomers tend to exhibit often quite different thermodynamic properties 

[137]. Group contribution methods have thus been modified by capturing the intracellular mixture of 

pseudoisomers using a Boltzmann distribution [138]. The difference between the standard Gibbs free 

energy of formation of a compound (Δ𝐺௙
௢) and the Gibbs free energy of formation of the mixture (Δ𝐺௙

ᇱ௢) 

can be calculated using Inverse Legendre Transform as a function of acid-base dissociation constant 𝑝𝐾௔ 

[134]. 

Since 𝑝𝐾௔ is a key parameter to study pharmacokinetics of drug molecules, several datasets are 

publicly available to benchmark 𝑝𝐾௔ prediction accuracy from computational tools [139]. A number of 

studies evaluated the relative accuracy among these computational tools including ChemAxon Marvin 

[140], Epik  [141], ACD/Labs Percepta Classic [142], and Moka [143]. Marvin has demonstrated the 

highest prediction accuracy. Thus, group contribution methods still rely on Marvin to predict 𝑝𝐾௔. 

However, Du et al. [144] compared Marvin predictions with values available in IUPAC SC-database and 

found deviations resulting from charge inconsistencies and errors in calculating 𝑝𝐾௔values for nitrogenous 

moieties that were significant enough to provide inaccurate protonation states. Moving forward, a number 

of open source tools [145] are available that use machine learning algorithms such as neural networks and 



random forests with the goal of improving the 𝑝𝐾௔ prediction accuracy. Experimental methods such as 

UV–vis spectroscopy, NMR spectroscopy, and X-ray crystal structure of the tautomer in protein-ligand 

complexes have been applied to measure the 𝑝𝐾௔ directly. 

Similar to the effect of different protonation states, metal-ion binding (e.g. Mg+ binding with ATP) 

and tautomers (e.g. keto-enol tautomerism) also affect a metabolite’s standard Gibbs free energy of 

formation. Recently, Du et al. [144] applied a machine learning method to predict the magnesium-ion 

binding constants (𝑝𝐾ெ௚) to correct reaction-equilibrium constants (𝐾௘௤). However, tautomers have yet to 

be considered in the group contribution method and can thus serve as a potential research avenue since 

currently, only the most stable (or dominant) form of any metabolite is considered during the Gibbs free 

energy calculation by Jankowski et al. [146]. In principle, the distribution of tautomers can similarly be 

estimated based on the acid-base dissociation constant (𝑝𝐾௔ሻ. 

3.2.3.  Regression analysis and confidence intervals 

Because group contribution assumes an additive schema of functional groups, linear regression is an often-

applied method to estimate the Gibbs free energy contribution of groups Δ𝐺௚௢ (Figure 2(b)). The confidence 

interval of fitted Δ𝐺௚௢ and predicted Δ୰𝐺௢ can be calculated using the covariance matrix from model fitting. 

Other regression methods such as Ridge and Lasso regression have been applied by Du et al. [144] 

demonstrating the smallest prediction error. However, confidence interval analysis from biased regression 

models such as Ridge and Lasso relies on bootstrap-based methods and often produce inaccurate 

uncertainty estimations. Credible intervals from Bayesian inference provide an alternative metric to 

confidence intervals, and has been shown to provide reliable uncertainty estimation [84]. 

3.3 Thermodynamic estimation of new reactions using quantum mechanics 

Even though group contribution methods extrapolate the Gibbs free energy estimation for more reactions, 

the coverage is still limited by the number of groups present in the experimental data. For example, out of 

the 163 groups defined in component contribution, only 92 can be estimated from linear regression in the 

component contribution method [134]. Quantum thermochemical methods have been proposed recently to 

address limitations in functional group coverage. 

One quantum-based approach relies on directly modeling the metabolite–water complex. Jinch et 

al. [147] calculated the absolute Gibbs energy of each metabolite–water complex using the ORCA quantum 

chemical software [148]. Adding to the complexity of multiple protonation states addressed in group 

contribution method, quantum mechanics required two more inputs (Figure. 2(c)): (1) multiple geometric 

conformers which exist for a protonation state, and (2) solvation effect from the hydrogen bonding between 

metabolites and solution. Jinch et al. [147] applied the ChemAxon conformation tool [140] to generate 

geometric conformers that approximate the minimal energy conformations of each metabolite while 

applying both explicit water model (PACKMOL [149]) and implicit water model (COSMO [150]) to 



account for solvation effects. Prediction errors of the reactions catalyzed by isomerases, transferases, and 

lyases were comparable to those obtained by group contribution method. This method was applied to 

compare the reduction potential of redox half-reactions without cofactors, leading to the hypothesis that 

NAD/NADP is the primary electron carrier because its physiological reduction potential range (i.e., -500 

mV to -130 mV) matches the requirement of reversible redox reactions and irreversible redox 

transformations in central carbon metabolism [151]. 

Another quantum-based approach is to model the gas-phase thermodynamics and solvation in two 

independent steps. First, Hadadi et al. [152] demonstrated the calculation of the gas-phase thermodynamics 

of a few metabolites using the TURBOMOLE suite [153]. COSMOconfX [154] and Spartan'14 Parallel 

Suite [155] were used to search for geometric conformers. Next, Panayiotou et al. [156] developed a 

solvation model using the equation-of-state approach to account for the changes of Gibbs free energy from 

gas to aqueous solutions. The two-step quantum-based thermodynamic approach provided a way to 

calculate the Gibbs free energy of reactions at a broad range of conditions. The partial solvation parameter 

approach applied by Panayiotou et al. [156] can be used to estimate enthalpy and entropy of hydrations as 

well as the mechanism of hydration, which can be applied to model solvation at different temperatures and 

pressures.  

Due to the significant computational cost of quantum mechanics, machine learning methods have 

started to be integrated with quantum mechanics to enable the high-throughput prediction. For example, in 

another study by Jinich et al. [157] demonstrated that Gaussian process models can be used to efficiently 

estimate the redox potential of 315,000 reactions. Similarly, Du et al. [144] built a machine learning model 

to correlate standard entropy change Δ୰S௢  with the molecular properties of substrates/products of a reaction 

(i.e. the number of atoms, partial charge of atoms, and other molecular descriptors of the metabolites) using 

Lasso regression. Gibbs free energy at a different temperature is then approximated as a function of Δ୰S௢ 

and the temperature. 

4. Incorporating Kinetic Descriptions of Metabolism 

Kinetic descriptions of metabolism use kinetic rate expressions to link reaction flux to the abundance of 

both intracellular metabolites and enzymes in order to predict metabolic response to genetic and 

environmental perturbation. Here we discuss two distinct sub-classes of models that leverage reaction 

kinetics to predict different aspects of the metabolic phenotype. The first sub-class (herein referred to as 

mechanistic models) captures allosteric regulations detailed within rate expressions. [158]. Networks 

described by mechanistic models are generally smaller because of challenges related to the paucity of 

available kinetic parameter data and difficulties in parameterization  [159]. The second sub-class is resource 

allocation models, which have been developed for the prediction of genome-wide protein abundance. An 

extension of stoichiometric models of metabolism, these models incorporate simplified kinetic descriptions 



into metabolic constraints by including rate expressions for both enzyme catalyzed reactions and 

macromolecular synthesis. However, they currently do not capture detailed substrate-level regulatory 

mechanisms [160]. Table 1 compares the network and data requirements for parameterization, forms of 

kinetic descriptions, and types of information predicted by mechanistic kinetic model and resource 

allocation models. In this section, we discuss recent tools and progress that has been made for these two 

classes towards the realization of comprehensive metabolic phenotype prediction through kinetics. 

 

Table 1: Similarities and differences in network and data requirements for the construction of 

mechanistic kinetic models of metabolism and resource allocation models as well as commonly used 

kinetic descriptions and a summary of their predictive capabilities 

Model Requirements Mechanistic kinetic 

models 

Shared Attributes Resource allocation 

models 

Network requirements 

Reduced stoichiometric 
matrix 

Allosteric regulatory 
network 

 

 

Genome-scale 
reconstruction 

Transcriptional regulatory 
network 

 

Data used in 
parameterization 

Metabolomics Fluxomics 

Proteomics 

Genome/protein sequence 

Protein structure 

Growth rate 

 

Kinetic descriptions 

 

Lin-log 

Log-lin 

Elementary 
decomposition 

Michaelis-Menten 

Hill kinetics 

Convenience kinetics 

Generalized mass action 

 

 First order approximation 

Predictive capabilities Metabolite pool Metabolic flux Protein abundance 

 

4.1. Mechanistic kinetic models of metabolism 



Mechanistic kinetic models of metabolism offer the promise of enhancing predictions for multiple aspects 

of metabolic phenotype (i.e., metabolome, fluxome, proteome) and thus have the potential to accelerate the 

design-build-test-learn cycles for metabolic engineering [161]. Their inclusion of mechanistic rate 

expressions via established rate law formalisms elevates the predictive capabilities of mechanistic kinetic 

models beyond those of pure stoichiometric models and facilitates quantitatively relating reaction flux to 

enzyme level and metabolite concentration [162]. However, improved product yield, titer, and production 

rate predictions are not without cost. Significant increases in experimental data requirements compared to 

stoichiometric models, challenges associated with model assembly and parameterization, and extensive 

difficulties related to follow-up analysis are all present hurdles to kinetic model development [158]. In this 

section, we describe the kinetic formalisms and associated data requirements available for use in kinetic 

models, the algorithm choices available for identifying kinetic parameters, improvements that have been 

made to allow for confidence interval estimation and subsequent follow-up analyses, and framework 

extensions that enable kinetic modeling to discover substrate-level regulations active in metabolism. 

4.1.1.  Selection of kinetic formalism and data requirements 

A number of mechanistic or approximate kinetic formalisms exist which can be used to construct kinetic 

models of metabolism, each with advantages and disadvantages in terms of ease of parameterization, 

specific data requirements, and predictive capability. In the absence of experimental data of kinetic rate 

constants, identification of in-vivo kinetic parameters generally requires the solution of a non-linear 

programming problem (NLP), which fits model predictions to temporal metabolomics and/or fluxomics 

data across a range of genetic/environmental conditions [163]. The formalism chosen for model 

construction is important because it influences the types of data that are required for parameterization, the 

predictive capability of the model, and the parameterization methods available for use. Interested readers 

are referred to Saa et al. [159] for detailed descriptions of the kinetic formalisms described in brief below.  

Rate expressions linearized around a reference point are convenient because they bypass the need 

to solve a non-convex optimization problem associated with kinetic parameterization [164]. Examples of 

this approach include the loglin [165] and linlog [166] formalisms, and generalized mass action kinetics 

(GMA) [167] which provide alternative linear approximations. Kinetic models consisting of linearized rate 

expressions require steady-state fluxomics and metabolomics data for parameterization [168, 169], Mass 

Action Stoichiometric Simulation (MASS) parameterization has been developed to parameterize GMA 

models from a single set of metabolomics data [164, 170]. Its capabilities to predict adequately responses 

to metabolite level perturbation was demonstrating using a red blood cell model [171]. A drawback to these 

formalisms is predictive capability tends to be localized around the reference state, making them ill-suited 

to predict metabolic response to enzyme level perturbation [159].  



In contrast, kinetic formalisms such as Michaelis-Menten (MM) and elementary decomposition 

kinetics preserve the fundamental mechanism of enzymes without approximation. Kinetic models using the 

MM rate expressions benefit from kinetic information consolidated within databases such as BRENDA 

[172] and KiMoSys [173], and do not suffer from the localized predictive limitations associated with 

linearized rate expression. However, large numbers of kinetic parameters are unavailable in databases and 

still require identification, introducing the challenge of non-convex optimization using a combination of 

temporal metabolomics and/or steady-state fluxomics as training data. Finally, elementary decomposition 

kinetics offers a full mechanistic kinetic description which accounts for substrate binding, catalytic event, 

product release, and substrate level inhibitions and activations [174]. Elementary decomposition kinetic 

models require fluxomic data across a range of genetic or environmental conditions for parameterization.  

4.1.2.  Algorithm choices for identifying kinetic parameters 

As described above, identification of in-vivo kinetic parameters requires the solution of a nonlinear 

programming problem (NLP). Overall the use of local optimization has been limited because of the non-

convexity of the solution space when non-linear rate expressions are used [175]. Several algorithms using 

metaheuristic methods have therefore been developed and used for parameterization of kinetic models of 

metabolism. Scatter search [176],  particle swarm [177], and genetic algorithm [178] optimization are 

evolutionary algorithms relying on recombination of parameters from favorable generational models to 

assemble a model that best recapitulates training data as evaluated by an objective function (e.g., residual 

sum of squares). Current implementations of particle swarm optimization [179] and genetic algorithms 

[180, 181] have been used to parameterize highly detailed MM kinetic models of core metabolism and 

demonstrate improved predictive capabilities over their predecessors [182, 183]. Scatter search 

optimization [184-186] and genetic algorithm optimization [187, 188] have recently been introduced within 

the EM paradigm. Notably, merging the EM method with metaheuristic optimization has resulted in 

successful parameterization of the largest mechanistic kinetic model to date (i.e., k-ecoli457, containing 

457 reactions, 337 metabolites, 295 allosteric regulations, and 5,239 elementary kinetic parameters), but 

parameterization time for that model exceeded 1,000 hours [187]. 

  A preprocessing step has been introduced into EM to reduce the computational expense. Greene 

et al. applied local stability analysis within EM to preclude unstable models from the final ensemble and 

evaluate training data in a logical order based on similarity to the wild-type strain [189]. This strategy 

resulted in a 71% speed-up in E. coli core model parameterization, but the method does not scale beyond 

core metabolism [189].  

 Bayesian approaches have been adopted as a means to parameterize kinetic models as well. The 

Approximate Bayesian Computation and General Reaction and Assembly Platform (ABC-GRASP) uses 

elementary decomposition kinetic expressions [190, 191], and employs Approximate Bayesian 



Computation to bypass the need for explicit evaluation of a likelihood function. Although its application to 

construct a small kinetic model of the mammalian methionine cycle demonstrated tractability for small 

networks, scalability limitations of Monte-Carlo-based sampling currently prevent its use for large-scale 

networks [159]. Bayesian principles have also been applied to large-scale networks using linearized kinetic 

rate expressions with the lin-log formalism [169]. Because of a reduced computational burden associated 

with evaluating linearized kinetic rate expressions, the application of Bayesian inference by St. John et al. 

[169] was demonstrated to be scalable to large networks and useful for follow-up metabolic control analysis 

(MCA) [192]. 

One way to circumvent the challenges associated with the parameterization of large-scale kinetic 

models is to devise customized decomposition approaches tailored to the kinetic formalism adopted. Small 

scale networks have been parameterized using computationally expensive forward sensitivity analysis as a 

means for gradient update and optimality assessment [193], but so far only K-FIT  has demonstrated 

network scalability to near-genome scale models [194]. The decomposition approach K-FIT circumvents 

computational inefficiencies associated with metaheuristic methods [187] and scalability issues of Bayesian 

approaches [159]. The method relies on anchoring elementary kinetic parameters to a reference state flux 

distribution, ensuring model feasibility as the algorithm traverses the parameter space. At each iteration, 

steady-state fluxes and concentrations for the perturbed networks are inferred mostly by iterating between 

enzyme and metabolite balances forming respectively linear systems of equations. Analytical gradient 

evaluation serves two additional purposes: first, it permits optimality assessment and it allows for follow-

up sensitivity analysis on kinetic parameters. 

4.1.3.  Improvements for confidence interval analysis of kinetic parameters 

Confidence interval estimation allows for follow-up analysis to identify rational design targets. Through 

confidence interval analysis, identifying both regulatory mechanisms which significantly limit flux and 

perturbation candidates for targeted overproduction strategies is possible [194]. Multivariate statistics has 

been adopted as a means for determining confidence intervals in ensembles of kinetic models within the 

EM paradigm. Hameri et al. [195] demonstrated that bootstrapping, Bonferroni, and exact normal methods 

used capture parameter interdependencies, and thus offer a more accurate confidence interval estimation 

compared to univariate confidence interval estimation. Within K-FIT, local sensitivity analysis according 

to the variance/covariance matrix was adopted to quantify parameter uncertainty [196]. 

Machine learning has also been introduced to reduce parameter uncertainty in sampling-based 

methods. Within the ORACLE framework [197], a decision tree algorithm was introduced to reduce kinetic 

parameter uncertainty ranges (iSHRUNK) [198]. Whereas most parameters remain unresolved upon 

application of iSHRUNK to kinetic models of Pseudomonas putida [199] and E. coli [200], reduced 

parameter uncertainty for a handful of reactions led to predictions for strain robustness and 1,4-butanediol 



overproduction, respectively. Additionally, Inverse Metabolic Control Analysis (IMCA) has introduced 

matrix inversion operations to quantifying the sensitivity of enzyme level to changes in metabolite 

concentration, expanding the types of sensitivity analysis possible with kinetic models [201]. 

4.1.4.  Elucidating allosteric mechanisms 

For many organisms, the substrate-level regulatory network is not sufficiently described to allow for a 

complete kinetic description of metabolism. This difference is highlighted by the comparison of the 

regulatory network of the recent core kinetic model of C. thermocellum (i.e. k-ctherm118) [202] and the 

recent core kinetic model of E. coli metabolism (i.e. k-ecoli74) [196]. k-ctherm118 contained 22 substrate-

level regulations identified in BRENDA [172] and from literature from across all clostridia, whereas the 

smaller E. coli network contained more (i.e., 54) E. coli-specific inhibitions identified in databases. Two 

primary methods for identifying allosteric regulation have recently emerged to address this information 

disparity. Hackett et al. developed systematic identification of meaningful metabolic enzyme regulation 

(SIMMER) as a means to hypothesize mechanisms assessing the statistical significance of fitness 

improvement in models fitted with regulation versus those without [203]. Although data intensive 

(requiring fluxomic, metabolomic and proteomics datasets across a range of growth conditions to fit rate 

expressions), the value of the method was demonstrated in  S. cerevisiae metabolism [203]. In that study, 

three new substrate-level regulations were identified and confirmed experimentally, including alanine 

inhibition of ornithine transcarbamylase, phenylpyruvate inhibition pyruvate decarboxylase, and citrate 

inhibition of pyruvate kinase. An ensemble-based approach [204] has also been employed to elucidate 

regulatory mechanisms, assessing the improvement in fitness of an ensemble of models to training data 

upon inclusion of a substrate-level regulation. The efficacy of the method was demonstrated by 

Christodoulou et al., who revealed feedback inhibition of glucose-6-phosphate-1-dehydrogenase by 

NADPH as the primary mechanism controlling E. coli’s pentose phosphate pathway reserve flux response 

to oxidative stress [204]. 

4.2. Resource allocation models 

Resource allocation models account for both metabolites and macromolecules and leverage approximate 

kinetic information for events which occur at multiple time-scales to make inferences about enzyme 

limitations in metabolism. Simplified kinetic descriptions allow for the estimation of kinetic parameters at 

the genome-scale, which are used as metabolic constraints that allow for prediction of flux, growth, and 

enzyme abundance. Generally, a single turnover number is estimated for each reaction in the network [160]. 

Two distinct levels of description have been used recently to understand resource allocation in living cells: 

phenomenological models that describe a snapshot of metabolism and do not account for expression 

machinery in their formulation, and multi-scale models that describe events spanning multiple time-scales 

including metabolism and macromolecular expression [160]. 



4.2.1. Phenomenological Methodologies 

In recent years MetabOlic Modeling with ENzyme KineTics (MOMENT) [205] was introduced as an 

improvement over flux balance analysis with molecular crowding (FBAwMC) [206]. FBAwMC lumps 

information on enzyme volume and the effective catalytic rate into a single parameter, which is used in 

constraints to place an upper bound on reaction flux [207]. A volumetric capacity constraint places an upper 

bound on the total volume enzymes in a cell can occupy [207]. MOMENT simplifies the FBAwMC 

framework by recasting kinetic constraints in terms of only first order kinetics instead of volumetric 

capacity. By removing crowding information from constraints and using a single turnover rate per reaction 

in a metabolic network, MOMENT demonstrated a statistically significant improvement in model predicted 

flux and gene expression over FBAwMC in E. coli under exponential growth conditions [205]. The GECKO 

method has also been recently introduced to incorporate catalytic rate constants into enzyme usage 

constraints to predict an enzyme level/metabolic flux pair [208]. Rather than fitting parameters to data, 

GEKCO gleans all catalytic rate constants from databases [208]. The method has been shown to reduce 

flux ranges upon FVA by 60% compared to traditional stoichiometric FVA in S. cerevisiae [208]. 

4.2.2. Multi-scale methodologies 

The expansion of resource allocation models to link the composition of the entire cellular proteome and 

macromolecular machinery to metabolism using kinetics, genome sequence, and biomass composition via 

stoichiometric constraints has enabled a more complete picture of cell behavior [160]. Two similar multi-

scale methodologies have been developed in parallel: Resource Balance Analysis (RBA) [209], and multi-

scale models of metabolism and macromolecular expression (ME) [210]. Through the incorporation of 

simplified kinetics and detailed accounting of macromolecular machinery into a constraint-based 

optimization problem, these methodologies have been shown to predict proteome allocation for a number 

of bacteria [211-214]. Dynamic ME model prediction has also been interwoven with metaheuristic 

parameterization, allowing for the prediction of transient proteome allocation in response to system 

perturbations [215]. ME models application has been further expanded towards rational strain design by 

being used together with the OptKnock strain design tool [216] to more accurately predict proteome and 

flux phenotype associated with rational design strategies [217].  

The primary challenges in multi-scale model construction have been ill-conditioning of the 

stoichiometric matrix due to the many orders of magnitude differences in the stoichiometric coefficients of 

various metabolites and macromolecules.  Furthermore, of in-vivo turnover rates are difficult to establish 

in the absence of experimental information. The first challenge was addressed through the use of quad-

precision LP solvers [218-220]. Initially the second was addressed by identifying a single universal turnover 

number that could be applied to all reactions in the network to reasonably predict growth rate across a range 

of experimental conditions [211, 212]. However, more recently fitting parameters using steady-state flux 



and metabolomics datasets [221] and use of machine learning with enzyme properties a features and 

turnover rate as response variables [222] have each yielded ME models with improved predictive 

capabilities in E. coli.  

Notable applications of multi-scale models that extend beyond simply comparing model-predicted 

resource allocation with experimental proteomics include hypothesis generation of transcriptional response 

to iron limitation [223] and acid stress [224] in E. coli. Additionally, the FoldME model of E. coli introduced 

proteostasis mechanisms into protein folding constraints that enabled characterization of protein 

thermostability within the ME framework and captured the response of both protein expression and growth 

rate to temperature [225]. The success of resource allocation models in predicting non-intuitive biology and 

aiding in rational strain design has prompted the development of standardized toolboxes for both RBA 

[226] and ME [227] model construction and evaluation. 

 

5. Discussion 

In this review, we highlighted   a variety of recent stoichiometric, thermodynamic, and kinetic 

methodologies  that aim to predict of how metabolism and growth are affected by both external 

environmental factors and internal genotypic perturbations. . Table 2 provides a summary of the approaches 

and tools discussed in this review and includes the types of tasks they perform, licensing availability, and 

data requirements.  Progress towards integrating  known mechanisms onto modeling frameworks to predict 

new phenotypes  and developing new frameworks to pinpoint undiscovered mechanisms are continuing to 

advance. Frameworks such as whole-cell modeling and multi-scale resource allocation models integrating 

multi-omics data, even though highly data intensive, are quite  promising. . These frameworks are supported 

by developments in experimental characterization, parameterization approaches, and computational 

efficiency. Advances in this area to incorporate more complex kinetic frameworks and mechanisms could 

have wide-reaching impact.  

The recent inclusion of structural metabolite and enzyme information in metabolic models provides 

a new layer of information that can be leveraged in metabolic engineering.  Recon3D is the first example 

of a stoichiometric model which includes structural information for proteins and metabolites as model 

features [228]. This allows for modelers to understand and predict not only the effect of a gene up/down-

regulation, but also contextualize the effect of a point mutation on the overall metabolic outcome. The 

methods of leveraging structural data are not limited to stoichiometric modeling, as Heckmann et al. have 

integrated structural information with machine learning to parameterization ME models with reaction-

specific kinetic parameters [222]. Moving forward, the vast amounts of structural information contained 

within the Protein Data Bank (as of 2020 approximately 167,500 protein structures) [229] could be used to 

enhance metabolic models by identifying allosteric mechanisms and improving predictions for data-poor 



non-model organisms. When considered with two recent studies that create whole-cell models that draw 

from data from thousands of publications – Mycoplasma genitalium [230] and E. coli [22] – we anticipate 

the trends of incorporating both omics and structural data to continue. 

The significant contributions we discussed have been facilitated by algorithmic advances in 

mathematical optimization solvers. Solvers such as IBM ILOG CPLEX Optimization Studio [231], Gurobi 

Optimizer [232], SCIP [233] and other solvers are continually being improved. More specialized solvers 

such as SoPlex [234] and the quadruple-precision Fortran 77 optimization solver by Ma and Saunders [218] 

(implemented in the COBRA toolbox) are also instrumental in many of the calculations embedded in the 

developed tools.. SoPlex that performs iterative refinement of the solution has played an important role in 

enabling the resource allocation model evaluation, allowing Reimers et al. [212] to solve ill-conditioned 

LPs to describe diurnal cyanobacterial growth. Kinetic parameterization algorithms such as K-FIT are also 

potentially transformative by accelerating the reconstruction workflow. A 1,000-fold decrease in 

parameterization time [194] (as compared to the metaheuristic parameterization scheme used by Khodayari 

and Maranas [187]) was achieved for a near genome-scale kinetic model. Ultimately, the development of 

reliable and accelerated solution methods is of great importance and provides opportunities for collaborative 

work among mathematicians, computer scientists, systems biologists, and metabolic engineers. 

Lastly, advances are needed in data sharing, accuracy, and annotations in databases and 

standardization in description of metabolic models. These considerations are critical to sustain advances in 

metabolic modeling. Even though the usual practice is to publish results in agreement with experiment, 

divergent observations can be  very valuable for the discovery of missing or poorly described biology.. 

With the flood of data being generated by high-throughput methods and policies on data sharing, tools need 

to be developed to aid ease of use, quality checking and discoverability of available information. A large 

amount of data entered into databases unfortunately still contains omissions and errors [235] thus 

necessitating automated checking and gate-keeping procedures.. Finally, standardization remains a major 

challenge for the effective use and sharing of metabolic models. Efforts such as MIRIAM guidelines [236], 

tools such as MEMOTE [56], languages such as SBML [237] and BioPAX [238], and resolution services 

such as Identifiers.org [239] have helped significantly  but increased effort and adherences to 

standardization is encouraged. 

 

Table 2: Recent approaches and tools that enable metabolic modeling 

Algorithm / 
Method Task License Accessibility Website Data Requirement 

MEMOTE 
Model testing 
and validation 

Free openCobra https://github.com/opencobra/memote 

genome-scale model or 
reconstruction, 
experimetnal growth and 
genetic perturbation data 



MIP Model testing 
and validation Free MATLAB,  Python N/A 

genome-scale model, 
metabolite formulas, 
metabolite charges 

BOFdat 
Generate 
biomass 
objective Free Python https://github.com/jclachance/BOFdat 

genome-scale model, 
biomass macromolecular 
composition 

E-flux2 flux balance 
analysis Free MATLAB,  java N/A 

genome-scale model, 
transcriptomics, 
fluxomics 

pFBA flux balance 
analysis Free MATLAB, Python https://opencobra.github.io/cobratoolbox/stable/ genome-scale model 

LBFBA flux balance 
analysis Free GAMS + CPLEX/gurobi https://academic.oup.com/bioinformatics/article/34/22/3882/5033386#supplementary-data 

genome-scale model, 
transcriptomics 

MADE FBA to extract 
subnetworks Free MATLAB + MILP solver https://academic.oup.com/bioinformatics/article/27/4/541/198624 

genome-scale model, 
transcriptomics 

Samal et al SGL 
EFM + SGL to 
extract 
subnetworks Free R http://www.abi.bit.uni-bonn.de/index.php?id=17 

genome-scale model, 
transcriptomics 

PoCaB 
Compute 
extreme currents 
(ECs) Free Database, free to download http://pocab.cg.cs.uni-bonn.de/gallery.html genome-scale model 

MOOMIN 

Identifies 
'feasible 
phenotypes' by 
analysing 
differential 
expression data Free 

MATLAB/Julia + MILP 
solver github.com/htpusa/moomin 

genome-scale model, 
transcriptomics 

PROM 
Constructs 
GRNs using 
omics data Free MATLAB https://www.igb.illinois.edu/labs/price/downloads/ 

genome-scale model, 
transcriptomics 

IDREAM 

Uses GRNS to 
predict 
metabolic 
phenotypes Free Cobra toolbox N/A 

genome-scale model, 
transcriptomics 

EGRIN 
Constructs 
GRNs using 
omics data Free N/A http://egrin2.systemsbiology.net/index/ Transcriptomics 

trFBA Integrates GRNs 
with GSMs Free MATLAB + Cobra toolbox http://sbme.modares.ac.ir/trfba-2/ 

genome-scale model, 
transcriptomics 

MASS Dynamic 
modeling Free N/A N/A 

genome-scale model, 
metabolomics 

iReMet-flux 

Predicts 
phenotypes by 
intergating 
metabolomics 

Code 
from 
authors on 
request  https://pubmed.ncbi.nlm.nih.gov/27587698/ 

genome-scale model, 
metabolomics 

MetDFBA Dynamic 
modeling N/A N/A N/A 

genome-scale model, 
metabolomics 

TREM-Flux 

Predicts 
phenotypes by 
intergating 
metabolomics 
and 
transcriptomics Free MATLAB + solver N/A 

genome-scale model, 
metabolomics, 
transcriptomics 

uFBA 

Predicts 
phenotypes by 
intergating 
metabolomics Free 

INCA 
https://pubmed.ncbi.nlm.nih
.gov/24413674/ N/A 

genome-scale model, 
metabolomics 

Nam et al.  

Predicts 
phenotypes by 
intergating 
genomics Free MATLAB N/A 

genome-scale model, 
transcriptomics 

Oyas et al. 

Predicts 
phenotypes by 
intergating 
metabolomics 
and genomics Free N/A N/A 

genome-scale model, 
metabolomics, genomics 

SNPeffect 

Predicts 
phenotypes by 
intergating 
metabolomics, 
transcriptomics, 
and genomics Free 

GAMS/Python + 
CPLEX/gurobi N/A 

genome-scale model, 
metabolomics, 
transcriptomics, 
genomics 



Tong et al. 

Genomic 
selection by 
integrating 
genomics Free MATLAB+R https://github.com/Hao-Tong/netGS 

genome-scale model, 
metabolomics, genomics 

MBA FBA to extract 
subnetworks Free Cobra toolbox 

https://opencobra.github.io/cobratoolbox/stable/modules/dataIntegration/transcriptomics/MBA
/index.html 

genome-scale model, 
transcriptomics 

mCADRE FBA to extract 
subnetworks Free Cobra toolbox 

https://opencobra.github.io/cobratoolbox/latest/modules/dataIntegration/transcrip
tomics/index.html 

genome-scale model, 
transcriptomics 

FASTCORE FBA to extract 
subnetworks Free Cobra toolbox 

https://opencobra.github.io/cobratoolbox/latest/modules/dataIntegration/transcrip
tomics/index.html 

genome-scale model, 
transcriptomics 

FASTCORMIC
S 

FBA to extract 
subnetworks Free MATLAB 

https://wwwen.uni.lu/research/fstm/dlsm/research_areas/systems_biology/software/fastcormic
s 

genome-scale model, 
transcriptomics 

GIMME FBA to extract 
subnetworks Free Cobra toolbox 

https://opencobra.github.io/cobratoolbox/latest/modules/dataIntegration/transcriptomics/index.
html 

genome-scale model, 
transcriptomics 

GIM3E FBA to extract 
subnetworks Free CobraPy http://opencobra.sourceforge.net/ 

genome-scale model, 
metabolomics, 
transcriptomics 

Richelle et al.  
Data-driven 
metabolic tasks 
definition Free Cobra toolbox https://github.com/opencobra/cobratoolbox 

genome-scale model, 
transcriptomics 

iMAT FBA to extract 
subnetworks Free Cobra toolbox 

https://opencobra.github.io/cobratoolbox/latest/modules/dataIntegration/transcriptomics/index.
html 

genome-scale model, 
transcriptomics 

INIT FBA to extract 
subnetworks Free Cobra toolbox 

https://opencobra.github.io/cobratoolbox/latest/modules/dataIntegration/transcriptomics/index.
html 

genome-scale model, 
transcriptomics 

tINIT FBA to extract 
subnetworks N/A N/A N/A 

genome-scale model, 
proteomics 

CORDA FBA to extract 
subnetworks Free Python https://pypi.org/project/corda/ 

genome-scale model, 
transcriptomics 

RegrEx FBA to extract 
subnetworks Free MATLAB N/A 

genome-scale model, 
transcriptomics 

cFBA 
FBA for 
community 
modeling Free Python N/A Genome-scale model 

OptCom 
FBA for 
community 
modeling Free Python https://resendislab.github.io/micom/micom.html#micom.community.Community.optcom Genome-scale model 

CASINO 
FBA for 
community 
modeling N/A N/A N/A Genome-scale model 

SteadyCom 
FBA for 
community 
modeling Free COBRA toolbox 

https://opencobra.github.io/cobratoolbox/stable/modules/analysis/multiSpecies/SteadyCom/in
dex.html Genome-scale model 

DMMM 

FBA for 
dynamic 
community 
modeling N/A N/A N/A Genome-scale model 

dOptCom 

FBA for 
dynamic 
community 
modeling N/A N/A N/A Genome-scale model 

COMET 

FBA for 
dynamic 
community 
modeling Free MATLAB/Python https://github.com/segrelab/comets Genome-scale model 

BacArena 

FBA for 
dynamic 
community 
modeling Free R https://cran.r-project.org/package=BacArena Genome-scale model 

dynamic FBA Dynamic flux 
balance analysis N/A N/A N/A Genome-scale model 

Tobalina et al. 
FBA for 
community 
modeling N/A MATLAB + CPLEX N/A Metaproteomics data 

Henry et al.  

FBA for 
community 
modeling and 
model 
reconstruction Free N/A http://www.theseed.org/models/ Annotated genome 



CoMiDa 
FBA for 
community 
modeling 

Non-
commerci
al use 
Only Python https://github.com/borenstein-lab/CoMiDA Genome-scale model 

METRAN 
13C-MFA MIT N/A N/A 

13C-labeling data, 
exchange flux, growth 
rate 

INCA 
13C-MFA 

Free for 
education
al use MATLAB https://mfa.vueinnovations.com 

13C-labeling data, 
exchange flux, growth 
rate 

13FLUX2 
13C-MFA 

Free for 
education
al use Linux, stand alone https://www.13cflux.net 

13C-labeling data, 
exchange flux, growth 
rate 

GS-MFA 
(stationary) 13C-MFA Free MATLAB https://github.com/maranasgroup/SteadyState-MFA 

13C-labeling data, 
exchange flux, growth 
rate 

GS-MFA 
(nonstationary) 13C-MFA Free MATLAB https://github.com/maranasgroup/Nonstationary-MFA 

13C-labeling data, 
exchange flux, growth 
rate 

WUflux 
13C-MFA Free MATLAB http://www.13cmfa.org 

13C-labeling data, 
exchange flux, growth 
rate 

FluxML 

Standardized 
13C-MFA 
markup 
language Free C++ https://github.com/modsim/FluxML 

Network stoichiometry, 
atom transitions, labeling 
data 

OpenMebius 
13C-MFA Free MATLAB http://www-shimizu.ist.osaka-u.ac.jp/hp/en/software/OpenMebius.html 

13C-labeling data, 
exchange flux, growth 
rate 

OpenFlux 
13C-MFA Free MATLAB http://openflux.sourceforge.net 

13C-labeling data, 
exchange flux, growth 
rate 

SUMOFLUX 
13C-MFA Free MATLAB https://imsb.ethz.ch/research/zamboni/resources/fiatflux.html 

13C-labeling data, 
exchange flux, growth 
rate 

CLCA Atom mapping 
algorithm Free JAVA https://github.com/maranasgroup/MetRxn/tree/master/Alchemist SMILES 

RDT 
Atom mapping 

algorithm Free JAVA https://github.com/asad/ReactionDecoder 
RXN, SMILES 

DREAM 
Atom mapping 

algorithm Free Webtool http://ares.tamu.edu/dream/ 
RXN, SMILES 

MWED Atom mapping 
algorithm 

Free for 
education
al use N/A N/A 

RXN, SMILES 

ICMAP 
Atom mapping 

algorithm 
Commerc
ial N/A https://www.infochem.de/chem-informatics/ic-map 

RXN 

AutoMapper Atom mapping 
algorithm 

Free for 
education
al use N/A https://chemaxon.com 

RXN, SMILES 
Group 
contribution 
method by 
Jankowski et al. 

GC-based dG 
estimation N/A web application https://lcsb-databases.epfl.ch/pathways/GCM Molfiles 

Group 
contribution 
method by Noor 
et al. 

GC-based dG 
estimation MIT Python code.google.com/p/milo-lab SMILES/InChI 

Component 
contribution 
method  

GC-based dG 
estimation MIT Python https://gitlab.com/equilibrator/component-contribution SMILES/InChI 

Group 
contribution 
method by Du 
et al. 

GC-based dG 
estimation MIT Python https://github.com/bdu91/group-contribution SMILES/InChI 

Fingerprint 
contribution 
method 

GC-based dG 
estimation Free Matlab https://sfb.kaust.edu.sa/Pages/Software.aspx N/A 

Automatic 
molecule 
fragmentation 
method 

group 
decompositon MIT Python https://github.com/simonmb/fragmentation_algorithm_paper SMILES 



pKa estimation 
using machine 
learning  pka prediction MIT Python https://github.com/czodrowskilab/Machine-learning-meets-pKa SMILES 

Quantum 
chemistry 
method by 
Jinch et al 

Quantum-based 
dG estimation N/A N/A N/A SMILES 

Quantum 
chemistry 
method by 
Hadadi et al 

Quantum-based 
dG estimation N/A N/A N/A N/A 

Equation-of-
state approach 
by Panayiotou 
et al.  

Quantum-based 
dG estimation N/A N/A N/A N/A 

A mixed 
Quantum and 
machine 
learning method  

Quantum-based 
dG estimation MIT Python https://github.com/aspuru-guzik-group/gp_redox_rxn SMILES 

Group 
contribution 
method by 
Jankowski et al. 

GC-based dG 
estimation N/A web application https://lcsb-databases.epfl.ch/pathways/GCM Molfiles 

GA-based EM 
by Khodayari 
and Maranas 

kinetic 
parameterization Free MATLAB N/A 

Fluxomics, gibbs free 
energy of reaction 

EM with 
stability 
analysis By 
Greene et. al 

kinetic 
parmeterization Free MATLAB N/A 

Fluxomics, gibbs free 
energy of reaction 

Ensemble 
Modeling with 
Linear-
Logarithmic 
Kinetics by St. 
John et al. 

kinetic 
parmaeterization
,  Free Python https://github.com/pstjohn/emll fluxomics, metabolomics 

Adjoint 
Sensitivity by 
Frohlich et al. 

kinetic 
parmaeterization Free MATLAB N/A 

metabolomics, 
proteomics, 
transcriptomics 

K-FIT kinetic 
parmaeterization Free MATLAB https://github.com/maranasgroup/K-FIT 

Fluxomics, reaction 
reversibility 

SIMMER 
allosteric 
regulation 
inference free R https://github.com/shackett/simmer 

metabolomics, 
proteomics, fluxomics 

RBApy resource 
allocation model 
parameterization Free Python https://github.com/SysBioInra/RBApy 

genome-scale 
reconstruction, NCBI 
taxonomy ID, 
macromolecular 
composition 

COBRAme 
ME model 
construction Free Python, COBRApy https://github.com/SBRG/cobrame 

genome-scale 
reconstruction, 
macromolecular 
composition 

dynamicME 
dynamic ME 
model 
simulation Free Python, COBRApy https://github.com/SBRG/dynamicme parameterized ME model 

saCeSS kinetic model 
parameterization Free Linux (Fortran and C) https://bitbucket.org/DavidPenas/sacess-library/src/master/ 

Metabolomics, 
fluxomics, proteomics 

VisId 

Kinetic model 
parameterization
, parameter 
correlation 
analysis Free MATLAB https://github.com/gabora/visid 

Metabolomics, 
fluxomics, proteomics 

PathParser 

kinetic and 
thermodynamic 
feasibility 
analysis 

Code 
available 
from 
authors N/A N/A Metabolic pathway 

Dbsolve [240] 

kinetic model 
parameterization
, simulation, 
visualization Free Windows Installation http://insysbio.com/en/software/db-solve-optimum 

metabolomics, 
fluxomics, proteomics 

COPASI [241] 
dynamic 
simulation and 
analysis of 

Free MATLAB http://copasi.org 
metabolomics, 
fluxomics, proteomics 



biochemical 
networks 
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