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3  Connection of MST to causal dynamics (classical & QFT) and MLDL

• useful for Machine and Deep Learning of causal physics

• important tool for theoretical physics, for the analysis of:

0 turbulence, emergent behavior, self-organization, and renormalization
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4 I Resulting practical applications

• deep representation for MLDL of causal physical systems

O classification (characterization)

O regression

surrogate construction of causal physical system evolution

from ensemble of states that sample transition kernel and current state

metric of image morphology (complexity)

- compare simulations to experimental images, cross experimental images

O estimate the parameters of the images with uncertainty via a shallow (linear) regression

O sophisticated background subtraction



5 Roadmap

• construction of Mallat Scattering Transformation (MST) as a deep convolutional network with pre-determined
weights

• MST from the classical perspective

O manifold-safe Wigner-Weyl transformation of the density operator

- bi-transformation because operators have inputs and outputs

- on manifold with spherical topology can use Fourier kernel and reduces to bi-spectral transformation

Generalized Master Equation

MST from the Quantum Field Theory (QFT) perspective

O generalized Green's function or S-matrix

O Feynman diagram of quantum fluctuation averaged classical action and renormalized mass

• applications
O image classification

O experimental to computer simulation image comparison

- advanced background subtraction

O parametric model estimation of experimental images with uncertainty via regression

O future direction MLDL of causal physics

- surrogates of PDE evolution

- identification of emergent behavior



6 I What is a Wavelet Transform?

• Wavelet Transform, W

0 Convolutions of a signal with dilated Mother Wavelets, 0,10 (i.e. a bank of band-pass filtered signals)

0 0,1(t'-t) consists of dilations and translations of the Mother Wavelet 0(t)

1-D Wavelet Trasform

x[A](t)=W{x(t)} = x *0, = f x(ti)0,(ti — Ode
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t'

".A.J"'" -NAP' --N.A.1-
Dilations

À, scale -\Ar -NAT 4kr

t *

„fir „ikr 4 Juk.roffv _
. 0),(ti _ t) y X * 'OA

x (ti JUATLAA/All t/ *



7 Animation of calculation of Wavelet Transformation convolution

x(A, t)=W{x(t)} = x * OA = f x(t1)0A (ti — t)dti
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8 I Wavelet Transformations can be iterated

Wavelet Transform, W

convolutions of a signal with dilated Mother Wavelets, bA,(t) (i.e. a bank of band-pass filtered signals)

• kt'4) consists of dilations and translations of the Mother Wavelet 0(t)

• because x[Aj(t) is a function of time we can take its Wavelet Transform

Wavelet Transform of a Wavelet Transform 
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9 I The Mallat Scattering Transform (MST)

IMallat 2012; Bruna and Mallat 2013; Mallat 2016]

Mallat Scattering Transform, )A2
m

Sm[A An]x = Wm{x(t)} = 11 Ix * 0A1 1 * rcbA2 1 • • • * Okm, 1*- 0
n=1

Father Wavelet
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10 I Our systems are diffeomorphisms

• Liouville equation

• BBGKY hierarchy

• Master equation

• Vlasov equation

_ Boltzmann equation

• multi fluid equations

• Navier-Stokes equations

MHD equations

Heat diffusion

• Radiation transport

• Quantum field theory

Quantum mechanics

Maxwell's equations

Newton's equations

etc.

that is, advection by a vector field
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11 I Relation of MST to Generalized Master Equation: ideas of Bogoliubov

fi relaxes at dynamic rate = Q
dQ/dt fi evolves at collisional rate =   « SZ

f2 relaxes at collision rate
d2 1 dt2 dQ 1 dt

f2 evolves at correlation rate = «Q2 SZ

pullback of first two equations in BBGKY hierarchy,
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12 Relation of MST to Generalized Master Equation: manifold safe Wigner-Weyl transformation

Wigner-Weyl transformation takes operators to/from classical phase space (1927).
The Key is a modified Wigner-Weyl transform that is manifold safe.
Need a local Fourier kernel (Mother Wavelet) with a partition of unity (Father Wavelet).

modified Wigner map = ds Op* (— s) (q s A q — s) (s) = A(q , p)

modified Wigner function = W[p] = ̂T/t7[ f]= f * p 2= T/t/ f (q 13)

Now we can identify and calculate,

il(p) = E(W[f]) = f *0131*,q5= si.[p]f

f2(p,p')E(w[ii])=11f*Opl*Op/I*O= s2[p,p']f

This is the Mayer Cluster expansion on the manifold. Partition of Unity on the manifold of a torus, T2
Li o:ory.
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13 I MST as the S-matrix: an alternative dynamical interpretation (I)

From the Lagrangian perspective define the generating function:

Z[J] N [df 03)] e(i / so[f(p)]+(i / f c1.13 J(13) f (13)

the connection to the canonical formulation is:

Smaf)) = E(Tp(f (pi) f (pm)) FM) = • • * Opm * 
1 6 6 zir

Z[J] (5 Apo • • • 6 Apro

•
•
•

J =0

1
f (pm)

scattering cross section
generalized Green's function



14 MST as the S-matrix: an alternative dynamical interpretation (11)
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Physical inspiration: self organization or inverse turbulent MHD cascade of MagLIF
15 implosions on Z-machine at Sandia National Laboratories

no Bz high resolution (15-20 microns)
0-

Lr)
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16 Construction of synthetic model

01

I-I

05 1->

Model Parameters 
01 = thickness
02 = length
03 = MRT wavelength
04 = order of axial super Gaussian
05 = amplitude of radial perturbations
06 = amplitude of large-wavelength axial brightness
perturbations
07 = mode number of large-wavelength axial brightness
perturbations
08 = strand separation
09 = amplitude of small-wavelength axial brightness
perturbations

010 = mode number of small-wavelength axial brightness
perturbations

011 = relative strand phase

Stochastic Parameters 
(1 = background noise
(2 = signal noise
(3 = amplitude of signal
(4 = radial perturbation phase shift
(5 = large-wavelength axial brightness perturbations phase shift
(6 = small-wavelength axial brightness perturbations phase shift



17 Classification ensemble
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18 Classification has excellent performance with significant cluster separation in MST space
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x I Optimization of affine dimension

confusion matrix (different afine dimensions)
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,2
u d

2,
u d

x Definition of cluster precision and separation for an affine classifier
d

x — PA(x) < x, Ai >
i=i

(projection perpendicular to an affine space)
Nc

-1 V(1151Xk — PAk(S Xk)112 

k= VOISXkl12)

(precision)

FOISXk — PA1(SXk)112
(0-Du

E(11SXk — PAk(S Xk) 12

(separation factors)

nr-1 F(minlok 11SXk — PA1(SXk)112 

11)(11SXk — PAk(SXk)112
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19 Comparison of computer simulation to experimental data
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Significant distortion between simulation and experiment corrected by MST based
20 background subtraction

solution: first principal
component of simulation
to data covariance
projected out (effective
background subtraction)

for AR = 4.5

note: cluster precision and
separation are improved, by
the background subtraction,
from 0.40 to 0.08, and from 1.9
to 4.8, respectively

X

sim data

•
111

B x-<x,B>
sim data



x Detailed results of background subtraction

without background subtraction
norm_matrix =

with background subtraction
norm_matrix =

25.2252 21.1719 26.3623 19.9342 20.0386 21.0724
25.4981 42.8571 32.3066 19.4718 20.1892 22.7075

distance_matrix =

5.3270 23,9748 11.7816
12.2075 31,0360 19.4757
9.3089 22.9628 11.3718

separation_matrix =

1.0000 0.5967 1.0734
5.2515 1.0000 2.9331
3.0537 0.5474 1.0000

confusion_matrix =

0.4119 0.3694 0.3784
0.2673 0.2370 0.2333
0.3207 0.3936 0.3883

MI6

precision = 0.40
separation = 1.9

P(CsimlCdata)

.16

Cdata

CS

distance_matrix =

5.2315 8.6857 9.0674
7.5048 2.0267 10.8905
9.2881 6.7015 8.8512

separation_matrix =

1.0000 18.3677 1.0494
2.0579 1.0000 1.5139
3.1522 10.9343 1.0000

confusion_matrix =

0.4707 0.1694 0.3632
0.3082 0.5855 0.2587
0.2211 0.2451 0.3781

P(CsimiCdata

Cdata

precision = 0.08
separation = 4.8



Use of MST as a metric in the quantification of MagLIF stagnation morphology (i.e., self
21 organization or emergent behavior)

• metric qualifies similarities between simulation and
experiment

0 enables use of images in Uncertainty Quantification &
Verification (UQV)

allows quantified statements to be made about
morphology

for example here we can state:

the simulations correspond to the matching experiments

there is similarity of the AR-9 data to the AR-4.5
simulation

P (Csim Cdata)

ciN

AR-4.5 AR-6

Cciata

0.6

0.3

0.25



22 Regression for parameters of stagnation morphology using MST based metric
Scattering 
Coefficients 

Si — 
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Image

i
i
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23 Regression ensemble
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24 I Excellent regression performance
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x I Model fit
4

2

o
-2

-4
-4 -2 0 2 4

Y1

4

2

0

-2

-4  

4

2

0

-2

-4

-4 -2 0 2 4

175

-4 -2 0 2 4

f79

PCA space
4

2

o
-2

-4
-4 -2 0 2 4

4

2

0

-2

-4

4

2

-4

f72

-4 -2 0 2 4

f76

-4 -2 0 2 4

4

2

0

-2

-4

4

2

0

-2

-4

4

2

;,-1 0

-2

-4

-4 -2 0 2

f73

4

2

0

-2

-4
4 -4 -2 0 2 4

f74

4

2

0

-2

-4
-4 -2 0 2 4 -4 -2 0

f77 f78,

-4 -2 0 2 4

1711

2 

Correlation Coefficient
2 4

3

4

5

cz- 6

7

9

10

8

11

1 2 3 4 5 6 7 8 9 10 11

1
1
1



x Singular Value Decomposition (SVD) SVD( CCOVA, S3)) = UEVT
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25 Fit to experimental image (coated AR9) gives estimate of uncertainty
Actual Predicted
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x I Shot Z3236 regression fit uncertainty

Z3236 Z3289
01 0.0720+ ( -0.0034,0.0036) 0.0651 + (-0.0031, 0.0032)

02 2.2335+ ( -0.1425,0.1546) 1.4954 + (-0.0950, 0.1013)

03 2.1677+ ( -0.3083,0.3509) 3.9584 + (-0.5638, 0.6389)

04 1.5327+ ( -0.2560,0.3003) 0.3120 + (-0.0509, 0.0622)

05 0.0988+ ( -0.0145,0.0176) 0.1975 + (-0.0282, 0.0337)

Os 0.1756+ ( -0.0568,0.0838) 0.0116 + (-0.0037, 0.0058)

0, 6.8597+ ( -3.1944,5.8555) 79.2478 + (-36.5681, 68.3188)

08 0.0286+ ( -0.0107,0.0175) 0.0136 + (-0.0051, 0.0084)

09 0.2293+ ( -0.0579,0.0805) 0.1807 + (-0.0452, 0.0609)
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x Shot Z3289 regression fit uncertainty
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x I Fit to the two experimental images

Z3236 Z3289
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26 Comparative Results - coated AR9 vs uncoated AR6
z3236 - Coated AR9
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x I Optimization of MST

Model Validation Set R2
Base 0.9094
8192 training images 0.9237
m = 1 0.7238
2 rotations 0.8449
non-logio on features 0.8752
Integrated intensity normalization 0.8849



Relationship of Generalized Master Equation to complexity (i.e., emergent behavior and self
27 organization)

p 1/À ,canonical momentum, or quantum numbers

k(p,p1) f2 1),11,t) fi (p, t) f source (p) 
Generalized Master Equation at at di ft (p' ,t) (1 13) fi(p,t) k(p, 13)

A

h(p')

(k,- (p, Pi )
fl(p)

~(p,p)

linear instability analysis

ft(p,t) fo(p,t) + f (At) , where b f 1 fo <1

dispersion relation, 1 (p , t) = 0 p = p (t)

Po=k+i-y\

oscillation instability/stability

emergent behavior
(e.g., 3D Kolmogorov scaling)

feq -5/3

cascade

dissipation

ft (13, t)

nonlinear steady state analysis

feq (p) = tlimoo  f (p , t)

fdp feci (p) k (p, pi) — feq(p' ) k (pi , p)

large scale self organization
(e.g., 2D Navier-Stokes)

feq

Ofsource (p) 
ot

inverse cascade

/al

t

• •

.



Why 3D MHD can exhibit a 2D Navier-Stokes inverse cascade with a resulting large scale,
X self organized, nonlinear, helical structure?

3D Navier-Stokes when constrained to 2D conserves total
vorticity, relaxes energy while maintaining circulation

ftotal vorticity = V x u d2x

3D MHD when magnetized has total magnetic and cross
helicity as a topological invariants, dissipates energy but
must maintain helical twist

ftotal magnetic helicity = A • B d3 x

ftotal cross helicity = v • B d3 x

•

t

0 •
.0,



28 University of Michigan experiments track mode merger (inverse cascade) of liner structure

• Mode merger event
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x Axial magnetic field nonlinearly stabilizes liner perturbations into helical structure

Bz = 0

Unmagnetized

• Horizontal striations
• m = 0 sausage mode

time: 280-380 ns. Ipek = 480 kA

Bz = 1.1 T

Magnetized
• m = 2 helical mode
• Reduced

amplitude
• Reverse B„ striations

also reverse
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29 Evolution of distribution function to steady state

feq(p)
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Main questions:
1. What is the steady state? (1st order MST, fixed point of 2nd order MST)
2. How does the physical system get there? (2nd order MST, kinetics)



30 I Efficient, professional implementation of MST with visualization

• OpenSource Python package using Karas/TensorFlow, BluSky, that implements the 1D and 2D MST along
with visualization to arbitrary order

• implementation is compatible with efficient inversion of the transformation because of the availability of
derivative s (adj oints)

• implemented in time domain as a convolutional network, so that richer network structures can be investigated

• can be found at: https://github.com/enthought/sandia-blusky

brthoudrit sandia -bl,ssky

1. Code Issues • P.,1 req.ests 1 w1ri &aclrlitS 0-hc

Sandia 131uSkY

OUnmatclo• 1 * 3ter 0 Wort 0

l2r 121 commits 22 r_ranches ' 0 releases 12 4 cweributors

Bran., nasidn. now oun rioninin Cnool• nen me bowed.•

a Ira•esec sr. rwri reounit •50 from agnouestrosivreadrew —

fled fee Cinnai denin tr.

Latest comrtit cee6r97 on Oct 7

■ blUsky hr. more whiteSbeCe 2 rr orths ago

• notythartscs in nal cummil tut neadnn, stub ast munn,

= Oft ignore gagnore 2 worths ago

- LICENSEAst Jpdatee setuplools d worths ago

READIAE.nad n hal commY for reed., cob ast month

alabeeYorNml apovesor to rxt tre sc whiney 2 worths ago

; wrap cfg .Ipdated setuplools n-43.11, non.

Sel-UP.Po •wilffseras versions. 2 rrorths ago

■ README.nsd

BluSky - A Python implementation of the wavelet scattering
transform

BluSky .5 a Pytnon llorary for that lmolernerts tho Mallat wavelet scattenng transform using Koras/Tenoorflow

FCatlif00 include:

• ID 2D transforms. 3D on the way

• arbitrary order

• thOribtS & Gabor, 110Oular library allOW0 for arbitrary wavelets(?)

• built in yisuarization of transform coefficients





x Technology to be presented

• Nonlinear physics vs. linear physics

O linear instability vs. nonlinear stability

O steady state structures (emergent behavior)

O 2D inverse cascade vs 3D normal cascade
O 2D Navier-Stokes with conserved vorticity and 3D MHD with topological helicity invariant

• Intuitive description of Mallat Scattering Transformation (MST)

• Connection of MST to nonlinear physics
O Enhanced Wigner-Weyl transformation (manifold safe)

O S-matrix (multiple scale, 1 /momentum, scattering cross sections)

• Evidence for nonlinear stability, that is large scale emergent behavior in MagLIF implosions

O mode merger

O helical structure in liner with modes below linear mode with maximal growth rate

O unexpected convergence to double helical structures with extreme CR>200

• Analysis of stagnation morphology with MST

O advanced background subtraction

O quantitative metric of morphology (that is, steady state nonlinear structure or emergent behavior)

O regression to helical parameters with uncertainty (remarkably linear)



x MST and kinetics (that is PDE solution)

• MST is advected with the diffeomorphism of a vector field on a manifold

• leads to a set of "extended enerOes" or topological invariants, that are advected by the flow

• group symmetries can be built into the transformation

• leads to additional constants advected by the flow

• MST is the "pull back" of the set of N particle distribution forms (i.e., density operators) using a modified version of the Wigner-
Weyl transformation (mother wavelet with compact support replaces Fourier kernel, father wavelets are partition of unity)

• Nth order MST is the Nth order Wigner function, that is N-particle correlation function

• BBGKY hierarchy on manifolds gives evolution of the Nth order distribution function as an advection modified by a "collision
operatoe' resulting from interaction with the N+1 particle (advective functional of the N+1 order distribution function)

• therefore, MST is the natural coordinate system to analyze statistical mechanics and kinetics

• MST are constants for a steady state system allowing construction of the canonical ensemble following ideas of Jaynes

• examples of generalized advective-collisional systems are:

- Liouville equation

- Boltzmann equation

- Vlasov equation

- MHD

- Navier-Stokes

- quantum field theory

- quantum mechanics



x I Evidence for nonlinear helical structure of liner on Z, stabilized by axial magnetic field
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