

1
2 **Enhanced 2'-fucosyllactose production by engineered *Saccharomyces cerevisiae***
3 **using xylose as a co-substrate**

4
5 Jae Won Lee^{a,b}, Suryang Kwak^{a,b}, Jing-Jing Liu^b, Sora Yu^c, Eun Ju Yun^c, Dong Hyun Kim^c, Cassie
6 Liu^a, Kyoung Heon Kim^{c†}, Yong-Su Jin^{a,b†}

7
8 ^aDepartment of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign,
9 Urbana, IL 61801, USA

10 ^bCarl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
11 Urbana, IL 61801, USA

12 ^cDepartment of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of
13 Korea

14

15

16

17

18

19

20 [†]Corresponding authors.

21 *E-mail address:* khekim@korea.ac.kr (K.H. Kim)

22 *E-mail address:* ysjin@illinois.edu (Y.-S. Jin)

23

24 **ABSTRACT**

25 2'-fucosyllactose (2'-FL), a human milk oligosaccharide with confirmed benefits for infant
26 health, is a promising infant formula ingredient. Although *Escherichia coli*, *Saccharomyces*
27 *cerevisiae*, *Corynebacterium glutamicum*, and *Bacillus subtilis* have been engineered to produce
28 2'-FL, their titers and productivities need be improved for economic production. Glucose along
29 with lactose have been used as substrates for producing 2'-FL, but accumulation of by-products
30 due to overflow metabolism of glucose hampered efficient production of 2'-FL regardless of a host
31 strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in
32 plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production
33 of 2'-FL by engineered yeast. Specifically, we modified an engineered *S. cerevisiae* strain capable
34 of assimilating xylose to produce 2'-FL from a mixture of xylose and lactose. First, a lactose
35 transporter (Lac12) from *Kluyveromyces lactis* was introduced. Second, a heterologous 2'-FL
36 biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from *Escherichia coli* was
37 introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2'-FL
38 production. The resulting engineered yeast produced 25.5 g/L of 2'-FL with a volumetric
39 productivity of 0.35 g/L·h in a fed-batch fermentation with lactose and xylose feeding to mitigate
40 the glucose repression. Interestingly, the major location of produced 2'-FL by the engineered yeast
41 can be changed using different culture media. While 72 % of the produced 2'-FL was secreted
42 when a complex medium was used, 82 % of the produced 2'-FL remained inside the cells when a
43 minimal medium was used. As yeast extract is already used as food and animal feed ingredients,
44 2'-FL enriched yeast extract can be produced cost-effectively using the 2'-FL accumulating yeast
45 cells.

46 **Keywords:** 2'-Fucosyllactose; *Saccharomyces cerevisiae*, Xylose, Lactose, GDP-L-fucose

47 **1. Introduction**

48 A fucosylated oligosaccharide in human milk, 2'-fucosyllactose (2'-FL), accounts for ~30 %
49 of total human milk oligosaccharide (HMO) (Chaturvedi et al., 2001). 2'-FL exhibits various
50 health benefits, such as enhancing the host immune and nerve system development (Eiwegger et
51 al., 2004; Lucas et al., 1990), inhibiting pathogenic infections (Newburg et al., 2005), and
52 stimulating the growth of beneficial gut microorganisms (GYÖRGY, 1953). Supplementing infant
53 formulas with 2'-FL can be beneficial to babies who are not breast-fed (Goehring et al., 2016;
54 Marriage et al., 2015; Morrow et al., 2001). 2'-FL can act as a decoy for norovirus by inhibiting
55 its ability to bind to the surface of epithelial cells (Derya et al., 2020), suggesting a possibility to
56 be used for prevention and treating norovirus infection.

57 In order to expand the range of 2'-FL applications as food ingredients, economical and
58 scalable production of 2'-FL is necessary. 2'-FL can be obtained via extraction from human milk
59 (Anderson & Donald, 1981), chemical synthesis (Fernandez-Mayoralas & Martin-Lomas, 1986),
60 or enzymatic synthesis (Albermann et al., 2001). However, microbial biosynthesis of 2'-FL is more
61 cost-effective and amenable for a large-scale production than chemical or enzymatic synthesis
62 (Han et al., 2012).

63 Microbial biosynthesis of 2'-FL was first demonstrated in engineered *Escherichia coli* strains
64 (Baumgärtner et al., 2013; Chin et al., 2015; Huang et al., 2017; Lee et al., 2012). Nonetheless, 2'-
65 FL production by engineered *E. coli* has critical drawbacks, such as the risk of bacteriophage
66 infection during a large-scale fermentation (Wünsche, 1989), possible endotoxin contamination,
67 and unfavorable consumer perception (Rietschel et al., 1996). Therefore, *Saccharomyces*
68 *cerevisiae*, which is generally recognized as safe (GRAS), has been proposed as an alternative host
69 to produce 2'-FL.

70 Moreover, *S. cerevisiae* has a richer intracellular pool of GDP-D-mannose (Mattila et al.,
71 2000) which can be converted into GDP-L-fucose, a key precursor of 2'-FL biosynthesis. In order
72 to enable 2'-FL synthesis in engineered *S. cerevisiae*, installation of three heterologous metabolic
73 components is necessary: a lactose transporter for internalization of lactose, a GDP-L-fucose
74 synthetic pathway, and α -1,2-fucosyltransferase (Fig. 1). GDP-L-fucose can be produced from
75 GDP-D-mannose (*de novo* pathway) (Mattila et al., 2000), or L-fucose (*salvage* pathway) (Coyne
76 et al., 2005). As *S. cerevisiae* cannot utilize lactose, it requires that another carbon source is
77 supplied to produce GDP-L-fucose as well as to support cell growth. Recently, 2'-FL production
78 in engineered *S. cerevisiae* via the *de novo*, or *salvage* pathway has been reported (Hollands et al.,
79 2019; Liu et al., 2018; Yu et al., 2018). These studies used glucose as a main carbon source, and
80 lactose as a backbone for the production of 2'-FL.

81 The titers of 2'-FL by engineered yeast were not comparable to those by engineered *E. coli*
82 (Baumgärtner et al., 2013; Chin et al., 2015; Chin et al., 2016; Huang et al., 2017). We reasoned
83 that the predominantly fermentative nature of glucose metabolism by *S. cerevisiae*, and unstable
84 and unbalanced expression of the heterologous genes might limit productivities by the engineered
85 yeast strains (Liu et al., 2018; Yu et al., 2018). When glucose is provided, *S. cerevisiae* exhibits
86 the Crabtree effect which is characterized by repressed respiration and facilitated ethanol
87 production. Therefore, even after introduction of 2'-FL biosynthetic pathways, ethanol remained
88 as a major product by engineered yeast. In addition, previous studies used episomal plasmids to
89 overexpress the enzymes for GDP-L-fucose and 2'-FL biosynthesis. However, episomal plasmids
90 tend to exhibit structural and segregational instability (Friehs, 2004) and gene expression from
91 episomal plasmids can be noisy (Ryan, 2014). The instability and inconsistent expression may
92 negatively impact 2'-FL production by engineered yeast.

93 To resolve these problems, we constructed an engineered yeast strain to produce 2'-FL using
94 xylose, the second most abundant sugar in plant cell wall. The resulting yeast was able to utilize
95 xylose as a primary carbon source instead of glucose for the enhanced production of 2'-FL.
96 Moreover, heterologous genes encoding the 2'-FL biosynthetic enzymes were integrated into the
97 engineered yeast chromosome for stable gene expression. To further increase 2'-FL productivity,
98 the copy numbers of the integrated heterologous genes were optimized in the engineered yeast. As
99 a result, our engineered yeast drastically improved 2'-FL production. With recent advances of
100 cellulosic biofuel technologies, economic and sustainable production of xylose from non-edible
101 cellulosic biomass is expected. Therefore, it will be feasible to produce 2'-FL by engineered yeast
102 using a mixture of xylose and lactose.

103

104 **2. Materials and Methods**

105

106 **2.1. Strains and media**

107 *E. coli* Top10 [F- *mcrA* Δ (*mrr-hsdRMS-mcrBC*) φ 80 $lacZ$ Δ M15 Δ *lacX*74 *recA1* *araD139*
108 Δ (*ara-leu*) 7697 *galU* *galK* *rpsL* (Str^R) *endA1* *nupG*] was used for the manipulation of a plasmid.
109 The *E. coli* strain was grown in Luria Bertani (LB) medium (1% tryptone, 0.5% yeast extract, 1%
110 NaCl) at 37 °C with ampicillin (100 µg/mL) if necessary. A xylose-fermenting *S. cerevisiae* CT2
111 strain—*S. cerevisiae* D452-2 derived strain with integration of two copies of expression cassettes
112 containing *XYL1*, *XYL2*, and *XYL3* in the background of *PHO13* and *ALD6* deletion (Tsai et al.,
113 2015)—was used as a host strain for introducing genetic modifications to produce 2'-FL. The CT2
114 strain, and its derived yeast strains were cultivated at 30 °C in YP medium (10 g/L yeast extract,
115 and 20 g/L peptone) with 20 g/L glucose. For CRISPR-Cas9 based genome editing experiments,

116 120 µg/mL of nourseothricin, 300 µg/mL of geneticin, and 300 µg/mL of hygromycin B were
117 added as necessary for selecting transformants.

118

119 **2.2. Plasmids and strains construction**

120 The strains used in this study are listed in Table 1. The plasmids, primers, and guide RNA
121 (gRNA) target sequences used in this study are listed in Table S1, S2 and S3, respectively. Details
122 of plasmid and strain construction procedures are described in the **Supplementary materials**.
123 Recombinant DNA techniques were performed according to standard procedures. A lithium
124 acetate transformation method with single strand carrier DNA and polyethylene glycol (Gietz &
125 Schiestl, 2007) was used to introduce Cas9-NAT, gRNA expression vectors, and donor DNA
126 fragment into yeast strains. Putative transformants on selection plates were confirmed by colony
127 PCR.

128

129 **2.3. Fermentation experiments**

130 To produce 2'-FL, we precultured engineered yeast strains overnight in 5 mL of YPD20 (YP
131 medium with 20 g/L of glucose) at 30 °C and 250 rpm. The pre-cultured yeast cells were then
132 transferred into 40 mL of YPD20 and incubated under the same conditions. Grown cells were
133 harvested at the mid-exponential phase and inoculated into 20 mL either YPD30L2 (YP medium
134 with 30 g/L of glucose and 2 g/L of lactose) or YPX30L2 (YP medium with 30 g/L of xylose and
135 2 g/L of lactose) in a 250-mL flask with an initial cell density of OD₆₀₀ = 10. All flasks were
136 incubated at 30 °C and 250 rpm.

137 Xylose fed-batch fermentations were conducted in the BioFlo & CelliGen 115 fermenter (New
138 Brunswick Scientific-Eppendorf, CT, USA) using either a complex medium (YP), or a defined

139 medium (Verduyn), respectively (van Hoek et al., 2000). For a fermentation using the complex
140 medium, the *S. cerevisiae* CTLD2F2 strain was pre-cultured in 200 mL of YPD40 (YP medium
141 with 40 g/L of glucose), then inoculated into 1L of YPX30 (YP medium with 30 g/L xylose)
142 medium. After the initially added xylose was depleted, additional xylose and lactose were added
143 to the bioreactor up to 30 g/L of xylose and 2 g/L of lactose. For a fermentation with the defined
144 medium, the *S. cerevisiae* CTLD2F2L strain was pre-cultured in 200 mL of VD40 (Verduyn
145 medium with 40 g/L of glucose), then inoculated into 1L of VX30 (Verduyn medium with 30 g/L
146 of xylose). Engineered strains were cultured with feeding xylose to reach a high cell density of
147 $OD_{600} = 120$, equivalent to 53.6 g/L dry cell weight (DCW), and lactose was then added to initiate
148 2'-FL synthesis. After the initially added lactose was completely converted to 2'-FL, additional
149 lactose was added to the bioreactor up to 2~3 g/L. The pHs of fed-batch fermentations were
150 controlled at pH 5.6 by adding 2N NaOH.

151 To compare intracellular GDP-L-fucose production by engineered strains on glucose and
152 xylose, we pre-cultured the engineered strains in 5 mL of YPD20. We inoculated pre-cultured cells
153 into 20 mL of YPD30 or YPX30 in a 250 mL flask with an initial cell density of $OD_{600} = 0.1$. The
154 fermentation was performed at 30 °C and 250 rpm.

155 To compare lactose assimilation by engineered strains grown on glucose and xylose, the
156 engineered strains were pre-cultured in 5 mL of YPD20. The pre-cultured cells were then
157 inoculated into 3 mL of YPD10L2 (YP medium with 10 g/L of glucose and 2 g/L of lactose) or
158 YPX10L2 (YP medium with 10 g/L of xylose and 2 g/L of lactose) in a 14 mL culture tube with
159 an initial cell density of $OD_{600} = 10$. The fermentation was performed at 30 °C and 250 rpm.

160

161 **2.4. Analytic methods**

162 Cell density (OD₆₀₀) was monitored using a spectrophotometer (BioMate 5, Thermo Fisher
163 Scientific, MA, USA). Dried cell weights (DCW) of engineered yeast strains were calculated from
164 a pre-determined relationship between OD₆₀₀ and DCW. Extracellular glucose, xylose, lactose,
165 ethanol, and 2'-FL concentrations of culture broths were analyzed with the Agilent 1200 HPLC
166 system equipped with a refractive index detector (Agilent Technologies, Wilmington, DE, USA)
167 and Rezex ROA-Organic Acid H⁺ (8%) column (Phenomenex, Torrance, CA, USA). The flow
168 rate of the mobile phase 0.005N H₂SO₄ was 0.6 mL/min, and the column temperature was 50 °C.
169 To measure total (intracellular and extracellular) 2'-FL, fermentation broth containing yeast cells
170 was boiled for 10 min to release all of the intracellular 2'-FL and centrifuged at 21,130×g for 10
171 min. 2'-FL concentrations in supernatants were analyzed by high-performance liquid
172 chromatography (HPLC) (Canelas et al., 2009). Differences between total and extracellular 2'-FL
173 concentrations were calculated as intracellular 2'-FL concentrations.

174 To measure intracellular GDP-L-fucose in engineered yeast cells, we harvested 1.8 mL of cell
175 culture by centrifugation at 21,130×g for 10 min, washed twice with distilled water, and re-
176 suspended pellet with 500 µL of distilled water. To ensure that all of the GDP-L-fucose was
177 released, the cells were then further disrupted by continuous beating with glass beads for 40 min.
178 After centrifugation at 25,000×g for 20 min at 4 °C, we injected the supernatant into a HPLC
179 system (Shimadzu, Kyoto, Japan) equipped with a CAPCELL PAK C18 MG column (Shiseido,
180 Tokyo, Japan) at 30 °C. The flow rate of a mobile phase composed of 20 mM triethylamineacetate
181 and 2% (v/v) acetonitrile was set to 0.6 mL/min. GDP-L-fucose was detected at 254 nm by HPLC,
182 and the concentration of GDP-L-fucose was calculated from its peak height using a GDP-L-fucose
183 standard solution.

184 To measure the intracellular lactose content in the engineered yeast, we harvested 200 μ L of
185 the cell culture by centrifugation at 21,130 $\times g$ for 5 min, washed twice with distilled water, and re-
186 suspended with 200 μ L of distilled water. The cells were then boiled for 10 min to release the
187 intracellular lactose. The intracellular lactose was then measured with the Agilent 1200 HPLC
188 system equipped with a refractive index detector (Agilent Technologies, Wilmington, DE, USA)
189 and Rezex ROA-Organic Acid H $^{+}$ (8%) column (Phenomenex, Torrance, CA, USA) as described
190 in the above protocol.

191

192 **2.5. Real-time quantitative PCR (RT-qPCR)**

193 To determine mRNA levels of 2'-FL biosynthetic enzymes (Gmd, WcaG, and WbgL) in
194 engineered yeast strains (CT2, CTLD1F1, and CTLD2F2), we performed RT-qPCR analysis. For
195 RNA extraction, the strains were inoculated into 5 ml of YPX30L2 in a 14 mL culture tube and
196 incubated at 30 °C and 250 rpm. RNA was extracted from the fresh cultures of the strains using a
197 Qiagen RNeasy mini kit following the manufacturer's protocol. The RNA was reverse transcribed
198 to cDNA using Superscript™ III First-Strand Synthesis System (Thermo Fisher Scientific, MA,
199 USA). The RT-qPCR was conducted using CFX96 Real-Time system (Bio-Rad, CA, USA) and
200 SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad, CA, USA), according to the
201 manufacturer's protocol. All RT-qPCR amplicon primers are listed in Table S4. The housekeeping
202 gene *ACT1* was used as a loading control. The relative gene expression level was analyzed by the
203 $2^{-\Delta\Delta C_t}$ method (Livak & Schmittgen, 2001) from three biological replicates, and statistical
204 significance was assessed by Student's t-test.

205

206 **3. Results and Discussion**

207

208 **3.1. Comparison of glucose and xylose as a carbon source for 2'-FL production by engineered**
209 **yeast**

210

211 **3.1.1. Intracellular GDP-L-fucose production**

212 Ample supply of GDP-L-fucose is required to enhance 2'-FL production because GDP-L-
213 fucose is a fucosyl donor for the fucosylation of lactose (Lee et al., 2012). The GDP-L-fucose
214 synthesis pathway is branched from fructose-6-phosphate which is a metabolite of glycolysis
215 (Hollands et al., 2019; Liu et al., 2018). When excess amounts of glucose are used by *S. cerevisiae*,
216 majority of consumed glucose is converted into ethanol regardless of aerations due to the Crabtree
217 effect (De Deken, 1966). As a result, GDP-L-fucose production in engineered *S. cerevisiae* can be
218 extremely limited because of rapid and efficient metabolism—characterized by little or no
219 accumulation of glycolytic intermediates—of glucose toward ethanol production. We
220 hypothesized that use of xylose instead of glucose might increase supply of GDP-L-fucose as
221 xylose does not induce glucose repression (Jin et al., 2004; Kwak et al., 2017). Previous studies
222 have reported that xylose-utilizing *S. cerevisiae* strains do not exhibit glucose repression through
223 different transcriptomic and metabolomic patterns of the central carbon metabolism (Jin et al.,
224 2004; Matsushika et al., 2014; Feng & Zhao, 2013).

225 To examine the effect of xylose metabolism on GDP-L-fucose production in engineered yeast,
226 we constructed the *S. cerevisiae* CTD strain by integrating the expression cassettes containing *gmd*
227 and *wcaG* into the chromosome of the *S. cerevisiae* CT2 strain, which was constructed to ferment
228 xylose previously (Tsai et al., 2015). Under glucose and xylose conditions, phenotypic changes of
229 the CTD strain including intracellular GDP-L-fucose content were analyzed. The CTD strain

230 consumed 30 g/L of glucose, and xylose within 12 h and 36 h, respectively (Fig. S1). The CTD
231 strain grew more and produced less ethanol on xylose than on glucose (Fig. S1), confirming that
232 glucose repression is substantially alleviated when xylose is used.

233 The intracellular GDP-L-fucose content of the CTD cells grown on xylose was 37% more
234 (1.02 vs. 0.74 mg/g cell) than that of the CTD cells grown on glucose. As the CTD cells grew more
235 on xylose than glucose, the volumetric GDP-L-fucose concentration of the xylose culture was 3.0-
236 fold higher (44.1 vs. 14.6 mg/L) than on glucose. When glucose was used, the CTD strain showed
237 a diauxic growth pattern on ethanol after glucose depletion. However, the intracellular GDP-L-
238 fucose content of the CTD cells grown on ethanol was much lower (0.13 mg/g cell) than those of
239 the cells grown on glucose and xylose (Fig. 2). This result can be explained by the fact that ethanol
240 can be converted into GDP-L-fucose via gluconeogenesis, but it is less efficient than synthesis of
241 GDP-L-fucose through glycolysis from glucose or xylose (Foy & Bhattacharjee, 1977). In
242 addition, biosynthesis of GDP-L-fucose requires one GTP and one ATP (Guan et al., 2018), but
243 ethanol utilization is energetically less efficient than sugar utilization, which could limit the
244 biosynthesis of GDP-L-fucose from ethanol (de KoK et al., 2012; Pfeiffer & Morley, 2014;
245 Verduyn, 1991). Because of these reasons, sequential utilization of glucose and ethanol could not
246 drive high levels of GDP-L-fucose as shown in xylose utilization in terms of both specific contents
247 and volumetric concentrations (Fig. 2).

248

249 **3.1.2. Lactose uptake**

250 As *S. cerevisiae* cannot transport lactose (Sreekrishna & Dickson, 1985), a backbone of 2'-
251 FL, it is necessary to introduce a heterologous lactose transporter to internalize lactose for
252 fucosylation. To avoid the potential challenges of expressing a prokaryotic lactose transporter gene

253 in eukaryotic cells, we decided to express a eukaryotic lactose transporter in our engineered yeast.
254 Therefore, a lactose transporter (Lac12) from *Kluyveromyces lactis* under the control of the *TDH3*
255 promoter was integrated into the genome of the *S. cerevisiae* CT2 strain. Glucose is known to
256 trigger the inactivation of transporters and enzymes needed for utilizing other sugars in *S.*
257 *cerevisiae* (Lucero et al., 2002). Specifically, glucose triggers ubiquitination of maltose and
258 galactose transporters causing endocytosis and proteolysis of the sugar transporters in the vacuole
259 (Horak & Wolf, 1997; Lucero et al., 1993). As such, we reasoned that Lac12 might not be stable
260 or functional when glucose is present, thereby limiting 2'-FL production by engineered yeast.

261 To examine the functionality of Lac12 in *S. cerevisiae* under different carbon sources, we
262 measured both extra and intracellular lactose concentrations in the *S. cerevisiae* CTL strain—a
263 CT2-derived strain with an integrated *LAC12* expression cassette—after incubating the CTL cells
264 with 2 g/L lactose, and either 10 g/L of glucose or 10 g/L of xylose. Under glucose and xylose
265 conditions, intracellular lactose concentrations of the CTL strain were increased in proportion to
266 reduced extracellular lactose concentrations. Counterintuitively, the CTL strain was able to
267 assimilate lactose efficiently even under the presence of glucose (Fig. S2). This result indicates
268 that Lac12 in *S. cerevisiae* is stable and capable of transporting lactose under xylose conditions
269 and even under glucose conditions.

270

271 **3.1.3. 2'-FL production by engineered yeast**

272 We constructed the *S. cerevisiae* CTLD by integrating the expression cassettes containing
273 *gmd* and *wcaG* into the chromosome of the CTL strain, which allowed the CTLD strain to
274 assimilate lactose and produce GDP-L-fucose intracellularly. A heterologous α -1,2-
275 fucosyltransferase (FT) is also necessary to produce 2'-FL in the CTLD strain. Instead of

276 using *Helicobacter pylori* *futC*, which resists functional expression in a heterologous host strain
277 (Chin et al., 2015; Lee et al., 2012), we decided to introduce an alternative FT gene, *wbgL*, found
278 in *E. coli*.

279 To examine the advantages of using xylose over glucose for the production of 2'-FL by
280 engineered yeast, the *S. cerevisiae* CTLD1F1—a CT2-derived strain with chromosomal
281 integration of *LAC12*, *gmd*, *wcaG*, and *wbgL* expression cassettes—was cultured in the YPD30L2
282 and YPX30L2. In the YPD30L2, 30 g/L of glucose was depleted within 4 hours, and the CTLD1F1
283 cells continued to grow using ethanol produced from glucose. The 2 g/L of lactose initially added
284 into the culture medium was not detected after 48 hours, indicating that all of the added lactose
285 was internalized in the CTLD1F1 cells. However, 2'-FL concentration in the culture media was
286 only 0.7 g/L, suggesting that produced 2'-FL might remain inside the cells. When the cells were
287 lysed by boiling, the 2'-FL concentration in the boiled culture medium was 1.5 g/L. This result
288 indicates that the CTLD1F1 strain produced 0.7 g/L of extracellular 2'-FL and 0.8 g/L of
289 intracellular 2'-FL. The volumetric productivity of 2'-FL was 0.04 g/L·h and the yield of total 2'-
290 FL from lactose was 0.53 mol/mol when the CTLD1F1 is cultured in the YPD30L2 (Fig. 3a).

291 When the YPX30L2 was used, the CTLD1F1 strain consumed 30 g/L of xylose in 30 h and
292 produced less ethanol (4.7 vs. 13.1 g/L) and grew to higher cell densities (OD₆₀₀ 40.9 vs. 29.4) than
293 when the YPD30L2 was used. The extracellular concentration of 2'-FL was 0.9 g/L and the total
294 concentration of extracellular and intracellular concentrations of 2'-FL from the boiled cell culture
295 was 2.3 g/L. Therefore, intracellular concentration of 2'-FL was calculated to be 1.4 g/L. The 2'-
296 FL productivity was 0.11 g/L·h, and the yield of 2'-FL from lactose was 0.81 mol/mol when the
297 CTLD1F1 is cultured in the YPX30L2 (Fig. 3b).

298 While the CTLD1F1 strain produced 2'-FL, WcaG uses NADPH as a cofactor, so we
299 hypothesized that improved NADPH production might enhance 2'-FL production as (Fig. 1). To
300 increase intracellular concentrations of NADPH in the CTLD1F1 strain, we overexpressed genes
301 reported to increase NADPH levels in *S. cerevisiae* (Oh et al., 2013). Specifically, we expressed
302 either *SsZWF1* (*Scheffersomyces stipitis* glucose-6-phosphate dehydrogenase) or *IDP2* (*S.*
303 *cerevisiae* isocitrate dehydrogenase). However, the effects of the overexpression
304 of *SsZWF1* or *IDP2* on 2'-FL production were marginal (Fig. S3). We suspect that endogenous
305 *ZWF1* and *IDP2* might be already upregulated under xylose conditions so that their overexpression
306 did not impact on 2'-FL production. The RNA-seq data of a xylose-fermenting engineered *S.*
307 *cerevisiae* (SR7 $pho13\Delta$) that has a similar genetic background with the CT2 strain (Kim et al.,
308 2015) supported this idea. According to the RNA-seq data, *ZWF1* and *IDP2* of the
309 SR7 $pho13\Delta$ strain were 2.35- and 22.3-fold upregulated under xylose conditions as compared to
310 when they were under glucose conditions.

311 We speculate that the improved production of 2'-FL from xylose as compared to glucose
312 might be caused by better energetics of xylose utilization than glucose fermentation. Both GDP-
313 L-fucose synthesis and lactose transportation require cellular energy (GDP-L-fucose: ATP and
314 GTP, Lactose transport: ATP) (Guan et al., 2018; Guimarães et al., 2008). As such, the xylose-
315 utilizing *S. cerevisiae*, which can produce more ATP due to alleviation of glucose repression on
316 oxidative phosphorylation (Jin et al., 2004; Kwak et al., 2017), can produce more 2'-FL than the
317 glucose/ethanol-utilizing *S. cerevisiae*. This hypothesis is supported by the observation that lactose
318 uptake rates were slowed when ethanol was consumed after glucose depletion more than rates
319 when xylose was consumed (Fig. S2, Fig. 3a). This is consistent with findings in a previous study

320 (Liu et al., 2018) where about 40 % of lactose initially added was not transported into a cell during
321 ethanol consumption after glucose depletion.

322 Lac12 is a proton symporter which co-transport a proton with each lactose. Consequently,
323 transmembrane electrochemical gradients of protons (ΔP) is a driving force of lactose transport. In
324 *S. cerevisiae*, ΔP is generated largely by plasma membrane ATPase (Pma1p). It has been reported
325 that at least 10% of cellular ATP is consumed by Pma1p for transporting maltose by a proton
326 symporter when the yeast is growing on maltose (Guimarães et al., 2008). As such, substantial
327 amounts of ATP will be necessary for lactose transport. Ethanol assimilation is energetically
328 inefficient (Pfeiffer & Morley, 2014; Verduyn, 1991) so that sequential utilization of glucose and
329 ethanol might not be suited to providing for sufficient intracellular lactose, hampering the efficient
330 production of 2'-FL. Therefore, higher energetic efficiency of xylose metabolism than glucose
331 metabolism in *S. cerevisiae* could be a factor that improved 2'-FL titer and productivity under
332 xylose conditions.

333

334 **3.2. The effects of copy numbers of *gmd*, *wcaG*, and *wbgL* on 2'-FL production**

335 The yield of 2'-FL from lactose (0.81 mol/mol) by the CTLD1F1 strain in the YPX30L2 (Fig.
336 3) was still lower than the theoretical maximum (1.0 mol/mol). This lower yield also suggests that
337 lactose might be degraded or modified slowly into other cellular metabolites via promiscuous
338 activities of endogenous enzymes in yeast. In order to compete with such reactions draining
339 lactose, *in vivo* activities of GDP-L-fucose synthesizing enzymes (Gmd and WcaG) and
340 fucosyltransferase (WbgL) might need to be optimized. We constructed three engineered *S.*
341 *cerevisiae* strains (CTLD2F1, CTLD1F2, and CTLD2F2) with different integrated copies of the
342 expression cassettes with *gmd*, *wcaG*, and *wbgL* in the genomes via Cas9-based genome editing.

343 The CTLD2F1 strain contained two copies of the *gmd* and *wcaG* expression cassette and one copy
344 of the *wbgL* expression cassette in the genome. The CTLD1F2 strain contained one copy of the
345 *gmd* and *wcaG* expression cassette and two copies of the *wbgL* expression cassette in the genome.
346 Lastly, the CTLD2F2 strain contained two copies of the *gmd* and *wcaG* expression cassette and
347 two copies of the *wbgL* expression cassette in the genome. We examined the 2'-FL production
348 capacities of these engineered strains along with their parental strain (CTLD1F1) in the YPX30L2.

349 The extracellular, total 2'-FL, and volumetric 2'-FL productivities by the four engineered
350 yeast strains (CTLD1F1, CTLD2F1, CTLD1F2, and CTLD2F2) (Table 1) were measured (Fig. 4).
351 Overall, the changes in the total 2'-FL titers were not significant in the four engineered strains but
352 extracellular 2'-FL titer and 2'-FL productivity levels differed in the engineered yeast strains with
353 altered copies of the expression cassettes. When we doubled the expression cassette of *gmd* and
354 *wcaG*, the CTLD2F1 strain increased 2'-FL productivity (0.144 ± 0.003 vs. 0.109 ± 0.002
355 g/L·h) but not the extracellular 2'-FL concentration as compared to the CTLD1F1 strain. In
356 contrast, when we doubled the *wbgL* expression cassette, the CTLD1F2 strain showed
357 improvements in both the extracellular 2'-FL titer (1.10 ± 0.00 vs. 0.87 ± 0.01 g/L) and the 2'-
358 FL productivity (0.142 ± 0.008 vs. 0.109 ± 0.002 g/L·h) as compared to the CTLD1F1 strain.
359 When the expression cassettes of *gmd*, *wcaG*, and *wbgL* were doubled, the CTLD2F2 strain
360 produced 1.6 g/L of extracellular 2'-FL, which was 1.7-fold higher than that of the CTLD1F1
361 strain (0.9 g/L), under the YPX30L2 conditions. Moreover, the CTLD2F2 strain exhibited 1.7-fold
362 higher 2'-FL productivity over the CTLD1F1 strain (0.187 ± 0.001 and 0.109 ± 0.002 g/L·h),
363 indicating that the rate of 2'-FL biosynthesis might be an influencing factor of 2'-FL secretion in
364 engineered yeast. To compare 2'-FL biosynthetic enzyme mRNA levels (Gmd, WcaG, and WbgL)
365 in the CTLD1F2 and the CTLD2F2 strains, we performed RT-qPCR (Fig. S4). The mRNA levels

366 of Gmd, WcaG, and WbgL in the CTLD2F2 strain were higher than levels in the CTLD1F1 strain,
367 suggesting that the increased copy numbers of *gmd*, *wcaG*, and *wbgL* elevated enzyme mRNA
368 levels in the CTLD2F2 strain. Overall, the increased mRNA levels of 2'-FL biosynthetic enzymes
369 resulted in enhanced 2'-FL productivity and secretion in the CTLD2F2 strain.

370 In the presence of lactose, engineered yeast strains that carry a lactose transporter with no β -
371 galactosidase activity will accumulate lactose in the cytosol. This unmetabolized lactose can
372 restrict the uptake of other carbon sources (Lodi et al., 2005; Liu et al., 2018). Therefore, the
373 highest 2'-FL productivity by the CTLD2F2 strain with additional copies of the 2'-FL biosynthetic
374 genes might have been caused by less lactose accumulation (Fig. S5). As the 2'-FL biosynthesis
375 pathway converts intracellular lactose into 2'-FL, efficient 2'-FL biosynthesis might alleviate the
376 toxicity derived from lactose accumulation. Indeed, the CTLD2F2 strain exhibited faster xylose
377 and lactose consumption rates and a lower intracellular lactose level than the CTLD1F1 strain (Fig.
378 S5).

379

380 **3.3. 2'-FL production by engineered yeast in a bioreactor**

381 To increase the titer of 2'-FL and to investigate the feasibility of large scale production of 2'-
382 FL, we examined the performance of the CTLD2F2 strain—the best strain identified from shake
383 flask fermentations—in a fed-batch bioreactor with feeding xylose and lactose to maximize cell
384 growth and 2'-FL production. We conducted two fed-batch fermentations using complex (YP) and
385 defined (Verdyun) media. When the fed-batch fermentation included YP media, 185.3 g/L of
386 xylose and 14.7 g/L of lactose was consumed and produced a total of 17.2 g/L of 2'-FL (12.3 g/L
387 of extracellular and 4.9 g/L of intracellular) with a volumetric productivity of 0.17 g/L·h (Fig. 5a).
388 The final yield of 2'-FL from lactose was 0.82 mol/mol. A majority of the produced 2'-FL (71.5%)

389 was secreted into the medium at the end of the fed-batch fermentation, which was consistent with
390 the flask fermentation results (Fig. 4, Fig. 5a). While the YP media offered rapid growth of the
391 engineered yeast, there are limiting nutrients in the YP media so that the final cell density was
392 $OD_{600}= 62.2$ (28.0 g/L DCW) which was not enough to provide a high volumetric productivity.
393 As the CTLD2F2 is a leucine auxotroph strain, we constructed a prototrophic strain (CTLD2F2L)
394 by introducing a functional *LEU2* into the CTLD2F2 strain. When we examined the results of the
395 fed-batch fermentations (Fig. S6), the CTLD2F2L strain final cell density was higher than that of
396 the CTLD2F2 (OD_{600} : 80.0 vs. 62.2) strain. However, the CTLD2F2L strain productivity and total
397 2'-FL titers were similar to those produced by the CTLD2F2 strain.

398 We also conducted a fed-batch fermentation using a defined (Verdyun) media for achieving a
399 higher volumetric productivity with a higher cell density (van Hoek et al., 2000). Researchers
400 reported previously that unmetabolized lactose restricts the uptake of carbon sources in engineered
401 yeast strains carrying a lactose transporter with no β -galactosidase activity (Lodi et al., 2005; Liu
402 et al., 2018). We also observed the lactose inhibition on xylose utilization of our engineered yeast
403 (Fig. S7). Therefore, we designed a two-phase fermentation to minimize lactose toxicity in the fed-
404 batch fermentation. In the first phase, we grew cells up to a cell density of $OD_{600}=120$. In the
405 second phase, we added low levels of lactose into the medium to initiate 2'-FL synthesis (Fig. 5b).
406 The CTLD2F2L strain produced a total of 25.5 g/L of 2'-FL (4.5 g/L of extracellular and 21.0 g/L
407 of intracellular) with a volumetric productivity of 0.35 g/L·h which are substantially higher than
408 those (15.0 g/L of 2'-FL and 0.22 g/L·h) reported in a glucose-limited fed-batch fermentation
409 previously (Hollands et al., 2019). Using xylose instead of glucose as a substrate, we achieved a
410 high 2'-FL production titer without any complicated feeding algorithms or devices that are
411 necessary for a glucose-limited fed-batch fermentation. Moreover, the cell-specific 2'-FL

412 productivity of the CTLD2F2L strain was about 2.9 times higher than that of the previous report
413 (0.43 vs. 0.15 g 2'-FL/g cell) (Hollands et al., 2019). These results suggest that although a glucose-
414 limited feeding strategy can alleviate the glucose repression, xylose consumption might be better
415 suited to providing necessary GDP-L-fucose than glucose. In addition, excess xylose feeding
416 might be better than limited feeding of glucose for the production of 2'-FL.

417 Although we obtained promising results for the production of 2'-FL using xylose as a
418 substrate, further improvements to the CTLD2F2L strain can be considered. During the high cell
419 density fermentation using the Verduyn media (Fig. 5b), 82.4 % of the produced 2'-FL was not
420 secreted into the medium and remained inside the cell, which is consistent with a previous report
421 (Hollands et al., 2019). Depending on a process design to produce 2'-FL, extracellular secretion
422 of 2'-FL into a culture medium can be favored. According to our study results, there might be
423 endogenous transporters capable of exporting 2'-FL in yeast and activities of the endogenous
424 transporters might be different in the YP and Verdyun media. While the synthesized 2'-FL by the
425 engineered yeast was efficiently secreted out of the cell when the YP medium was used, the
426 majority of the produced 2'-FL was inside of the cells when the Verdyun medium was used (Fig.
427 5). We speculated that components in the YP media might induce expression of the endogenous
428 transporters or increase activities of the transporters. Nonetheless, the endogenous transporters
429 might not have enough activity to secrete 2'-FL entirely. Therefore, identification of highly
430 efficient 2'-FL transporters will improve 2'-FL biosynthesis and secretion.

431 Intracellular accumulation of 2'-FL by engineered yeast also can be advantageous for
432 implementing a simplified downstream process if pure 2'-FL is not necessary. For instance, 2'-FL
433 containing cells can be easily harvested from the culture medium and used directly for applications.
434 To test this idea, we harvested and lysed the 2'-FL accumulated cells. The soluble fraction of the

435 cell lysate was then dried to make a yeast extract in a powder form. The resulting yeast extract
436 contained 12% (wt/wt) 2'-FL. We envision that 2'-FL enriched yeast extract can be used as food
437 and animal feed ingredients.

438

439 **4. Conclusions**

440 In this study, we highlight potential advantages of using xylose as a carbon source for the
441 production of 2'-fucosyllactose. Use of xylose instead of glucose can provide better cell growth
442 and energetics, and robust supply of GDP-L-fucose for the production of 2'-FL by engineered
443 yeast. We also report that the increased enzyme levels in the 2'-FL biosynthetic pathway can lead
444 to enhanced 2'-FL production by engineered yeast. The best engineered yeast strain with double
445 copies of *gmd*, *wcaG*, and *wbgL* produced 25.5 g/L of 2'-FL with a productivity of 0.35 g/L·h from
446 a fed batch fermentation using xylose. The capacity of the engineered yeast to secrete 2'-FL was
447 quite different depending on the culture media. While 71.5 % of the produced 2'-FL was secreted
448 to the YP media, 82.4 % of the produced 2'-FL remained inside the cells in the Verduyn media.
449 Through our results, the proof-of-concept level production of 2'-FL by yeast was promoted to the
450 industrial level production using xylose as a carbon source.

451

452 **Acknowledgements**

453 This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation
454 (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research
455 under Award Number DE-SC0018420). Any opinions, findings, and conclusions or
456 recommendations expressed in this publication are those of the author(s) and do not necessarily

457 reflect the views of the U.S. Department of Energy. The authors thank Christine Atkinson and
458 Stephan Lane for their diligent proofreading of this paper.

459

460 **References**

- 461 [1] Albermann, C., Piepersberg, W., Wehmeier, U.F. 2001. Synthesis of the milk oligosaccharide
462 2'-fucosyllactose using recombinant bacterial enzymes. *Carbohydr. Res.*, 334(2), 97-103.
- 463 [2] Anderson, A., Donald, A.S.R. 1981. Improved method for the isolation of 2'-fucosyllactose
464 from human milk. *J. Chromatogr. A.*, 211(1), 170-174.
- 465 [3] Baumgärtner, F., Seitz, L., Sprenger, G.A., Albermann, C. 2013. Construction of *Escherichia*
466 *coli* strains with chromosomally integrated expression cassettes for the synthesis of 2'-
467 fucosyllactose. *Microb. Cell Fact.*, 12, 40.
- 468 [4] Bode, L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. *Glycobiology*,
469 22(9), 1147-1162.
- 470 [5] Canelas, A.B., ten Pierick, A., Ras, C., Seifar, R.M., van Dam, J.C., van Gulik, W.M., Heijnen,
471 J.J. 2009. Quantitative evaluation of intracellular metabolite extraction techniques for yeast
472 metabolomics. *Anal. Chem.*, 81(17), 7379-7389.
- 473 [6] Chaturvedi, P., Warren, C.D., Altaye, M., Morrow, A.L., Ruiz-Palacios, G., Pickering, L.K.,
474 Newburg, D.S. 2001. Fucosylated human milk oligosaccharides vary between individuals
475 and over the course of lactation. *Glycobiology*, 11(5), 365-372.
- 476 [7] Chin, Y.-W., Kim, J.-Y., Lee, W.-H., Seo, J.-H. 2015 Enhanced production of 2'-fucosyllactose
477 in engineered *Escherichia coli* BL21star(DE3) by modulation of lactose metabolism and
478 fucosyltransferase. *J. Biotechnol.*, 210, 107-115.

- 479 [8] Chin, Y.-W., Seo, N., Kim, J.-H., Seo, J.-H. 2016. Metabolic engineering of *Escherichia coli*
480 to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-
481 fucose. *Biotechnol. Bioeng.*, 113(11), 2443-2452.
- 482 [9] Coyne, M.J., Reinap, B., Lee, M.M., Comstock, L.E. 2005. Human symbionts use a host-like
483 pathway for surface fucosylation. *Science*, 307(5716), 1778-1781.
- 484 [10] De Deken, R.H. 1966. The Crabtree Effect: A Regulatory System in Yeast. *J. Gen. Microbiol.*,
485 44(2), 149-156.
- 486 [11] de KoK, Kozak, B.U., Pronk, J.T., van Maris, A.J.A. 2012. Energy coupling in *Saccharomyces*
487 *cerevisiae*: selected opportunities for metabolic engineering. *FEMS Yeast Res*, 12(4), 387-
488 397.
- 489 [12] Derya, S.M., Spiegel, H., Hanisch, F.G., Morozov, V., Schroten, H., Jennewein, S., Parschat,
490 K. 2020. Biotechnologically produced fucosylated oligosaccharides inhibit the binding of
491 human noroviruses to their natural receptors. *J Biotechnol*, 318, 31-38.
- 492 [13] Diderich, J.A., Raamsdonk, L.M., Kruckeberg, A.L., Berden, J.A., Van Dam, K. 2001.
493 Physiological properties of *Saccharomyces cerevisiae* from which hexokinase II has been
494 deleted. *Appl. Environ. Microbiol.*, 67(4), 1587-1593.
- 495 [14] Eiwegger, T., Stahl, B., Schmitt, J., Boehm, G., Gerstmayr, M., Pichler, J., Dehlink, E.,
496 Loibichler, C., Urbanek, R., Szépfalusi, Z. 2004. Human milk-derived oligosaccharides
497 and plant-derived oligosaccharides stimulate cytokine production of cord blood T-Cells in
498 vitro. *Pediatr. Res.*, 56(4), 536-540.
- 499 [15] Feng, X., Zhao, H. 2013. Investigating xylose metabolism in recombinant *Saccharomyces*
500 *cerevisiae* via ¹³C metabolic flux analysis. *Microb. Cell Fact.*, 12(1), 114.

- 501 [16] Fernandez-Mayoralas, A., Martin-Lomas, M. 1986. Synthesis of 3'- and 2'-fucosyllactose and
502 3,2'-difucosyl-lactose from partially benzylated lactose derivatives. *Carbohydr. Res.*,
503 154(1), 93-101.
- 504 [17] Foy, J.J., Bhattacharjee, J.K. 1977. Gluconeogenesis in *Saccharomyces cerevisiae*:
505 determination of fructose-1,6-bisphosphatase activity in cells grown in the presence of
506 glycolytic carbon sources. *J. Bacteriol.*, 129(2), 978-982
- 507 [18] Friehs, K. 2004. Plasmid copy number and plasmid stability. *Adv. Biochem. Eng. Biotechnol.*,
508 86, 47-82.
- 509 [19] Gietz, R.D., Schiestl, R.H. 2007. High-efficiency yeast transformation using the LiAc/SS
510 carrier DNA/PEG method. *Nat. Protoc.*, 2, 31-34.
- 511 [20] Goehring, K.C., Marriage, B.J., Oliver, J.S., Wilder, J.A., Barrett, E.G., Buck, R.H. 2016.
512 Similar to those who are breastfed, infants fed a formula Containing 2'-fucosyllactose have
513 lower inflammatory cytokines in a randomized controlled trial. *J. Nutr.*, 146(12), 2559-
514 2566
- 515 [21] Guan, N., Shin, H.-D., Long, L., Azadi, P., Chen, R. 2018. TCA cycle-powered synthesis of
516 fucosylated oligosaccharides. *Glycobiology*, 28(7), 468-473.
- 517 [22] Guimarães, P.M.R., Multanen, J.-P., Domingues, L., Teixeira, J.A., Londesborough, J. 2008.
518 Stimulation of zero-*trans* rates of lactose and maltose uptake into yeasts by preincubation
519 with hexose to increase the adenylate energy charge. *Appl. Environ. Microbiol.*, 74(10),
520 3076-3084.
- 521 [23] GYÖRGY, P. 1953. A hitherto unrecognized biochemical difference between human milk and
522 cow's milk. *Pediatrics*, 11(2), 98-108.

- 523 [24] Han, N.S., Kim, T.-J., Park, Y.-C., Kim, J., Seo, J.-H. 2012. Biotechnological production of
524 human milk oligosaccharides. *Biotechnol. Adv.*, 30(6), 1268-1278.
- 525 [25] Hollands, K., Baron, C.M., Gibson, K.J., Kelly, K.J., Krasley, E.A., Laffend, L.A., Lauchli,
526 R.M., Maggio-Hall, L.A., Nelson, M.J., Prasad, J.C., Ren, Y., Rice, B.A., Rice, G.H.,
527 Rothman, S.C. 2019. Engineering two species of yeast as cell factories for 2'-fucosyllactose.
528 *Metab. Eng.*, 52, 232-242.
- 529 [26] Horak, J., Wolf, D.H. 1997. Catabolite inactivation of the galactose transporter in the yeast
530 *Saccharomyces cerevisiae*: ubiquitination, endocytosis, and degradation in the vacuole. *J. Biotechnol.*, 179(5), 1541-1549.
- 532 [27] Huang, D., Yang, K., Liu, J., Xu, Y., Wang, Y., Wang, R., Liu, B., Feng, L. 2017. Metabolic
533 engineering of *Escherichia coli* for the production of 2'-fucosyllactose and 3'-
534 fucosyllactose through modular pathway enhancedment. *Metab. Eng.*, 41, 23-38.
- 535 [28] Jin, Y.-S., Laplaza, J.M., Jeffries, T.W. 2004. *Saccharomyces cerevisiae* engineered for xylose
536 metabolism exhibits a respiratory response. *Appl. Environ. Microbiol.*, 70(11), 6816-6825.
- 537 [29] Kim, S.R., Xu, H., Lesmana, A., Kuzmanovic, U., Au, M., Florencia, C., Oh, E.J., Zhang, G.,
538 Kim, K.H., Jin, Y.-S. 2015. Deletion of PHO13, encoding haloacid dehalogenase type IIA
539 phosphatase, results in upregulation of the pentose phosphate pathway in *Saccharomyces*
540 *cerevisiae*. *Appl. Environ. Microbiol.*, 81(5), 1601-1609.
- 541 [30] Klimacek, M., Krahulec, S., Sauer, U., Nidetzky, B. 2010. Limitations in xylose-fermenting
542 *Saccharomyces cerevisiae*, made evident through comprehensive metabolite profiling and
543 thermodynamic analysis. *Appl. Environ. Microbiol.*, 76(22), 7566-7574.
- 544 [31] Kunz, C., Rudloff, S. 2006. Health promoting aspects of milk oligosaccharides. *Int. Dairy J.*,
545 16(11), 1341-1346.

- 546 [32] Kwak, S., Kim, S.R., Xu, H., Zhang, G.-C., Lane, S., Kim, H., Jin, Y.-S. 2017. Enhanced
547 isoprenoid production from xylose by engineered *Saccharomyces cerevisiae*. *Biotechnol.*
548 *Bioeng.*, 114(11), 2581-2591.
- 549 [33] Lee, W.-H., Pathanibul, P., Quarterman, J., Jo, J.-H., Han, N.S., Miller, M.J., Jin, Y.-S., Seo,
550 J.-H. 2012. Whole cell biosynthesis of a functional oligosaccharide, 2'-fucosyllactose,
551 using engineered *Escherichia coli*. *Microb. Cell Fact.*, 11, 48.
- 552 [34] Liu, J.-J., Kwak, S., Pathanibul, P., Lee, J.W., Yu, S., Yun, E.J., Lim, H., Kim, K.H., Jin, Y.-S.
553 2018. H. Biosynthesis of a functional human milk oligosaccharide, 2'-Fucosyllactose, and
554 l-fucose using engineered *Saccharomyces cerevisiae*. *ACS Synth. Biol.*, 7(11), 2529-2536.
- 555 [35] Livak, K.J., Schmittgen, T.D. 2001. Analysis of Relative Gene Expression Data Using Real-
556 Time Quantitative PCR and the $2^{-\Delta\Delta CT}$ Method. *Methods*, 25(4), 402-408.
- 557 [36] Lodi, T., Donnini, C. 2005. Lactose-induced cell death of β -galactosidase mutants in
558 *Kluyveromyces lactis*. *FEMS Yeast Res.*, 5(8), 727-734.
- 559 [37] Lucas, A., Morley, R., Cole, T.J., Lucas, P.J., Gore, S.M., Crowle, P., Pearse, R., Boon, A.J.,
560 Powell, R. 1990. Early diet in preterm babies and developmental status at 18 months. *The
561 Lancet*, 335(8704), 1477-1481.
- 562 [38] Lucero, P., Herweijer, M., Lagunas, R. 1993. Catabolite inactivation of the yeast maltose
563 transporter is due to proteolysis. *FEBS Lett.*, 333(1-2), 165-168.
- 564 [39] Lucero, P., Moreno, E., Lagunas, R. 2002. Catabolite inactivation of the sugar transporters in
565 *Saccharomyces cerevisiae* is inhibited by the presence of a nitrogen source. *FEMS Yeast
566 Res.*, 1(4), 307-314.

- 567 [40] Marriage, B.J., Buck, R.H., Goehring, K.C., Oliver, J.S., Williams, J.A. 2015. Infants fed a
568 lower calorie formula with 2'FL show growth and 2'FL uptake like breast-fed infants. *J.*
569 *Pediatr. Gastroenterol. Nutr.*, 61(6), 649-658.
- 570 [41] Matsushika, A., Nagashima, A., Goshima, T., Hoshino, T. 2013. Fermentation of xylose
571 causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic
572 flux in recombinant industrial *Saccharomyces cerevisiae*. *PLoS One*, 8(7), e69005.
- 573 [42] Matsushika, A., Goshima, T., Hoshino, T. 2014. Transcription analysis of recombinant
574 industrial and laboratory *Saccharomyces cerevisiae* strains reveals the molecular basis for
575 fermentation of glucose and xylose. *Microb. Cell Fact.*, 13, 16.
- 576 [43] Mattila, P., Rabina, J., Hortling, S., Helin, J., Renkonen, R. 2000. Functional expression of
577 *Escherichia coli* enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in
578 *Saccharomyces cerevisiae*. *Glycobiology*, 10(10), 1041-1047.
- 579 [44] Moreno, F., Herrero, P. 2002. The hexokinase 2-dependent glucose signal transduction
580 pathway of *Saccharomyces cerevisiae*. *FEMS Microbiol Rev.*, 26(1), 83-90.
- 581 [45] Morrow, A.L., Warren, C.D., Newburg, D.S., Ruiz-Palacios, G., Pickering, L.K., Altaye, M.,
582 Chaturvedi, P. 2001. Fucosylated human milk oligosaccharides vary between individuals
583 and over the course of lactation. *Glycobiology*, 11(5), 365-372.
- 584 [46] Newburg, D.S., Ruiz-Palacios, G.M., Morrow, A.L. 2005. Human milk glycans protect infants
585 against enteric pathogens. *Annu. Rev. Nutr.*, 25(1), 37-58.
- 586 [47] Oh, E.J., Ha, S.J., Rin Kim, S., Lee, W.H., Galazka, J.M., Cate, J.H., Jin, Y.S. 2013. Enhanced
587 xylitol production through simultaneous co-utilization of cellobiose and xylose by
588 engineered *Saccharomyces cerevisiae*. *Metab Eng*, 15, 226-34.

- 589 [48] Pfeiffer, T., Morley, A. 2014. An evolutionary perspective on the Crabtree effect. *Front. Mol.*
590 *Biosci.*, 1, 17.
- 591 [49] Rietschel, E.T., Brade, H., Holst, O., Brade, L., Müller-Loennies, S., Mamat, U., Zähringer,
592 U., Beckmann, F., Seydel, U., Brandenburg, K., Ulmer, A.J., Mattern, T., Heine, H.,
593 Schletter, J., Loppnow, H., Schönbeck, U., Flad, H.D., Hauschmidt, S., Schade, U.F., Di
594 Padova, F., Kusumoto, S., Schumann, R.R. 1996. Bacterial endotoxin: chemical
595 constitution, biological recognition, host response, and immunological detoxification. *Curr.*
596 *Top. Microbiol. Immunol.*, 216, 39-81.
- 597 [50] Sreekrishna, K., Dickson, R.C. 1985. Construction of strains of *Saccharomyces cerevisiae*
598 that grow on lactose. *Proc. Natl. Acad. Sci. U.S.A.*, 82(23), 7909-7913.
- 599 [51] Tsai, C.-S., Kong, I.I., Lesmana, A., Million, G., Zhang, G.-C., Kim, S.R., Jin, Y.-S. 2015.
600 Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
601 *Biotechnol. Bioeng.*, 112(11), 2406-2411.
- 602 [52] van Hoek, P., de Hulster, E., van Dijken, J.P., Pronk, J.T. 2000. Fermentative capacity in high-
603 cell-density fed-batch cultures of baker's yeast. *Biotechnol. Bioeng.*, 68(5), 517-523.
- 604 [53] Verduyn, C. 1991. Physiology of yeasts in relation to biomass yields. *Antonie Van*
605 *Leeuwenhoek*, 60(3-4), 325-353
- 606 [54] Wünsche, L. 1989. Importance of bacteriophages in fermentation processes. *Acta Biotechnol.*,
607 9(5), 395-419.
- 608 [55] Yu, S., Liu, J.-J., Yun, E.J., Kwak, S., Kim, K.H., Jin, Y.-S. 2018. Production of a human milk
609 oligosaccharide 2'-fucosyllactose by metabolically engineered *Saccharomyces cerevisiae*.
610 *Microb. Cell Fact.*, 17(1), 101.

611 **Figure legends**

612

613 **Fig. 1.** A schematic diagram for 2'-FL production by engineered *S. cerevisiae*. Three metabolic
614 elements are necessary to enable 2'-FL production in yeast: (1) lactose internalization by
615 expression of a heterologous transporter (Lac12: lactose permease) (2) *de novo* production GDP-
616 L-fucose production by expression of heterologous metabolic enzymes (Gmd: GDP-mannose 4,6-
617 dehydratase; WcaG: GDP-4-keto-6-deoxymannose 3,5-epimerase 4-reductase), and (3) expression
618 of heterologous fucosyltransferase (WbgL: α -1,2-fucosyltransferase).

619

620 **Fig. 2.** GDP-L-fucose production during glucose (YPD30) and xylose (YPX30) utilization by the
621 *S. cerevisiae* CTD strain (a CT2-derived strain with the integrated Gmd and WcaG expression
622 cassettes). 12 h and 36 h indicate the time points of glucose and xylose depletion, respectively.
623 The gray section indicates an ethanol consumption phase. Patterns: glucose (plain) and xylose
624 (coarse)., N.D: not detected., Gmd, WcaG (-) means CT2 strain. Results are the mean of duplicated
625 experiments. Error bars represent standard deviations and are not visible when smaller than the
626 symbol size.

627

628 **Fig. 3.** Batch fermentation profiles of the engineered yeast strain (CTLD1F1) on (a) glucose and
629 (b) xylose conditions. Symbols: OD₆₀₀ (closed circle), glucose (hexagon), xylose (triangle down),
630 ethanol (open circle), lactose (triangle up), extracellular 2'-FL (diamond), and total 2'-FL (square).
631 Results are the mean of duplicated experiments. Error bars represent standard deviations and are
632 not visible when smaller than the symbol size.

633

634 **Fig. 4.** Comparison of engineered yeast strains (CTLD1F1, CTLD2F1, CTLD1F2, and CTLD2F2)
635 for (a) 2'-FL production and (b) volumetric total 2'-FL productivity (g/L·h) on xylose (YPX30L2).
636 Results are the mean of duplicated experiments. Error bars represent standard deviations and are
637 not visible when smaller than the symbol size.

638

639 **Fig. 5.** Fed-batch fermentation profiles of the CTLD2F2 strain using the YP medium (a) the
640 CTLD2F2L strain using the Verduyn medium (b). Symbols: OD₆₀₀ (closed circle), xylose (triangle
641 down), ethanol (open circle), lactose (triangle up), extracellular 2'-FL (diamond), and total 2'-FL
642 (square).

643

644

645

646

647

648

649

650

651

652

653

654

655

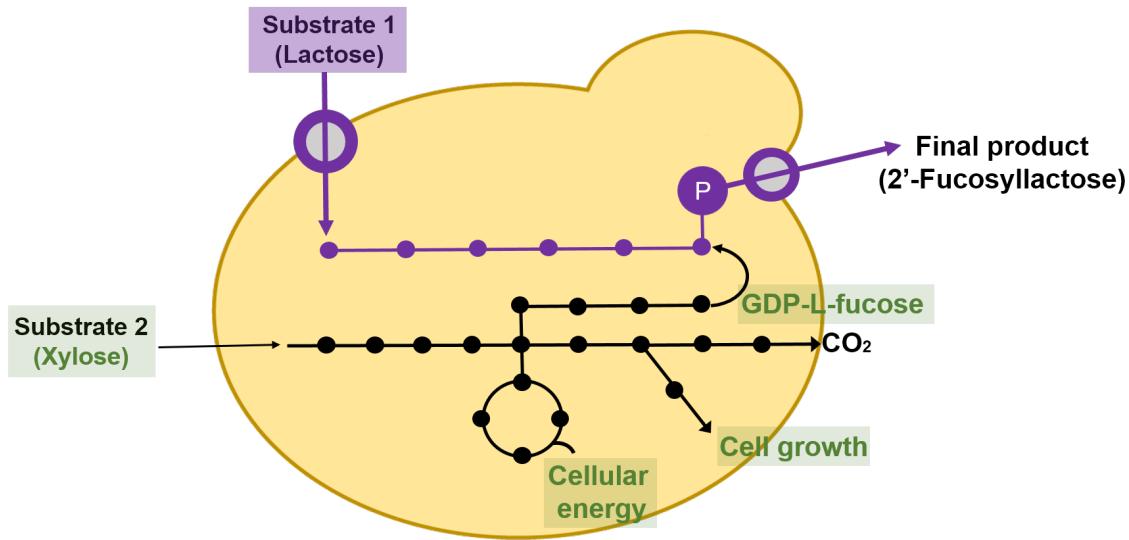
656

657 Table 1. Strains used or constructed in this study

Strain	Description	Source
CT2	D452-2 <i>pho13Δ::XYL123 ald6Δ::XYL123 his3, leu2, ura3</i>	Tsai, C.-S (2015)
CTD	CT2 in which the linearized pRS403 (<i>P_{TDH3}-gmd-T_{CYCI}, P_{PGK1}-wcaG-T_{PGK1}</i>) has been integrated <i>HIS3</i> locus	This study
CTL	CT2 in which the <i>P_{TDH3}-Lac12-T_{CYCI}</i> cassette has been integrated on chr XVI	This study
CTLD	CTL in which the linearized pRS403 (<i>P_{TDH3}-gmd-T_{CYCI}, P_{PGK1}-wcaG-T_{PGK1}</i>) has been integrated on <i>HIS3</i> locus	This study
CTLD1F1	CTLD in which the <i>P_{TDH3}-wbgL-T_{CYCI}</i> cassette has been integrated on chr VII	This study
CTLD2F1	CTLD1F1 in which the linearized pRS406 (<i>P_{TDH3}-gmd-T_{CYCI}, P_{PGK1}-wcaG-T_{PGK1}</i>) has been integrated on <i>URA3</i> locus	This study
CTLD1F2	CTLD1F1 in which the <i>P_{TDH3}-wbgL-T_{CYCI}</i> cassette has been integrated on chr VIII	This study
CTLD2F2	CTLD2F1 in which the <i>P_{TDH3}-wbgL-T_{CYCI}</i> cassette has been integrated on chr VIII	This study
CTLD2F2L	CTLD2F2 in which the linearized pRS405 has been integrated on <i>Leu2</i> locus	This study

658

659


660

661

662

663 **Graphic abstract**

664

665

666

667

668

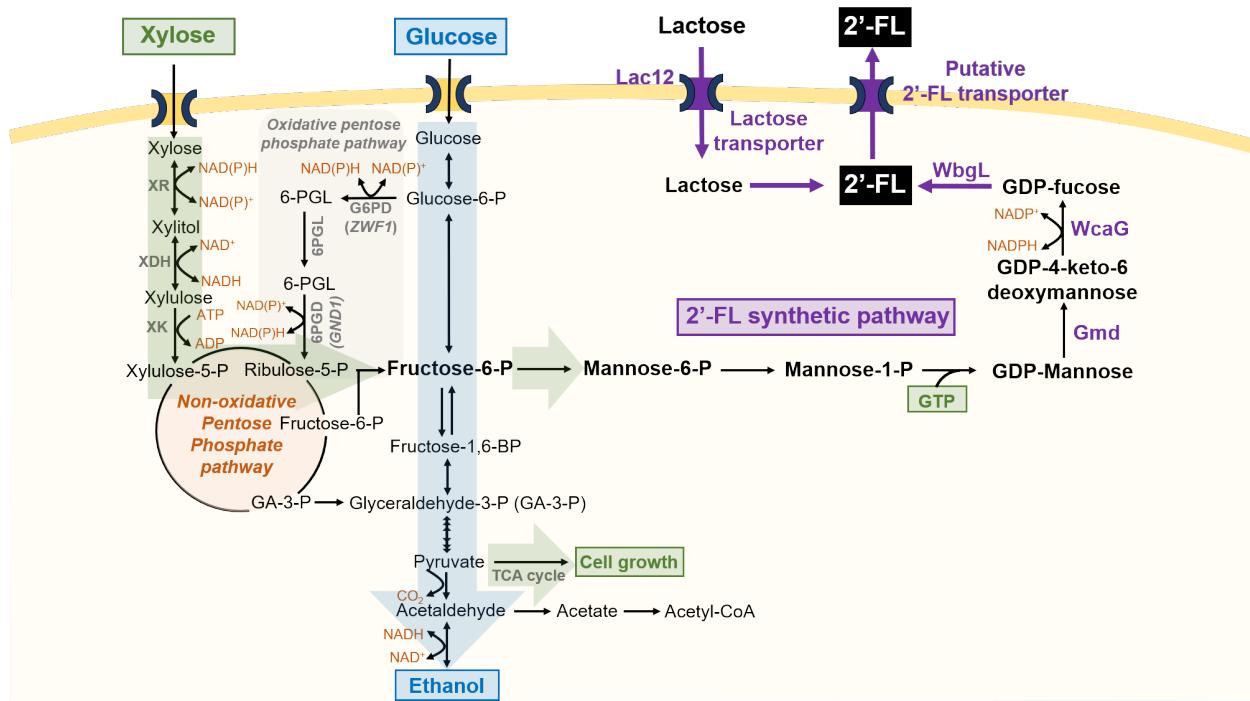
669

670

671

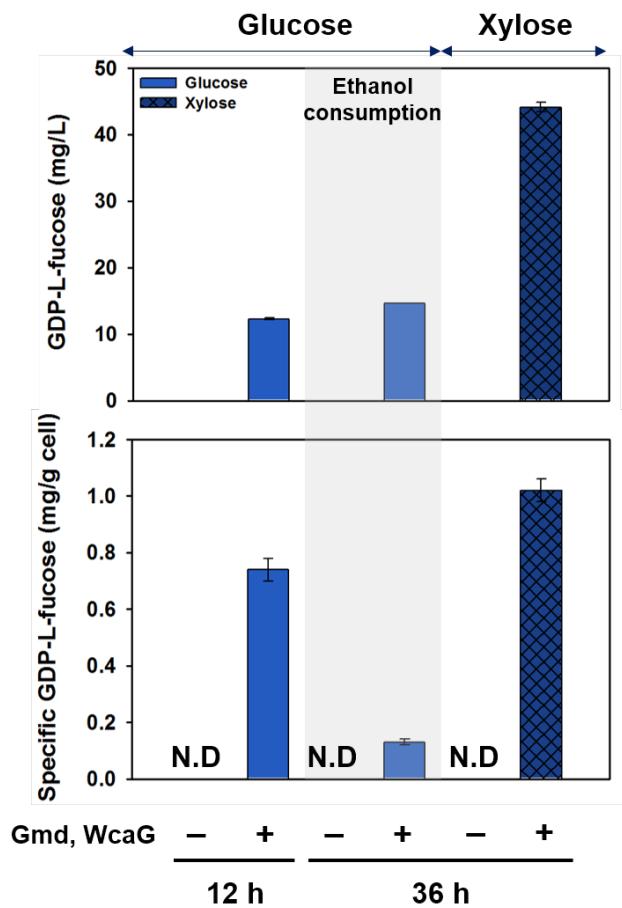
672

673


674

675

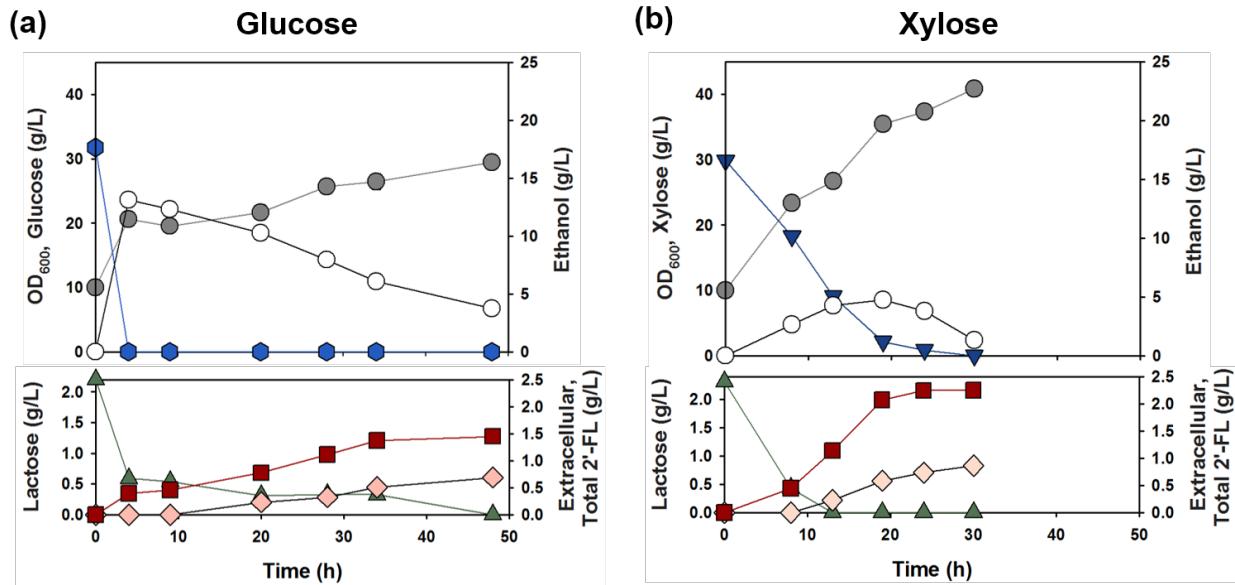
676


677

678

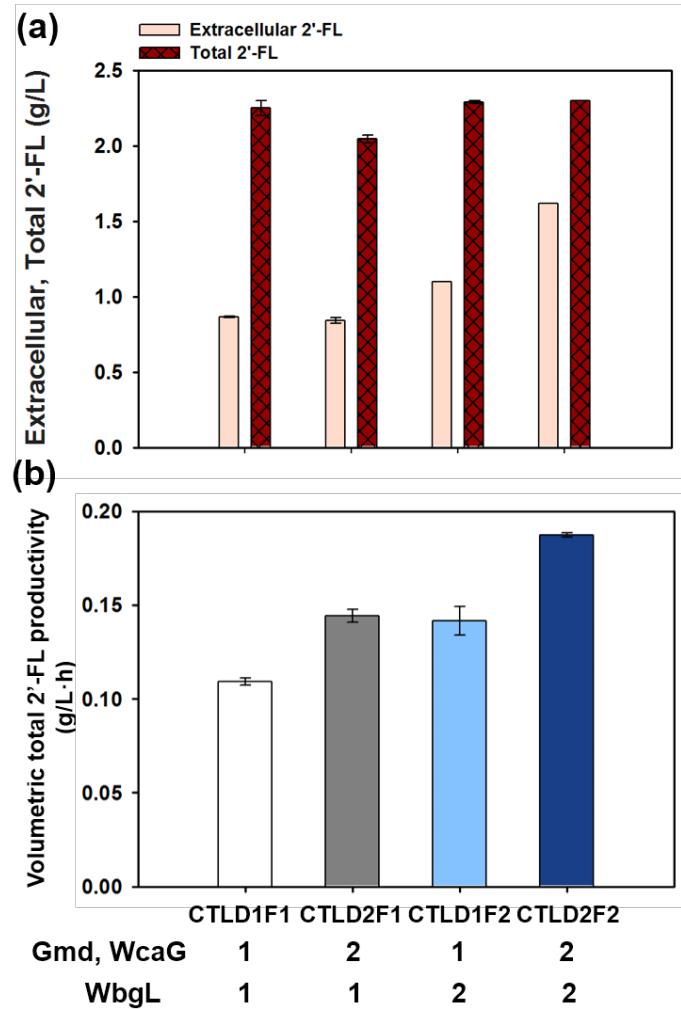
681 **Fig. 1.** A schematic diagram for 2'-FL production by engineered *S. cerevisiae*. Three metabolic
 682 elements are necessary to enable 2'-FL production in yeast: (1) lactose internalization by
 683 expression of a heterologous transporter (Lac12: lactose permease) (2) *de novo* production GDP-
 684 fucose production by expression of heterologous metabolic enzymes (Gmd: GDP-mannose 4,6-
 685 dehydratase; WcaG: GDP-4-keto-6-deoxymannose 3,5-epimerase 4-reductase), and (3) expression
 686 of heterologous fucosyltransferase (WbgL: α -1,2-fucosyltransferase).

687

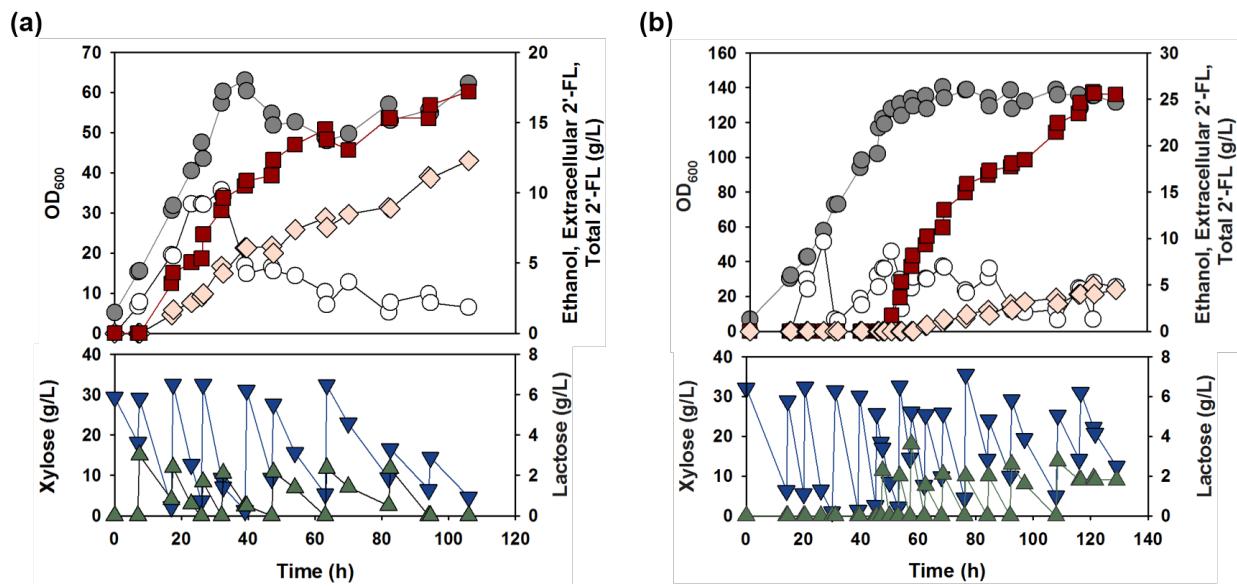


688

689 **Fig. 2.** GDP-L-fucose production during glucose (YPD30) and xylose (YPX30) utilization by the
 690 *S. cerevisiae* CTD strain (a CT2-derived strain with integrated Gmd and WcaG expression
 691 cassettes). 12 h and 36 h indicate glucose depletion and xylose depletion time point, respectively.
 692 The gray section indicates the ethanol consumption phase; Patterns: glucose (plain) and xylose
 693 (coarse). N.D; not detected. Gmd, WcaG (-) means CT2 strain.


694

695


696

697 **Fig. 3.** Batch fermentation profiles of the engineered yeast strain (CTLD1F1) on (a) glucose and
 698 (b) xylose conditions. Symbols: OD₆₀₀ (closed circle), glucose (hexagon), xylose (triangle down),
 699 ethanol (open circle), lactose (triangle up), extracellular 2'-FL (diamond), and total 2'-FL (square).
 700 Results are the mean of duplicated experiment; Error bars represent standard deviations and are
 701 not visible when smaller than the symbol size.

702

703 **Fig. 4.** Comparison of engineered yeast strains (CTLD1F1, CTLD2F1, CTLD1F2, and CTLD2F2)
 704 for (a) 2'-FL production and (b) volumetric total 2'-FL productivity (g/L·h) on xylose condition
 705 (YPX30L2).

708 **Fig. 5.** Fed-batch fermentation profiles of (a) the CTLD2F2 strain under YP medium (b) the
 709 CTLD2F2L strain under Verduyn medium. Symbols: OD₆₀₀ (closed circle), xylose (triangle down),
 710 ethanol (open circle), lactose (triangle up), extracellular 2'-FL (diamond), and total 2'-FL (square).
 711