
~:: mNREL
NATIONAL RENEWABLE ENERGY LABORATORY

a atonal ILO
ttOAK RIDGE

National Laboratory
TEXAS
The University of Texas at Austin

ExaWind: Exascale Predictive Wind Plant Flow Physics Modeling
NREL: M.A. Sprague (P1), S. Ananthan, M. Brazell, A. Glaws, M. Henry de Frahan, R. King, M. Natarajan, J. Rood, A. Sharma, K. Swirydowicz, S.

Thomas, G. Vijayakumar, S. Yellapantula

SNL: P. Crozier, L. Berger-Vergiat, L. Cheung, D. Glaze, J. Hu, R. Knaus, D. Lee, T. Okusanya, J. Overfelt, S. Rajamanickam, P. Sakievich, T. Smith, J.
Vo, A. Williams, I. Yamazaki

ORNL: J. Turner, A. Prokopenko, R. Wilson

UTA: R. Moser, J. Melvin

Parallel Geometric Algorithms: Jay Sitaraman I   X( 1' )C \71 'LJTI\ I 'I  ( )_]( CT

Project Overview

Objective: Create a predictive physics-based simulation capability that will
provide a validated "ground truth" foundation for wind plant siting, operational
controls, and reliably integrating wind energy into the grid

Motivation: Validated, predictive wind plant simulations will reduce the cost of
energy by providing

• a path to better understanding of wind plant flow physics, which will lead to

• new plant layout design in complex terrain

• new turbine technologies to optimize plant performance

• a foundation for improved computer-aided engineering models, which will
enable better design optimization

Primary Application Codes:

• Nalu-Wind
• nttps://github.com/exawind/nalu-wind 
• Unstructured-grid computational fluid dynamics (CFD) code
• Based on the SNL-supported Nalu code
• C/C++
• Built on Trilinos/STK/hypre/TIOGA

• OpenFAST
• nups://github.com/onenfast/openfast 
• Whole-turbine simulation code; blades, control system, tower, etc.
• Fortran 90; dedicated Intel Parallel Computing Center (IPCC) for

parallelization

Software/Library Partnerships in Nalu-Wind
• Trilinos, ittps:lltrilinos.orgi

• MueLu: provides aggregation-based multigrid preconditioners
• lfpack2: provides SOR-based, polynomial and incomplete factorization

preconditioners
• Kokkos-Kernels: provides shared memory algorithms: graph-coloring,

SpMV, SPMM, iterative and incomplete factorization preconditioners
• Tpetra: provides distributed memory, sparse linear algebra objects
• Belos: provides templated Krylov and recycling solvers
• Amesos2: provides sparse direct solvers
• Sierra Toolkit (STK): provides an unstructured-mesh in-memory,

parallel-distributed database

• hypre, https://github.com/LLNL/hypre 
• Multigrid solvers and preconditioners based on classic Ruge-Stüben
AMG algorithm

• Kokkos, https://github.com/kokkos
• Programming model in C++ for writing performance portable applications

targeting all major HPC platforms

• TIOGA, https://github.com/jsitaraman/tioga
• Library for overset-grid assembly on parallel distributed systems

• VTK-m, https://gitlab.kitware.com/vtk/vtk-rn 
• New in situ visualization and analysis capabilities

• Spack, https://github.com/spack/spack 
• Package manager for exascale software

• AM ReX, nups:/iganuo.com/AMRen-uoaes/amrex
• Software Framework for Block Structured AMR

ECP Key Performance Parameter (KPP-2)

Challenge Problem:

Predictive simulation of a wind farm with tens of megawatt-scale wind turbines
dispersed over an area of 50 square kilometers

Minimum Requirements:

• 3x3 array of megawatt-scale turbines operating at rated speed

• 4 km x 4 km domain with height of 1 km

• Hybrid-RANS/LES model

• At least 30-billion gridpoints (and 150 billion degrees of freedom); near-
blade grid spacing will be such that the viscous sub-layer is resolved

• Demonstrate that we can simulate at least one domain transit time (500 s)
with four weeks of system time

Keys to Success

• Enable large time steps (restricted by accuracy rather than stability)

• Minimize time per timestep:

• Optimize strong scaling to utilize as much of the system as possible

• Optimize linear-system solver algorithms

2019 Highlights

Established structured-grid background solver amr-wind

• amr-wind: Forked from
incompressible-flow Navier-
Stokes solver incflo

• Utilizes LBNL AMReX framework

• Includes newly implemented
neutral ABL physics

• Performance portable and GPU
ready

• Successful collaboration with the
LBNL AMReX team 3x3x1 km neutral atmospheric boundary

layer (ABL) simulation, contours of
vorticity.

Team: Almgren (LBNL), Ananthan, Brazell, Cheung, Natarajan, Rood, Sakievich,
Yellapantula, Zhang (LBNL)

Validated a new hybrid RANS/LES turbulence model for
wind turbine simulations
• Deployed

Time-Averaged
Model Split (TAMS)
Hybrid RANS/LES
framework and
implemented it in the Nalu-Wind solver stack

• Implemented TAMS model framework in
Nalu-Wind and performed model verification
tests; initial tests of TAMS conducted on
NACA-0015 fixed wing and NREL 5MW turbine
in atmospheric flow

Re, = 5200 Stationary Channel
Flow model verification test in
Nalu-Wind. Left: RANS solution,
Right: TAMS solution. The TAMS
solution is able to generate
turbulent fluctuations without the
typical log-layer mismatch seen in
other hybrid RANS/LES models.

• Next steps will be focused on resolving numerical challenges related to
TAMS implementation in Nalu-Wind, such as relaxation of restrictive
timesteps in turbine simulations due to explicit treatment of one of the
TAMS model terms
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Validation of the TAMS Hybrid
model on a canonical periodic hill.
This test requires the capture of
smooth wall separation and
reattachment. Comparison to LES
and experimental results shows
excellent agreement, while utilizing
1/40th of the needed grid points
relative to wall-resolved LES.

Team: Melvin, Henry de Frahan, Vijayakumar, Ananthan, Moser

SpMV outperforms tri-solve on GPUs: Trilinos & hypre

• Traditional symmetric Gauss-Seidel
(SGS) with multi-threading (MT), and
clustering (CL), versus two-stage SGS
with Jacobi-Richardson (JR) inner
iteration
• SGS-MT from Rajamanickam and Deveci

• SGS-CL from Kelly and Rajamanickam

• Coloring triangular-solve ordering can
increase the number of GMRES
iterations, increasing time to solution.

• SGS(1) - JR(1) reduces iteration count

• Kokkos kernels and CUDA

• Sparse matrix-vector multiply SpMV
replaces triangular solver recurrences

0.3 —

0.25

0.2 -

0.05 -

1
MI= GS Apply

  Ortho

 SpMV

SGS(1)-MT SGS(1)-CL SGS(1)+JR(1)

Algorithm

Nalu-Wind momentum GMRES Trilinos
solver times on one GPU for the McAlister
blade problem, with 3.2M DOF; compares
SGS-MT, SGS-CL and SGS Jacobi-
Richardson nested SGS preconditioners;
SGS(1)-JR(1) leads to 50% improvement

Team: Thomas, Yamazaki , Swirydowicz, Berger-Vergiat, Hu

Nalu-Wind simulations on Summit using Trilinos

Strong-scaling: single-node GPU
Neutrally stable atmospheric boundary layer
(ABL) simulation; rectangular domain with
structured mesh and 3.1M elements

Momentum solver

• GMRES+Gauss-Seidel

• Coupled/monolithic (u,v,w) solve

• 'Setup' & 'Apply scale almost perfectly

Continuity solver

• GMRES+SA-AMG

• 'Apply is fast, but needs improvement in order
to strong scale

• 'Setup' is work-in-progress

Weak-scaling: multi-node GPUs
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• Nalu-Wind ABL simulation with Trilinos has been run up to 1000 GPUs
for mesh containing 1.25B elements

• Initial results show linear systems account for -75% of simulation time

• Reducing total time spent on linear systems is critical to allow effective
utilization of Summit and future exascale supercomputers

ABL simulation runs end-to-end on GPUs with Trilinos
• New computational capability
• First-ever weak-scaling results up to 1K GPUs
• Assembly using STK/Tpetra/Kokkos
• Linear solvers using Belos/Ifpack2/MueLu/Kokkos-Kernels/Zoltan2
• Kokkos ensures portability to new machines like Frontier and Aurora

Team: Berger-Vergiat, Ananthan, Williams, Hu, Rajamanickam, Yamazaki

GMRES one-reduce scalable solver: Nalu-Wind on GPU
One-reduce GMRES Cost per Iteration : McAlister Blade: 3.2 M
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Solver time per iteration for the
McAlister blade problem with 3.2M
DOF; segregated (u,v,w) system
solver; V100 GPUs on NREL Eagle
HPC; two-stage smoother is at least
2x faster than tri-solve GS
smoother

• hypre GMRES one-reduce solvers achieve 0(0.01) sec per iteration

• 16 Intel Skylake CPU cores (ranks) give similar iteration time as 2 GPUs

• Solver described in Swirydowicz et al. (2019) Low-synch Gram-Schmidt
and GMRES Algorithms

Team: Swirydowicz, Thomas, Ananthan, Sprague, Langou (CU), Bielich (CU)

Solvers team reduces solve time on GPU for Nalu-Wind
pressure and momentum systems with overset meshes

• Pressure and momentum system setup & solve times reduced to less
than 30% from 75% of total time (for McAlister-blade problem)

• Segregated momentum solver accelerated 2x with two-stage smoother

• Improvements were demonstrated in both the hypre and Trilinos sparse
linear-system solver stacks

• Details in

• Thomas et al., Incompressible Navier-Stokes with Two-Stage Gauss-
Seidel Smoothers. Copper Mountain Conference on Iterative Methods
2020, invited talk (to be presented)

• Thomas et al (2020), Two-Stage Gauss-Seidel Smoothers, SIAM
Conference on Parallel Processing for Scientific Computing 2020,

• Yamazaki et al (2020), s-step and pipelined Krylov solvers on GPUs
with Trilinos. SIAM Conference on Parallel Processing for Scientific
Computing 2020

Team: Thomas, b-wiryaowicz, Yamazaki, Ananthan, Hu, Sprague
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