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Abstract

Understanding the governing principles behind organisms’ metabolism and growth underpins their
effective deployment as bioproduction chassis. A central objective of metabolic modeling is predicting how
metabolism and growth are affected by both external environmental factors and internal genotypic
perturbations. The fundamental concepts of reaction stoichiometry, thermodynamics, and mass action
kinetics have emerged as the foundational principles of many modeling frameworks designed to describe
how and why organisms allocate resources towards both growth and bioproduction. This review focuses on
the latest algorithmic advancements that have integrated these foundational principles into increasingly
sophisticated quantitative frameworks.

1. Introduction

Metabolic engineering has long been applied to modify cellular activities in order to improve the production
of metabolite or protein products by altering pathway flux distributions and rates through the manipulation
of cellular enzymatic, transport and regulatory functions [1]. The field has rapidly progressed, growing
from the groundbreaking development of genetic engineering of Pseudomonas species to biodegrade
aromatic hydrocarbons [2] into successful commercialized operations such as the recent process to produce
1,4-butanediol in Escherichia coli [3]. Metabolic models have emerged as both structured repositories of
information and prediction tools to support the objectives of metabolic engineering, by providing
quantitative predictions of cell function in response to both biological and environmental changes and tools
to direct the redesign of metabolism. The fundamental concepts of reaction stoichiometry, thermodynamics,
and kinetics form the foundational principles of such modeling frameworks.

Reaction stoichiometry encapsulates the network connectivity arising from metabolite transports
and biochemical conversions that take place in a system. Early efforts by Papoutsakis on acetone-butanol
fermentation that provided a theoretical framework for yield analysis [4] and by Watson on computerized
models of microbial central metabolism during steady-state growth [5, 6] have since blossomed into
genome-scale metabolic (GSM) models and their associated analyses. Only ten years after publication of
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been constructed [8]. By 2019 that number had grown dramatically to encompass as many as 6,239
organisms across all domains of life with GSM models, of which 183 have manually curated models [9].

Thermodynamic information encoded by reaction free energy of change provides insight on
reaction and pathway reversibility thus constraining the feasible phenotypic space for flux balance analysis
(FBA) on metabolic models [10]. Significant research has been undertaken to elucidate and apply
thermodynamic constraints for metabolic reactions [11]. The standard Gibbs free energy change (A,.G°) is
available for approximately 400 reactions in the Thermodynamics of Enzyme-Catalyzed Reactions
Database [12]. This covers only a small portion of reactions in metabolic models. Early work by Burton
introduced a procedure which infers the unknown apparent equilibrium constants (K") of a reaction through
the linear combination of two or more reactions with known A,.G° using the first law of thermodynamics
[13, 14]. Although this method has continued to be applied for expanding tables of thermodynamic
parameters [15], the free energy of change for most reactions remains unresolved. To this end, Benson and
Buss developed a group contribution method [16] to approximate the free energy of change of biochemical
reactions in aqueous solutions [17]. To this day, various versions of the group contribution method remain
the most prevalent technique for estimating the A,.G° [18].

Kinetic models of metabolism introduce mechanistic descriptions of enzyme kinetics into
metabolic models and enable the prediction of transient responses to perturbations using a variety of
formalisms. One of the first structured single-cell models, by Heinmets, consisted of 19 simultaneous
differential equations with 31 rate constants [19] and was later examined via digital computer simulations
[20]. Subsequently, more involved single-cell models and analyses emerged, such as the Cornell Single-
Cell Model [21] that could quantitatively predict the dependence of E. coli growth rate and cell size, shape
and composition on external concentrations of glucose. Model sizes and scopes have continued to expand,
with the recent publication of a whole-cell model of E. coli [22] that draws data from over 1200
publications; among its 19,119 parameters involved in more than 10,000 mathematical equations in 19
modules are 639 kinetic parameters governing the activity of 404 metabolic reactions. Such comprehensive
models encompassing various hierarchical levels help accelerate biological discovery and engineering.

Increases in computational power [23] were leveraged to keep up with the flood of genomic [24]
and phenotypic data alongside improved algorithms and approaches. A common strategy to unraveling
cellular phenotypes has been to study aspects of metabolism independently (i.e., fluxome, metabolome,
proteome) from one of several viewpoints (i.e., stoichiometry, thermodynamics, kinetics). However,
increases in computation power, improved genomic [25-27] and automated analytical tools [28], and
availability of multiple datasets have finally enabled the development of holistic modeling frameworks for
describing metabolism. It is now possible to weave a more coherent narrative about the fluxomic,

metabolomic, and proteomic phenotypes in greater detail. In this review, therefore, we focus on recent



advancements in the stoichiometric, thermodynamic, and kinetic modeling of metabolism that have fueled
discoveries in biology and metabolic engineering. We begin with current developments in the methods of
metabolic model reconstruction and curation, followed by integration of models with high-throughput
omics data to increase model scope and predictions. We next describe developments in the methods of
thermodynamics predictions using both group contribution methods and quantum mechanics and kinetic
formalisms along with parameterization techniques. We contextualize these latest modeling frameworks
against earlier developments in the field, and discuss the insights they enable in metabolic engineering.

2. Stoichiometric models of metabolism

A defining feature of metabolic models is the organization of metabolites and the reactions in which they
are involved into a stoichiometric matrix S. These stoichiometric models are typically augmented with
additional information, such as gene-protein-reaction (GPR) associations [29] that are Boolean logic
statements describing what gene(s) need to be expressed to assemble a protein (or assembly of protein
subunits) to support the enzymatic catalysis of a particular reaction. Determining the GPR associations is a
cornerstone of GSM model reconstruction; a well-established and detailed manual protocol describes how
to reconstruct GSM models using genome annotation data and how to curate the models with
experimentally obtained information [30], as indicated in Figure 1(a). Manual GSM reconstruction is both

time and labor intensive. In this section, we describe recent tools for automating reconstruction and aiding



curation of these models, incorporating experimental data to improve phenotype predictions, and

prospecting metabolic pathway design computationally.
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Figure 1. Overview of stoichiometric metabolic model construction, augmentation by incorporating large-scale experimental
datasets, and applications. (a) General workflow for constructing stoichiometric models of metabolism for microbes and multi-
cell eukaryotes. The workflow begins with genome annotation, from which metabolic functions are extracted and cast as
biochemical reactions using databases such as KEGG, ModelSEED, and MetaCyc. The resulting draft model is subjected to an
iterative curation cycle to produce a final genome-scale metabolic model. (b) Summary of the types of data that can be incorporated
into GSM models. Gene/protein expression (transcriptomics/proteomics), metabolite levels (metabolomics), single-nucleotide
polymorphisms (genomics), and gene-regulatory networks can be integrated within GSM models to increase their prediction scope
and fidelity. (c) Select applications of stoichiometric models of metabolism. GSM models can inform multi-scale simulations,
evaluate interactions in a community, and predict overall phenotype by considering genetic and/or environmental perturbations.

2.1. Tools for reconstructing and curating stoichiometric models of metabolism
A recent review of GSM models and their applications [9] provides a phylogenetic tree of 6,239 organisms
for which a GSM model exists. Most of these models were generated by using software tools that automate
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ModelSEED [32], merlin [33], kBase [34], RAVEN 2.0 [35], CarveMe [36], AuReMe [37], AutoKEGGRec
[38], PathwayTools [39] and MetaDraft [40]. In general, these tools programmatically perform genome
annotation, extract subsets of metabolic genes, catalog the associated enzymes and biochemical
conversions, and define GPR associations. Some may also fill network gaps to ensure connectivity. This
reconstruction process is iterative, either manually or automatically, until the GSM satisfies pre-determined
metabolic criteria, which typically involve biomass constituent synthesis. Because of the plethora of
automated tools currently available, it is imperative to be cognizant of their respective advantages and
pitfalls.

The first step of genome annotation can be performed in multiple ways and can impact the final
reaction content and resulting model fidelity. AutoKEGGRec and RAVEN import metabolic functions from
KEGG [41] whereas KBase and ModelSEED use RAST [42]. CarveMe and MetaDraft use the entire BiGG
database [43], and the rest allow for internal annotations — merlin uses BLAST [44] or HMMER [45],
Pathway Tools uses PathoLogic [46], and AuReMe allows the user to select from a variety of tools such as
pantograph [47] or OrthoMCL [48]. A pivotal step where candidate reactions can be added is during gap-
filling, where network connectivity is evaluated to ensure that known/expected metabolic functions are
successfully captured. Although a number of gap-filling algorithms exist [49-52], only CarveMe and
ModelSEED allow the user to define a media composition, and AuReMe and PathwayTools allow setting
known metabolic products. The remaining automated tools rely on the initial genome annotation and source
database of reactions, and thus may be unable to incorporate spontaneous or exchange reactions necessary
to create a functional GSM model. Finally, software availability, licensing, and/or GUI vs command line
usage are important considerations when selecting a GSM-reconstruction platform. KBase, ModelSEED,
MetaDraft, Merlin, and PathwayTools offer graphical interfaces but only the first three are open-source.
The rest offer command-line interfaces. Both AutoKEGGRec and RAVEN are compatible with the
COBRA toolbox [53]. The interested reader is directed to Mendoza et al. [54] and Faria et al. [55], for
detailed analyses and comparisons of output for automated reconstruction platforms.

As part of the curation process, subjecting the models to recent test suites such as MEMOTE [56]
and minimum inconsistency under parsimony (MIP) [57] can help achieve high-quality reconstructions.
MEMOTE aims to increase GSM model consistency and reuse by running a series of checks for
stoichiometric inconsistencies including unbounded cycles, biomass production under different conditions,
and number of blocked reactions. MEMOTE flags any elemental or charge unbalanced reactions, and
scrutinizes all model elements for annotations that link to public databases. Although MEMOTE only
examines the syntactic, logical and topological components of a GSM model, through use of its reports and
scores, MEMOTE allows for comparisons between models creating a benchmark for model quality in this

broader context. MIP [57] uses elemental balances for internal metabolic reactions to determine the



molecular weight (MW) of the biomass drain flux in a GSM model. Biomass MW discrepancies from a
value of 1 gram dry weight mmol' create inaccurate estimates of the substrates needed for the predicted
growth. This problem becomes particularly important when modeling microbial communities, as the
abundance of a microbe with an under-weighted biomass molecular weight would be over-estimated in the
community; those over-weighted would be similarly under-estimated.

2.2. Incorporating experimental data increases both model prediction scope and fidelity
Optimization-based analysis frameworks such as FBA are generally used to assess GSM models, and by
invoking a pseudo-steady-state assumption for the intracellular metabolites, they compute fluxes which
quantify the rates of the corresponding reactions. However, FBA simply using the stoichiometric matrix
and GPR associations cannot compute a unique flux distribution. Thus, a number of methods leverage
additional biological information to reduce the solution space and thereby improve the precision and
accuracy of predictions. Here we present the latest algorithms that seek to incorporate constraints based on
experimental data such as gene or protein expression, labeled isotopes, and genetic variability.

2.2.1. Incorporating gene/protein expression
Although mRNA abundance and metabolic fluxes are only moderately correlated [58-60], incorporating
transcriptomics into GSM models has been shown to increase their predictive capability [61, 62]. One of
the earliest uses of transcriptomics data to inform metabolic models was to tighten reaction bounds using
absolute gene expression levels (E-flux [63]). However, this approach results in variable allowable bounds
leading to complications in the inference of a specific metabolic response. To lessen this limitation, E-flux2
[64] incorporates a follow-up L2-norm minimization procedure under the assumption that the cell
maximizes (or minimizes) the biological objective in an energy- and resource-efficient manner, as an added
step beyond simply including constraints based on transcript level. This approach is similar to the
parsimonious FBA (pFBA) procedure minimizing the L1-norm, which has been shown to be quite effective
at predicting flux distributions [65]. Its contemporary LBFBA [66] also constrains reaction bounds using
linear functions of the expression data regressed from a training set with an even higher accuracy than
pFBA. However, LBFBA requires both expression (i.e., transcriptomics and/or proteomics) and fluxomics
data during training.

An early data-intensive algorithm in this domain is Metabolic Adjustment by Differential
Expression (MADE), requiring multiple gene expression datasets as input [67]. MADE uses the statistical
significance of change in expression between conditions to define a sequence of best-fitting binary gene
states. The weighted sum of inferred gene expression states and p-value of differential expression between
conditions is maximized to extract functioning metabolic models. Thus, the final models are such that the
differences between successive states most-resemble those seen between mean expression levels. The

recent approach Mathematical explOration of ‘Omics data on a Metabollc Networks (MOOMIN [68])



improves upon the frequentist approach in MADE (i.e., using p-values to identify significant gene
expression changes) by inferring reaction weights from a differential expression analysis. A significant
change in the expression of a gene carries a positive weight, whereas unchanging genes are assigned a
negative weight. The sum of these weights is subsequently maximized to identify the flux distribution
associated with a feasible change between growth conditions.

A notable advantage of both LBFBA and MOOMIN is the absence of a priori defined biological
objective function, thereby broadening their applicability to an increased number of organisms and
experimental conditions. This increased scope, however, comes at the cost in some cases of predicting no
growth in disagreement with experimental observations [62]. Choice of modeling framework is largely
dictated by the available data and assumptions. Both E-flux2 and LBFBA can be parameterized using
steady-state data collected from one or more growth conditions, whereas both MADE and MOOMIN
require multiple expression datasets.

Metabolic models can also be used to enhance network features gleaned from omics studies using
conventional differential expression analysis. Samal et al. [69] used sparse group lasso (SGL) to find
pathways associated with a given phenotype by integrating omics data with GSM models. Within this
framework, elementary flux modes are first calculated using the PoCaB software [70] and mapped to gene
sets across multiple expression datasets. SGL is then used to select a sparse set of genes that is the best
predictor of a given phenotype.

Phenotype prediction can be further enhanced by adding Boolean type constraints to GSM models
to help incorporate regulation [71] (e.g., under aerobic or anaerobic conditions), as indicated in Figure 1(b).
However, reconstructing a gene regulatory network (GRN) from high-throughput data remains
challenging, as elucidated by the DREAM project for over 30 network inferences methods on E. coli,
Saccharomyces cerevisiae, and Staphylococcus aureus [72]. One of the first efforts to impose GRNs as an
additional layer atop GSM models without using stringent Boolean functions was probabilistic regulation
of metabolism (PROM) [73]. PROM assigns conditional probabilities to gene states and gene-TF
interactions based on expression data for transcription factors (TFs) and target genes. Those conditional
probabilities are then are used to scale fluxes through all metabolic reactions based on their corresponding
GPR associations. Although PROM can predict organism growth rate with high accuracy (0.95 correlation
coefficient), its major drawback is the requirement of a large number of transcriptomics datasets. The
Integrated Deduced And Metabolism (IDREAM) formalism [74], improves on PROM by introducing
GRNs constructed by EGRIN [75] with PROM to predict metabolic phenotypes across a variety of
conditions. EGRIN first identifies conditionally co-regulated genes, and then uses linear regression to
estimate the expression of a target gene from the mRNA levels of associated TFs. By integrating conditional

co-regulation instead of relying solely on conditional probabilities inferred from gene expression profiles,



IDREAM outperformed PROM over several metabolic networks and environmental conditions. Finally,
TRFBA [76] integrates GRNs with GSMs by constraining the expression of a gene to be lower than the
sum of the expression levels of its regulating TFs. Reaction flux bounds in the model are constrained
proportionally to the expression of genes encoding the catalyzing enzyme, with TRFBA out-performing
PROM at growth rate predictions. Thus, high-throughput omics data when used in conjunction with
metabolic models can help increase the prediction fidelity, scope, and purview (Figure 1(c)).

2.2.2. Incorporating isotopic labeling data into flux elucidation
C-metabolic flux analysis (MFA) uses stable isotope tracing from substrates to intracellular metabolites
to elucidate intracellular carbon flow in steady-state flux estimation [77]. An atom mapping model is used
to describe the carbon transitions from substrates to products for all reactions in a metabolic network.
Differences in label incorporation arise from differences in carbon transitions in alternative pathways for
the conversion of substrate to metabolic intermediates. MFA is formulated as a nonlinear least-squares
regression problem which minimizes the difference between predicted labeling pattern (estimated as a
function of metabolic flux solved through a system of algebraic equations assuming metabolic and isotopic
steady-states) and experimental labeling distributions. MFA has been further expanded to include
isotopically nonstationary data [78]. Several experimental techniques can be used to determine the mass
distribution vector (MDV) for each labeled metabolite including NMR [79], mass spectrometry [80], and
tandem mass spectrometry [81]. Flux ranges obtained through MFA are generally narrower than those
obtained using purely stoichiometric FBA. Amino acid fragments from hydrolyzed proteins are the most
commonly measured metabolites, but in the last few years measurement of hydrolyzed glycogen and RNA
has been shown to help better-resolve upper glycolytic and pentose phosphate pathway fluxes in both E.
coli and CHO cells [82]. Alternatives to the confidence interval estimation [83] have also been proposed to
estimate flux uncertainty [84]. Numerous open source and commercial software tools exist for assembling
atom mapping models and performing MFA. As indicated in Table 1, METRAN [85], WUFlux [86],
OpenFlux [87], and INCA [88] are free for educational use and have graphical user interfaces useable within
MATLAB. 13CFLUX2 [89], OpenMebius [90], and GS-MFA [91] are also free for educational use, but
offer a command line interface within MATLAB. FluxML is an open source program which provides a
formalized markup language for organizing MFA stoichiometric and atom mapping models.

Several current methodological advances have helped expand the scope of MFA and further narrow
flux ranges, while parallel advances have allowed for network scale-up to the genome-scale. COMPLETE-
MFA [92] exploits that different positional labeling patterns of substrates tend to better resolve flux ranges
in different portions of metabolism. Thus, elucidating flux ranges from multiple labeling experiments
simultaneously, each with different substrate tracer scheme, results in the narrowest possible flux ranges

across metabolism [92]. The method was demonstrated using 14 parallel labeling experiments in E. coli,



and resolved exchange flux ranges for nine of 22 reactions across central carbon metabolism [93]. Steps
have also been taken towards extending the application of MFA to include microbial consortia, as opposed
to only monoculture organisms, as it has been demonstrated that model compartmentalization can be used
to reliably elucidate fluxes for distinct £. coli mutant strains in co-culture [94].

A primary challenge to network scale-up in MFA has been the need for an organism-specific
genome-scale atom mapping model. Although atom mapping can be gleaned from existing genome-scale
mapping models [91, 95-97] or online repositories such as KEGG [41] and MetaCyc [98], manual curation
tends to be time consuming, tedious, and prone to human error. Thus, a class of tools has been developed
which identify putative mappings using parsimony [99-104]. These tools have demonstrated over 90%
prediction accuracy with regard to mapping, making them useful for rapidly expediting the process of
genome-scale atom mapping model construction. At the same time, algorithmic improvements have
allowed for reduced computational time, facilitating MFA with large networks. Flux coupling analysis
[105] was applied as pre-processing step to reduce the number of confidence intervals requiring evaluation.
In the case of E. coli, this resulted in a 73% reduction in the number of reactions requiring confidence
interval estimation in order to fully elucidate flux ranges at genome-scale [91]. This reduction in the number
of calculated confidence intervals is particularly important in the case of non-stationary MFA, where the
solution of large systems of ordinary differential equations (ODEs) (i.e., simultaneous evaluation of 8.4 x
10° ODEs in the case of Synechocystis PCC 6803 [95, 106], for example) establishes a significant
computational burden to confidence interval estimation.

2.2.3. Incorporating single nucleotide polymorphism data
Integrating genomics marker data (mainly as single-nucleotide polymorphisms or SNPs) into metabolic
models is a nascent field (see Figure 1(b)). Some of the earliest examples arose in the context of medical-
related studies. In the first, putative oncometabolites were predicted by analyzing loss- or gain-of-function
mutations in enzymes from their metabolic pathways [107]. Nine types of cancer were analyzed and a total
of 15 compounds and 23 substructures of potential oncometabolites were predicted. In the second,
metabolomics data identified the functionality of SNPs in three members of Mycobacterium tuberculosis
complex (MTBC) [108]. In this study, exometabolome data was used to constrain exchange fluxes and the
activity of a SNP was computed by minimizing the flux difference between strains, the reference fluxes,
and the effect of each SNP.

A similar mechanistic approach towards deciphering the activity of a SNP using metabolic models
is SNPeffect [109]. SNPeffect was used to explain differential growth rates, metabolite accumulation, and
phenotypes in A. thaliana and P. trichocarpa as the result of point mutations in enzyme-coding genes. A
parsimonious set of functional SNPs and their final effect on plant metabolism (i.e., increasing/decreasing

reaction flux) was thus determined. Marker data has also been used to increase the capability of genomic



selection models. Tong et al. [110] created 4. thaliana accession-specific models by constraining the
biomass flux proportionally to marker data. The genotype-specific reaction flux predictions thus obtained
were used to augment genomic selection models, resulting in a ~33% increase in accuracy.

2.3. Tools for computational metabolic pathway design
Computational metabolic pathway design tools aim at identifying energy and carbon efficient pathways and
thereby enable the production of a biomolecule either using enzymatic reactions available in nature or
through designing de novo pathways using reaction rules derived from known reactions. These pathways
can then be evaluated in the context of the production host’s metabolism by modifying existing or adding
new entries in the model’s stoichiometric coefficients. Pathway design algorithms were recently reviewed,
sorted by reaction network representation and search algorithm [111]. Since that review, notable efforts
have been made to improve de novo pathway predictions by deriving simplified reaction rules which
represent pathways involving complex molecules (e.g. oligosaccharides in glycosylation) [112] and
applying mixed-integer linear programming (MILP) [113] or reinforcement learning (RL) [114] to guide
the search in the complex uncharted chemical space. To enable broader uptake of pathway design tools,
user-friendly web applications have been developed [115]. Another emerging direction for pathway design
is unifying biochemical retrosynthesis with chemical total synthesis into a single workflow [116]. Here,
enzymatic reactions are used to handle regioselectivity whereas chemical reactions are preferred in the
context of avoiding toxic intermediate metabolites. However, computational tools to tackle this challenge
remain elusive and many industrial-scale applications are still based on expert knowledge [116].
3. Determining thermodynamic properties of metabolic reactions
Incorporating thermodynamics information such as reaction and pathway reversibility can improve
predictions from stoichiometric descriptions of metabolic networks [10] and also provide novel insights for
rational design. For example, the Max-min Driving Force (MDF) algorithm has been developed and applied
to study the thermodynamic bottleneck of ED/EMP pathways [117], other glycolytic alternatives [118], and
genome-scale metabolic networks [119]. The identified thermodynamic bottlenecks highlighted the
opportunities to engineer alternative production pathways or swap co-factors for reaching a higher yield of
the target product [120]. A recent study revealed the upper limits on Gibbs energy dissipation rate of E. coli
and S. cerevisiae using a network-based approach [121]. The Gibbs energy dissipation rate was shown to
govern the rewiring of intracellular metabolic fluxes when the cell increases glucose uptake rate.
Applications such as these ones require knowledge of relevant thermodynamic properties which must be
measured directly or estimated computationally. At the core of all thermodynamic analysis is the accurate

prediction of the change in the Gibbs free energy of reactions A.G°. Thus, in this section we focus on



reviewing recent progress and tools developed within the past decade that improve the way of directly

measuring or predicting A.G°, as summarized pictorially in Figure 2.
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Figure 2. Overview of experimental approaches and computational tools to determine the
thermodynamic properties of metabolic reactions. (a) A,.G° information can be obtained from NIST
TECRDB, thermodynamics tables, and deuterium labeling metabolic flux analysis. (b) Group
contribution methods expand the coverage of A,.G° by decomposing metabolite into groups,
capturing the mixture of pseudoisomers, and applying regression analysis to estimate the Gibbs free
energy contribution of the functional groups. (c) Quantum thermochemical methods require
geometric conformers and solvation models as input to extrapolate the A,.G° estimation further.

3.1. Data availability for standard Gibbs free energy change of reactions (A.G°)

A collection of thermodynamic information of biochemical reaction, the Thermodynamics of Enzyme-
catalyzed Reactions Database (TECRDB) was published in 2004 and includes data for approximately 400
reactions [12]. The number of reactions has since then been expanded to approximately 600 reactions
(Figure 2(a)). Information on the free energy of formation of metabolites has also been compiled [122] from
thermodynamics tables as additional data to expand the current breadth of knowledge. Despite the expanded

TECRDB database and availability of free energy of formation for many metabolites, data availability is



still the major limitation for thermodynamics analysis of all enzymatic reactions (e.g. 11,437 reactions exist
in the KEGG database alone).

Experimentally elucidated metabolic fluxes with narrow ranges offer another data type for directly
characterizing reaction thermodynamics of reactions (Figure 2(a)). A,-G° can be determined by the forward

and reverse flux ratios elucidated from metabolic flux analysis (MFA) and absolute metabolite
+ .
concentrations (—RTIn (z—_) =A.G° +RTln(HXL.S ). In recent years, deuterium labeling has been

incorporated into *C-MFA (i.e. *C/”"H MFA) to constrain ranges of exchange fluxes so as to reliably
estimate A,.G° of reactions across central carbon metabolism [123]. Notably, Jacobson et al. resolved
forward/reverse flux ratios for 22 central carbon metabolic reactions in Zymomonas mobilis [123]. This is
an improvement over MFA with only '*C-labeled tracers, as previously using COMPLETE-MFA with 14
parallel '*C-labeling experiments Crown et al. [93] were able to resolve only 9 of 22 reversible reactions in
E. coli. Deuterium labeling in MFA has been further applied to understand the thermodynamic bottlenecks
governing ethanol formation in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum
[124], and study the A,.G° of reactions in central carbon metabolism for mammalian cell line, S. cerevisiae,
E. coli, and Clostridium cellulolyticum [125]. Because deuterium-incorporated MFA 1is used to elucidate
fluxes for an entire metabolic network, it can be used with genome-scale metabolic network/atom mapping
model [106] to provide additional A.G° information for reactions beyond central carbon metabolism in the
future.

3.2. Thermodynamic estimation of new reactions using group contribution method

In order to expand the prediction of A.G° to the reactions that are not included in the experimental
measurements, many computational tools have been developed [18]. Most of them rely on the concept of
additive schemes of functional groups fitted from experimental data — group contribution method. It remains
the most widely used method to extrapolate Gibbs free energy estimations.
3.2.1. Decomposing metabolites into groups

The groups defined in the commonly used group contribution methods for enzymatic reactions are based
on a predefined list of chemical substructures (Figure 2(b)). Specifically, all of them rely on the functional
groups assembled by Mavrovouniotis [126]. Despite the fact that these groups were observed to have small
standard mean square error based on cross-validation analysis, the decomposition method still has many
limitations, as recently reviewed by Du et al. [18]. For example, many metabolites are non-decomposable
due to incomplete coverage of groups; large variation exists in reactions sharing the same group changes
(such as dehydrogenase reactions); the method is insufficient to estimate A.G° for reactions with no net

change in functional groups (such as isomerase and kinase reactions), despite significant non-zero A.G°.



Development of group decomposition schemes to more effectively predict the contribution of
functional groups to chemical properties is an ongoing effort in the field. Many group decomposition
schemes such as Joback, Klincewicz, Lydersen, Sedlbauer-Majer, and UNIFAC [127] have been applied to
group contribution methods of chemical reactions. Salmina et al. showed that an extended group
decomposition scheme can improve the prediction accuracy of the chemical and biochemical properties
(e.g. toxicity and solubility) of a molecule [128]. Also, an automated non-overlapping fragmentation
method was recently developed [129] to rapidly evaluate the accuracy of new group decomposition
schemes.

In addition to the manually derived non-overlapping group fragmentation schemes, many
automated overlapping fragmentation methods have been developed, including molecular signatures [130],
ISIDA fragment descriptors [131], ECFP fingerprints [132], and circular fingerprints [133]. These
representations of molecules include the group interaction factors (i.e. the overlapped atoms/bonds between
groups) within the group decomposition scheme, which are ignored in the component contribution method
[134]. Overlapping fragmentation methods have been applied extensively in machine learning algorithms
to extract features from chemical molecules [135]. Recently, Alazmi et al. [136] showed that molecular
fingerprints can be used to improve A,.G°prediction accuracy.

3.2.2. Ionization and tautomer
The exact protonation state of a metabolite inside of a cell is typically a mixture of pseudoisomers with
different protonation states (Figure 2(b)). The presence of pseudoisomers further confounds group
contribution methods, as pseudoisomers tend to exhibit often quite different thermodynamic properties
[137]. Group contribution methods have thus been modified by capturing the intracellular mixture of
pseudoisomers using a Boltzmann distribution [138]. The difference between the standard Gibbs free
energy of formation of a compound (AG}’ ) and the Gibbs free energy of formation of the mixture (AG}O)
can be calculated using Inverse Legendre Transform as a function of acid-base dissociation constant pK,
[134].

Since pK, is a key parameter to study pharmacokinetics of drug molecules, several datasets are
publicly available to benchmark pK, prediction accuracy from computational tools [139]. A number of
studies evaluated the relative accuracy among these computational tools including ChemAxon Marvin
[140], Epik [141], ACD/Labs Percepta Classic [142], and Moka [143]. Marvin has demonstrated the
highest prediction accuracy. Thus, group contribution methods still rely on Marvin to predict pKj,.
However, Du et al. [144] compared Marvin predictions with values available in IUPAC SC-database and
found deviations resulting from charge inconsistencies and errors in calculating pK,values for nitrogenous
moieties that were significant enough to provide inaccurate protonation states. Moving forward, a number

of open source tools [145] are available that use machine learning algorithms such as neural networks and



random forests with the goal of improving the pK, prediction accuracy. Experimental methods such as
UV-vis spectroscopy, NMR spectroscopy, and X-ray crystal structure of the tautomer in protein-ligand
complexes have been applied to measure the pK, directly.

Similar to the effect of different protonation states, metal-ion binding (e.g. Mg+ binding with ATP)
and tautomers (e.g. keto-enol tautomerism) also affect a metabolite’s standard Gibbs free energy of
formation. Recently, Du et al. [144] applied a machine learning method to predict the magnesium-ion
binding constants (pKy4) to correct reaction-equilibrium constants (K,,). However, tautomers have yet to
be considered in the group contribution method and can thus serve as a potential research avenue since
currently, only the most stable (or dominant) form of any metabolite is considered during the Gibbs free
energy calculation by Jankowski et al. [146]. In principle, the distribution of tautomers can similarly be
estimated based on the acid-base dissociation constant (pK,,).

3.2.3. Regression analysis and confidence intervals
Because group contribution assumes an additive schema of functional groups, linear regression is an often-
applied method to estimate the Gibbs free energy contribution of groups AG, (Figure 2(b)). The confidence
interval of fitted AGg and predicted A,G° can be calculated using the covariance matrix from model fitting.
Other regression methods such as Ridge and Lasso regression have been applied by Du et al. [144]
demonstrating the smallest prediction error. However, confidence interval analysis from biased regression
models such as Ridge and Lasso relies on bootstrap-based methods and often produce inaccurate
uncertainty estimations. Credible intervals from Bayesian inference provide an alternative metric to
confidence intervals, and has been shown to provide reliable uncertainty estimation [84].

3.3 Thermodynamic estimation of new reactions using quantum mechanics

Even though group contribution methods extrapolate the Gibbs free energy estimation for more reactions,
the coverage is still limited by the number of groups present in the experimental data. For example, out of
the 163 groups defined in component contribution, only 92 can be estimated from linear regression in the
component contribution method [134]. Quantum thermochemical methods have been proposed recently to
address limitations in functional group coverage.

One quantum-based approach relies on directly modeling the metabolite—water complex. Jinch et
al. [147] calculated the absolute Gibbs energy of each metabolite—water complex using the ORCA quantum
chemical software [148]. Adding to the complexity of multiple protonation states addressed in group
contribution method, quantum mechanics required two more inputs (Figure. 2(c)): (1) multiple geometric
conformers which exist for a protonation state, and (2) solvation effect from the hydrogen bonding between
metabolites and solution. Jinch et al. [147] applied the ChemAxon conformation tool [140] to generate
geometric conformers that approximate the minimal energy conformations of each metabolite while

applying both explicit water model (PACKMOL [149]) and implicit water model (COSMO [150]) to



account for solvation effects. Prediction errors of the reactions catalyzed by isomerases, transferases, and
lyases were comparable to those obtained by group contribution method. This method was applied to
compare the reduction potential of redox half-reactions without cofactors, leading to the hypothesis that
NAD/NADP is the primary electron carrier because its physiological reduction potential range (i.e., -500
mV to -130 mV) matches the requirement of reversible redox reactions and irreversible redox
transformations in central carbon metabolism [151].

Another quantum-based approach is to model the gas-phase thermodynamics and solvation in two
independent steps. First, Hadadi et al. [152] demonstrated the calculation of the gas-phase thermodynamics
of a few metabolites using the TURBOMOLE suite [153]. COSMOconfX [154] and Spartan'14 Parallel
Suite [155] were used to search for geometric conformers. Next, Panayiotou et al. [156] developed a
solvation model using the equation-of-state approach to account for the changes of Gibbs free energy from
gas to aqueous solutions. The two-step quantum-based thermodynamic approach provided a way to
calculate the Gibbs free energy of reactions at a broad range of conditions. The partial solvation parameter
approach applied by Panayiotou et al. [156] can be used to estimate enthalpy and entropy of hydrations as
well as the mechanism of hydration, which can be applied to model solvation at different temperatures and
pressures.

Due to the significant computational cost of quantum mechanics, machine learning methods have
started to be integrated with quantum mechanics to enable the high-throughput prediction. For example, in
another study by Jinich et al. [157] demonstrated that Gaussian process models can be used to efficiently
estimate the redox potential of 315,000 reactions. Similarly, Du et al. [144] built a machine learning model
to correlate standard entropy change A.S° with the molecular properties of substrates/products of a reaction
(i.e. the number of atoms, partial charge of atoms, and other molecular descriptors of the metabolites) using
Lasso regression. Gibbs free energy at a different temperature is then approximated as a function of A.S°
and the temperature.

4. Incorporating Kinetic Descriptions of Metabolism

Kinetic descriptions of metabolism use kinetic rate expressions to link reaction flux to the abundance of
both intracellular metabolites and enzymes in order to predict metabolic response to genetic and
environmental perturbation. Here we discuss two distinct sub-classes of models that leverage reaction
kinetics to predict different aspects of the metabolic phenotype. The first sub-class (herein referred to as
mechanistic models) captures allosteric regulations detailed within rate expressions. [158]. Networks
described by mechanistic models are generally smaller because of challenges related to the paucity of
available kinetic parameter data and difficulties in parameterization [159]. The second sub-class is resource
allocation models, which have been developed for the prediction of genome-wide protein abundance. An

extension of stoichiometric models of metabolism, these models incorporate simplified kinetic descriptions



into metabolic constraints by including rate expressions for both enzyme catalyzed reactions and
macromolecular synthesis. However, they currently do not capture detailed substrate-level regulatory
mechanisms [160]. Table 1 compares the network and data requirements for parameterization, forms of
kinetic descriptions, and types of information predicted by mechanistic kinetic model and resource
allocation models. In this section, we discuss recent tools and progress that has been made for these two

classes towards the realization of comprehensive metabolic phenotype prediction through kinetics.

Table 1: Similarities and differences in network and data requirements for the construction of
mechanistic kinetic models of metabolism and resource allocation models as well as commonly used

kinetic descriptions and a summary of their predictive capabilities

Model Requirements Mechanistic kinetic Shared Attributes Resource allocation

models models

Reduced stoichiometric Genome-scale

matrix reconstruction

Network requirements ) o
Allosteric regulatory Transcriptional regulatory
network network
Proteomics

Genome/protein sequence
Data used in

parameterization Metabolomics Fluxomics Protein structure

Growth rate

Lin-log
Log-lin

Elementary
decomposition

Kinetic descriptions First order approximation

Michaelis-Menten
Hill kinetics
Convenience kinetics

Generalized mass action

Predictive capabilities Metabolite pool Metabolic flux Protein abundance

4.1. Mechanistic kinetic models of metabolism



Mechanistic kinetic models of metabolism offer the promise of enhancing predictions for multiple aspects
of metabolic phenotype (i.e., metabolome, fluxome, proteome) and thus have the potential to accelerate the
design-build-test-learn cycles for metabolic engineering [161]. Their inclusion of mechanistic rate
expressions via established rate law formalisms elevates the predictive capabilities of mechanistic kinetic
models beyond those of pure stoichiometric models and facilitates quantitatively relating reaction flux to
enzyme level and metabolite concentration [162]. However, improved product yield, titer, and production
rate predictions are not without cost. Significant increases in experimental data requirements compared to
stoichiometric models, challenges associated with model assembly and parameterization, and extensive
difficulties related to follow-up analysis are all present hurdles to kinetic model development [158]. In this
section, we describe the kinetic formalisms and associated data requirements available for use in kinetic
models, the algorithm choices available for identifying kinetic parameters, improvements that have been
made to allow for confidence interval estimation and subsequent follow-up analyses, and framework
extensions that enable kinetic modeling to discover substrate-level regulations active in metabolism.
4.1.1. Selection of kinetic formalism and data requirements

A number of mechanistic or approximate kinetic formalisms exist which can be used to construct kinetic
models of metabolism, each with advantages and disadvantages in terms of ease of parameterization,
specific data requirements, and predictive capability. In the absence of experimental data of kinetic rate
constants, identification of in-vivo kinetic parameters generally requires the solution of a non-linear
programming problem (NLP), which fits model predictions to temporal metabolomics and/or fluxomics
data across a range of genetic/environmental conditions [163]. The formalism chosen for model
construction is important because it influences the types of data that are required for parameterization, the
predictive capability of the model, and the parameterization methods available for use. Interested readers
are referred to Saa et al. [159] for detailed descriptions of the kinetic formalisms described in brief below.

Rate expressions linearized around a reference point are convenient because they bypass the need
to solve a non-convex optimization problem associated with kinetic parameterization [164]. Examples of
this approach include the loglin [165] and linlog [166] formalisms, and generalized mass action kinetics
(GMA) [167] which provide alternative linear approximations. Kinetic models consisting of linearized rate
expressions require steady-state fluxomics and metabolomics data for parameterization [168, 169], Mass
Action Stoichiometric Simulation (MASS) parameterization has been developed to parameterize GMA
models from a single set of metabolomics data [164, 170]. Its capabilities to predict adequately responses
to metabolite level perturbation was demonstrating using a red blood cell model [171]. A drawback to these
formalisms is predictive capability tends to be localized around the reference state, making them ill-suited

to predict metabolic response to enzyme level perturbation [159].



In contrast, kinetic formalisms such as Michaelis-Menten (MM) and elementary decomposition
kinetics preserve the fundamental mechanism of enzymes without approximation. Kinetic models using the
MM rate expressions benefit from kinetic information consolidated within databases such as BRENDA
[172] and KiMoSys [173], and do not suffer from the localized predictive limitations associated with
linearized rate expression. However, large numbers of kinetic parameters are unavailable in databases and
still require identification, introducing the challenge of non-convex optimization using a combination of
temporal metabolomics and/or steady-state fluxomics as training data. Finally, elementary decomposition
kinetics offers a full mechanistic kinetic description which accounts for substrate binding, catalytic event,
product release, and substrate level inhibitions and activations [174]. Elementary decomposition kinetic
models require fluxomic data across a range of genetic or environmental conditions for parameterization.

4.1.2. Algorithm choices for identifying kinetic parameters

As described above, identification of in-vivo kinetic parameters requires the solution of a nonlinear
programming problem (NLP). Overall the use of local optimization has been limited because of the non-
convexity of the solution space when non-linear rate expressions are used [175]. Several algorithms using
metaheuristic methods have therefore been developed and used for parameterization of kinetic models of
metabolism. Scatter search [176], particle swarm [177], and genetic algorithm [178] optimization are
evolutionary algorithms relying on recombination of parameters from favorable generational models to
assemble a model that best recapitulates training data as evaluated by an objective function (e.g., residual
sum of squares). Current implementations of particle swarm optimization [179] and genetic algorithms
[180, 181] have been used to parameterize highly detailed MM kinetic models of core metabolism and
demonstrate improved predictive capabilities over their predecessors [182, 183]. Scatter search
optimization [184-186] and genetic algorithm optimization [187, 188] have recently been introduced within
the EM paradigm. Notably, merging the EM method with metaheuristic optimization has resulted in
successful parameterization of the largest mechanistic kinetic model to date (i.e., k-ecoli457, containing
457 reactions, 337 metabolites, 295 allosteric regulations, and 5,239 elementary kinetic parameters), but
parameterization time for that model exceeded 1,000 hours [187].

A preprocessing step has been introduced into EM to reduce the computational expense. Greene
et al. applied local stability analysis within EM to preclude unstable models from the final ensemble and
evaluate training data in a logical order based on similarity to the wild-type strain [189]. This strategy
resulted in a 71% speed-up in E. coli core model parameterization, but the method does not scale beyond
core metabolism [189].

Bayesian approaches have been adopted as a means to parameterize kinetic models as well. The
Approximate Bayesian Computation and General Reaction and Assembly Platform (ABC-GRASP) uses

elementary decomposition kinetic expressions [190, 191], and employs Approximate Bayesian



Computation to bypass the need for explicit evaluation of a likelihood function. Although its application to
construct a small kinetic model of the mammalian methionine cycle demonstrated tractability for small
networks, scalability limitations of Monte-Carlo-based sampling currently prevent its use for large-scale
networks [159]. Bayesian principles have also been applied to large-scale networks using linearized kinetic
rate expressions with the lin-log formalism [169]. Because of a reduced computational burden associated
with evaluating linearized kinetic rate expressions, the application of Bayesian inference by St. John et al.
[169] was demonstrated to be scalable to large networks and useful for follow-up metabolic control analysis
(MCA) [192].

One way to circumvent the challenges associated with the parameterization of large-scale kinetic
models is to devise customized decomposition approaches tailored to the kinetic formalism adopted. Small
scale networks have been parameterized using computationally expensive forward sensitivity analysis as a
means for gradient update and optimality assessment [193], but so far only K-FIT has demonstrated
network scalability to near-genome scale models [194]. The decomposition approach K-FIT circumvents
computational inefficiencies associated with metaheuristic methods [187] and scalability issues of Bayesian
approaches [159]. The method relies on anchoring elementary kinetic parameters to a reference state flux
distribution, ensuring model feasibility as the algorithm traverses the parameter space. At each iteration,
steady-state fluxes and concentrations for the perturbed networks are inferred mostly by iterating between
enzyme and metabolite balances forming respectively linear systems of equations. Analytical gradient
evaluation serves two additional purposes: first, it permits optimality assessment and it allows for follow-
up sensitivity analysis on kinetic parameters.

4.1.3. Improvements for confidence interval analysis of Kinetic parameters
Confidence interval estimation allows for follow-up analysis to identify rational design targets. Through
confidence interval analysis, identifying both regulatory mechanisms which significantly limit flux and
perturbation candidates for targeted overproduction strategies is possible [194]. Multivariate statistics has
been adopted as a means for determining confidence intervals in ensembles of kinetic models within the
EM paradigm. Hameri et al. [195] demonstrated that bootstrapping, Bonferroni, and exact normal methods
used capture parameter interdependencies, and thus offer a more accurate confidence interval estimation
compared to univariate confidence interval estimation. Within K-FIT, local sensitivity analysis according
to the variance/covariance matrix was adopted to quantify parameter uncertainty [196].

Machine learning has also been introduced to reduce parameter uncertainty in sampling-based
methods. Within the ORACLE framework [197], a decision tree algorithm was introduced to reduce kinetic
parameter uncertainty ranges (ISHRUNK) [198]. Whereas most parameters remain unresolved upon
application of iISHRUNK to kinetic models of Pseudomonas putida [199] and E. coli [200], reduced

parameter uncertainty for a handful of reactions led to predictions for strain robustness and 1,4-butanediol



overproduction, respectively. Additionally, Inverse Metabolic Control Analysis (IMCA) has introduced
matrix inversion operations to quantifying the sensitivity of enzyme level to changes in metabolite
concentration, expanding the types of sensitivity analysis possible with kinetic models [201].
4.1.4. Elucidating allosteric mechanisms
For many organisms, the substrate-level regulatory network is not sufficiently described to allow for a
complete kinetic description of metabolism. This difference is highlighted by the comparison of the
regulatory network of the recent core kinetic model of C. thermocellum (i.e. k-ctherm118) [202] and the
recent core kinetic model of E. coli metabolism (i.e. k-ecoli74) [196]. k-ctherm118 contained 22 substrate-
level regulations identified in BRENDA [172] and from literature from across all clostridia, whereas the
smaller E. coli network contained more (i.e., 54) E. coli-specific inhibitions identified in databases. Two
primary methods for identifying allosteric regulation have recently emerged to address this information
disparity. Hackett et al. developed systematic identification of meaningful metabolic enzyme regulation
(SIMMER) as a means to hypothesize mechanisms assessing the statistical significance of fitness
improvement in models fitted with regulation versus those without [203]. Although data intensive
(requiring fluxomic, metabolomic and proteomics datasets across a range of growth conditions to fit rate
expressions), the value of the method was demonstrated in S. cerevisiae metabolism [203]. In that study,
three new substrate-level regulations were identified and confirmed experimentally, including alanine
inhibition of ornithine transcarbamylase, phenylpyruvate inhibition pyruvate decarboxylase, and citrate
inhibition of pyruvate kinase. An ensemble-based approach [204] has also been employed to elucidate
regulatory mechanisms, assessing the improvement in fitness of an ensemble of models to training data
upon inclusion of a substrate-level regulation. The efficacy of the method was demonstrated by
Christodoulou et al., who revealed feedback inhibition of glucose-6-phosphate-1-dehydrogenase by
NADPH as the primary mechanism controlling E. coli’s pentose phosphate pathway reserve flux response
to oxidative stress [204].
4.2. Resource allocation models

Resource allocation models account for both metabolites and macromolecules and leverage approximate
kinetic information for events which occur at multiple time-scales to make inferences about enzyme
limitations in metabolism. Simplified kinetic descriptions allow for the estimation of kinetic parameters at
the genome-scale, which are used as metabolic constraints that allow for prediction of flux, growth, and
enzyme abundance. Generally, a single turnover number is estimated for each reaction in the network [160].
Two distinct levels of description have been used recently to understand resource allocation in living cells:
phenomenological models that describe a snapshot of metabolism and do not account for expression
machinery in their formulation, and multi-scale models that describe events spanning multiple time-scales

including metabolism and macromolecular expression [160].



4.2.1.Phenomenological Methodologies
In recent years MetabOlic Modeling with ENzyme KineTics (MOMENT) [205] was introduced as an
improvement over flux balance analysis with molecular crowding (FBAwMC) [206]. FBAWMC lumps
information on enzyme volume and the effective catalytic rate into a single parameter, which is used in
constraints to place an upper bound on reaction flux [207]. A volumetric capacity constraint places an upper
bound on the total volume enzymes in a cell can occupy [207]. MOMENT simplifies the FBAwWMC
framework by recasting kinetic constraints in terms of only first order kinetics instead of volumetric
capacity. By removing crowding information from constraints and using a single turnover rate per reaction
in a metabolic network, MOMENT demonstrated a statistically significant improvement in model predicted
flux and gene expression over FBAWMC in E. coli under exponential growth conditions [205]. The GECKO
method has also been recently introduced to incorporate catalytic rate constants into enzyme usage
constraints to predict an enzyme level/metabolic flux pair [208]. Rather than fitting parameters to data,
GEKCO gleans all catalytic rate constants from databases [208]. The method has been shown to reduce
flux ranges upon FVA by 60% compared to traditional stoichiometric FVA in S. cerevisiae [208].

4.2.2.Multi-scale methodologies
The expansion of resource allocation models to link the composition of the entire cellular proteome and
macromolecular machinery to metabolism using kinetics, genome sequence, and biomass composition via
stoichiometric constraints has enabled a more complete picture of cell behavior [160]. Two similar multi-
scale methodologies have been developed in parallel: Resource Balance Analysis (RBA) [209], and multi-
scale models of metabolism and macromolecular expression (ME) [210]. Through the incorporation of
simplified kinetics and detailed accounting of macromolecular machinery into a constraint-based
optimization problem, these methodologies have been shown to predict proteome allocation for a number
of bacteria [211-214]. Dynamic ME model prediction has also been interwoven with metaheuristic
parameterization, allowing for the prediction of transient proteome allocation in response to system
perturbations [215]. ME models application has been further expanded towards rational strain design by
being used together with the OptKnock strain design tool [216] to more accurately predict proteome and
flux phenotype associated with rational design strategies [217].

The primary challenges in multi-scale model construction have been ill-conditioning of the
stoichiometric matrix due to the many orders of magnitude differences in the stoichiometric coefficients of
various metabolites and macromolecules. Furthermore, of in-vivo turnover rates are difficult to establish
in the absence of experimental information. The first challenge was addressed through the use of quad-
precision LP solvers [218-220]. Initially the second was addressed by identifying a single universal turnover
number that could be applied to all reactions in the network to reasonably predict growth rate across a range

of experimental conditions [211, 212]. However, more recently fitting parameters using steady-state flux



and metabolomics datasets [221] and use of machine learning with enzyme properties a features and
turnover rate as response variables [222] have each yielded ME models with improved predictive
capabilities in E. coli.

Notable applications of multi-scale models that extend beyond simply comparing model-predicted
resource allocation with experimental proteomics include hypothesis generation of transcriptional response
to iron limitation [223] and acid stress [224] in E. coli. Additionally, the FoldME model of E. coli introduced
proteostasis mechanisms into protein folding constraints that enabled characterization of protein
thermostability within the ME framework and captured the response of both protein expression and growth
rate to temperature [225]. The success of resource allocation models in predicting non-intuitive biology and
aiding in rational strain design has prompted the development of standardized toolboxes for both RBA

[226] and ME [227] model construction and evaluation.

5. Discussion

In this review, we highlighted a variety of recent stoichiometric, thermodynamic, and kinetic
methodologies that aim to predict of how metabolism and growth are affected by both external
environmental factors and internal genotypic perturbations. . Table 2 provides a summary of the approaches
and tools discussed in this review and includes the types of tasks they perform, licensing availability, and
data requirements. Progress towards integrating known mechanisms onto modeling frameworks to predict
new phenotypes and developing new frameworks to pinpoint undiscovered mechanisms are continuing to
advance. Frameworks such as whole-cell modeling and multi-scale resource allocation models integrating
multi-omics data, even though highly data intensive, are quite promising. . These frameworks are supported
by developments in experimental characterization, parameterization approaches, and computational
efficiency. Advances in this area to incorporate more complex kinetic frameworks and mechanisms could
have wide-reaching impact.

The recent inclusion of structural metabolite and enzyme information in metabolic models provides
a new layer of information that can be leveraged in metabolic engineering. Recon3D is the first example
of a stoichiometric model which includes structural information for proteins and metabolites as model
features [228]. This allows for modelers to understand and predict not only the effect of a gene up/down-
regulation, but also contextualize the effect of a point mutation on the overall metabolic outcome. The
methods of leveraging structural data are not limited to stoichiometric modeling, as Heckmann et al. have
integrated structural information with machine learning to parameterization ME models with reaction-
specific kinetic parameters [222]. Moving forward, the vast amounts of structural information contained
within the Protein Data Bank (as of 2020 approximately 167,500 protein structures) [229] could be used to

enhance metabolic models by identifying allosteric mechanisms and improving predictions for data-poor



non-model organisms. When considered with two recent studies that create whole-cell models that draw
from data from thousands of publications — Mycoplasma genitalium [230] and E. coli [22] — we anticipate
the trends of incorporating both omics and structural data to continue.

The significant contributions we discussed have been facilitated by algorithmic advances in
mathematical optimization solvers. Solvers such as IBM ILOG CPLEX Optimization Studio [231], Gurobi
Optimizer [232], SCIP [233] and other solvers are continually being improved. More specialized solvers
such as SoPlex [234] and the quadruple-precision Fortran 77 optimization solver by Ma and Saunders [218]
(implemented in the COBRA toolbox) are also instrumental in many of the calculations embedded in the
developed tools.. SoPlex that performs iterative refinement of the solution has played an important role in
enabling the resource allocation model evaluation, allowing Reimers et al. [212] to solve ill-conditioned
LPs to describe diurnal cyanobacterial growth. Kinetic parameterization algorithms such as K-FIT are also
potentially transformative by accelerating the reconstruction workflow. A 1,000-fold decrease in
parameterization time [194] (as compared to the metaheuristic parameterization scheme used by Khodayari
and Maranas [187]) was achieved for a near genome-scale kinetic model. Ultimately, the development of
reliable and accelerated solution methods is of great importance and provides opportunities for collaborative
work among mathematicians, computer scientists, systems biologists, and metabolic engineers.

Lastly, advances are needed in data sharing, accuracy, and annotations in databases and
standardization in description of metabolic models. These considerations are critical to sustain advances in
metabolic modeling. Even though the usual practice is to publish results in agreement with experiment,
divergent observations can be very valuable for the discovery of missing or poorly described biology..
With the flood of data being generated by high-throughput methods and policies on data sharing, tools need
to be developed to aid ease of use, quality checking and discoverability of available information. A large
amount of data entered into databases unfortunately still contains omissions and errors [235] thus
necessitating automated checking and gate-keeping procedures.. Finally, standardization remains a major
challenge for the effective use and sharing of metabolic models. Efforts such as MIRIAM guidelines [236],
tools such as MEMOTE [56], languages such as SBML [237] and BioPAX [238], and resolution services
such as Identifiers.org [239] have helped significantly but increased effort and adherences to

standardization is encouraged.

Table 2: Recent approaches and tools that enable metabolic modeling

Algorithm /
Method Task License Accessibility Website Data Requirement

genome-scale model or
reconstruction,
experimetnal growth and
genetic perturbation data

Model testing

MEMOTE and validation

Free openCobra https://github.com/opencobra/memote



MIP

BOFdat

E-flux2

PFBA

LBFBA

MADE

Samal et al SGL

PoCaB

MOOMIN

PROM

IDREAM

EGRIN

trFBA

MASS

iReMet-flux

MetDFBA

TREM-Flux

uFBA

Nam et al.

Oyas et al.

SNPeffect

Model testing
and validation

Generate
biomass
objective

flux balance
analysis

flux balance
analysis

flux balance
analysis

FBA to extract
subnetworks

EFM + SGL to
extract
subnetworks

Compute
extreme currents
(ECs)

Identifies
'feasible
phenotypes' by
analysing
differential
expression data

Constructs
GRNs using
omics data

Uses GRNS to
predict
metabolic
phenotypes

Constructs
GRNs using
omics data

Integrates GRNs
with GSMs

Dynamic
modeling

Predicts
phenotypes by
intergating
metabolomics

Dynamic
modeling

Predicts
phenotypes by
intergating
metabolomics
and
transcriptomics

Predicts
phenotypes by
intergating
metabolomics

Predicts
phenotypes by
intergating
genomics

Predicts
phenotypes by
intergating
metabolomics
and genomics

Predicts
phenotypes by
intergating
metabolomics,
transcriptomics,
and genomics

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

Code
from
authors on
request

N/A

Free

Free

Free

Free

Free

MATLAB, Python

Python

MATLAB, java

MATLAB, Python

GAMS + CPLEX/gurobi

MATLAB + MILP solver

Database, free to download

MATLAB/Julia + MILP
solver

MATLAB

Cobra toolbox

N/A

MATLAB + Cobra toolbox

N/A

N/A

MATLAB + solver

INCA
https://pubmed.ncbi.nlm.nih
.g0v/24413674/

MATLAB

N/A

GAMS/Python +
CPLEX/gurobi

N/A

https://github.com/jclachance/BOFdat

N/A

https://opencobra.github.io/cobratoolbox/stable/

https://academic.oup.com/bioinformatics/article/34/22/3882/5033386#supplementary-data

https://academic.oup.com/bioinformatics/article/27/4/541/198624

http://www.abi.bit.uni-bonn.de/index.php?id=17

http://pocab.cg.cs.uni-bonn.de/gallery.html

github.com/htpusa/moomin

https://www.igb.illinois.edu/labs/price/downloads,

N/A

http://egrin2.systemsbiology.net/index/

http://sbme.modares.ac.ir/trfba-2/

N/A

https://pubmed.ncbi.nlm.nih.gov/27587698,

N/A

N/A

N/A

N/A

N/A

N/A

genome-scale model,
metabolite formulas,
metabolite charges

genome-scale model,
biomass macromolecular
composition

genome-scale model,
transcriptomics,
fluxomics

genome-scale model

genome-scale model,
transcriptomics

genome-scale model,
transcriptomics

genome-scale model,
transcriptomics

genome-scale model

genome-scale model,
transcriptomics

genome-scale model,
transcriptomics

genome-scale model,
transcriptomics

Transcriptomics

genome-scale model,
transcriptomics

genome-scale model,
metabolomics

genome-scale model,
metabolomics

genome-scale model,
metabolomics

genome-scale model,
metabolomics,
transcriptomics

genome-scale model,
metabolomics

genome-scale model,
transcriptomics

genome-scale model,
metabolomics, genomics

genome-scale model,
metabolomics,
transcriptomics,
genomics



Tong et al.

MBA

mCADRE

FASTCORE

FASTCORMIC
S

GIMME

GIM’E

Richelle et al.

iMAT

INIT

tINIT

CORDA

RegrEx

cFBA

OptCom

CASINO

SteadyCom

DMMM

dOptCom

COMET

BacArena

dynamic FBA

Tobalina et al.

Henry et al.

Genomic
selection by
integrating
genomics

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

Data-driven
metabolic tasks
definition

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA to extract
subnetworks

FBA for
community
modeling

FBA for
community
modeling

FBA for
community
modeling

FBA for
community
modeling

FBA for
dynamic
community
modeling

FBA for
dynamic
community
modeling

FBA for
dynamic
community
modeling

FBA for
dynamic
community
modeling

Dynamic flux
balance analysis

FBA for
community
modeling

FBA for
community
modeling and
model
reconstruction

Free

Free

Free

Free

Free

Free

Free

Free

Free

Free

N/A

Free

Free

Free
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