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I. MLIR FRAMEWORK

MLIR (Multi-Level Intermediate Representation) [5], is an extensible compiler framework that supports high-level
data structures and operation constructs. These higher-level code representations are particularly applicable to the
artificial intelligence and machine learning (AI/ML) domain, allowing developers to more easily support upcoming
heterogeneous AI/ML accelerators and develop flexible domain specific compilers/frameworks with higher-level in-
termediate representations (IRs) and advanced compiler optimizations. The result of using MLIR within the LLVM
compiler framework [4] is expected to yield significant improvement in the quality of generated machine code, which
in turn will result in improved performance and hardware efficiency.

The multi-level nature of MLIR allows for a hierarchical representation of the code within the LLVM compiler
infrastructure, with different levels referred to as dialects. A simple example of this is a linear algebra code that is
compiled to a high level MLIR representation using matrix or linear algebra dialects. At the high level dialect, it
is possible to make transformations that depend on knowledge and properties of matrix operations. For example,
the operation A = (MT)T, which assigns the transpose of the transpose of M to A, can be rewritten as A = M.
Such matrix operations can then be converted into a lower level dialect of MLIR, a process referred to as lowering,
such as a loop dialect. Eventually the representation will be lowered to a dialect that has the ability to generate
machine code - whether for a contemporary system, custom hardware, or even a hardware description for an FPGA.
This approach provides a powerful, extensible compiler framework supporting efficient tensor/matrix operations for
AI/ML applications.

The most powerful feature of MLIR is the ability to design dialects that represent code at a level that is conducive
to applying transformation and optimizations that would be difficult or impossible to achieve with a single general
purpose IR. In the above transpose example, if the code was compiled directly to a low level representation that
obscured the origin and special structure of the input, it would have been all but impossible to detect the simplifying
transformation that is obvious at a matrix level. Similarly, the matrix level doesn’t need to be concerned with details
such as common loop optimizations (e.g. loop tiling and unrolling) or hardware-specific transformations. MLIR
simplifies the process of holistic program inspection and optimization by allowing the compiler developer to leverage
the appropriate abstractions at the appropriate times in the lowering process.

Figure 1 shows some possible paths in an MLIR compiler for a code written in high-level language (e.g. Python,
TensorFlow) to be compiled to either FPGA, PTX (for GPUs) or X86 64 (for CPUs).

II. ARCHITECTURE VENDOR SUPPORT OF MLIR

Although originally developed at Google, MLIR has been released as open source as part of the LLVM open compiler
framework [1] enabling its use in a wide variety of communities. Partners in the project include AMD, ARM, Cerebras,
Google, Graphcore, Habana, Intel, Mediatek, NVIDIA, Qualcomm, SambaNova, Samsung, Xiaomi and Xilinx. Google
has focused primarily on using MLIR within TensorFlow [2], especially for their TPU machine learning systems. Other
vendors are starting to support MLIR because of: (1) its flexibility and extensibility; (2) its popularity and the view
that there is a critical mass behind its use, and, (3) programming models such as TensorFlow, PyTorch, Jax, and
others already provide a path to generate MLIR, lowering the amount of work the vendors must do to target existing
software.

a Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
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Figure 1. Diagram of some possible paths through the MLIR compiler. Blue boxes are different MLIR dialects.

III. POTENTIAL USE OF MLIR FOR ALGORITHM DEVELOPMENT

There are several approaches where the MLIR framework could be utilized as we codesign algorithms and future hard-
ware architectures. Several emerging machine learning architectures (Cerebras, Samba Nova, NextSilicon, GraphCore)
are based on the spatial/data flow paradigm. By effectively utilizing data flow between processing units, these ac-
celerators provide significant reductions in memory movement, which can improve performance and energy efficiency.
However, in contrast to GPUs/CPUs, there are no easy methods to program these emerging data flow architectures,
at least outside of vendor-specific frameworks. Designing an MLIR-based intermediate representation for expressing
data flow algorithms would allow code or algorithm developers to develop new algorithms that are based on the
principles of data flow, while maintaining hardware agnostic programming languages. Such an MLIR dialect could be
lowered to code that targets multiple hardware targets or to an IR which would be amenable to hardware codesign
capabilities via simulation using tools such as the SST Hardware Simulation Framework [6]. As part of the ARIAA
co-design center (ASCR funded), we are already engaged in developing a dialect for expressing data flow algorithms.
Once we have the capabilities to develop algorithms, we can evaluate data flow algorithms for important kernels from
NNSA codes such as Kokkos Kernels and Trilinos solvers.

IV. POTENTIAL USE OF MLIR IN SIMULATION FOR ASCR AND NNSA

We are leveraging analytical modeling tools for dataflow accelerators and have developed dataflow components in
SST as part of the ASCR ARIAA project. Our strategy to target these dataflow components utilizes MLIR dialects
developed within the ARIAA project to compile optimized algorithm implementations for low-level hardware for-
mats [3]. In addition, the Advanced Machine Learning part of Next Generation Computing Technologies element in
CSSE portion of the ASC program is funding the development of analytical modeling tools that target neuromorphic
and data flow accelerators, which may also leverage the MLIR framework. The combination of MLIR, the flexible
design capabilities of SST, and the speed of analytical modeling tools will result in fast codesign cycles for both ASCR
and NNSA studies, opening up opportunities to evaluate future hardware capabilities far ahead of their availability
as a product. Furthermore, the knowledge obtained from these studies will allow ASCR and NNSA laboratories to
more precisely evaluate and communicate specific requirements to vendors for the next-generation of high-performance
computing and ML/AI based systems.
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