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3 1 Connection of MST to causal dynamics (classical & QFT) and MLDL

» useful for Machine and Deep Learning of causal physics

» important tool for theoretical physics, for the analysis of:

o turbulence, emergent behavior, self-organization, and renormalization
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Resulting practical applications

» deep representation for MLDL of causal physical systems
o classification (characterization)
° regression
o surrogate construction of causal physical system evolution
- from ensemble of states that sample transition kernel and current state
» metric of image morphology (complexity)
o compare simulations to experimental images, cross experimental images
o estimate the parameters of the images with uncertainty via a shallow (linear) regression
> sophisticated background subtraction



Roadmap

» construction of Mallat Scattering Transformation (MST) as a deep convolutional network with pre-determined
weights

» MST from the classical perspective
> manifold-safe Wigner-Weyl transformation of the density operator
- bi-transformation because operators have inputs and outputs
- on manifold with spherical topology can use Fourier kernel and reduces to bi-spectral transformation
> Generalized Master Equation
» MST from the Quantum Field Theory (QFT) perspective
o generalized Green’s function or S-matrix
> Feynman diagram of quantum fluctuation averaged classical action and renormalized mass
» applications
o image classification
o experimental to computer simulation image comparison
- advanced background subtraction
o parametric model estimation of experimental images with uncertainty via regression
o future direction MLDL of causal physics
- surrogates of PDE evolution

- 1dentification of emergent behavior



6 | What is a Wavelet Transform?

» Wavelet Transform, W

o Convolutions of a signal with dilated Mother Wavelets, ¢:(2) (i.e. a bank of band-pass filtered signals)
o thy(#-#) consists of dilations and translations of the Mother Wavelet ¢(?)

1-D Wavelet Trasform
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7 1 Animation of calculation of Wavelet Transformation convolution
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s | Wavelet Transformations can be iterated i+ |
o Wavelet Transform, W I
o convolutions of a signal with dilated Mother Wavelets, ¢,(?) (i.e. a bank of band-pass filtered signals)
o ¢u(t-1) consists of dilations and translations of the Mother Wavelet ¢(?)
° because x/A/(?) is a function of time we can take its Wavelet Transform
Wavelet Transform of a Wavelet Transform
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t' t 4 |
- N\ S\ [ e |
" v {1, Ag)(B)] * ¥y ]
A, scale \f\r \f\r ‘\f\f M/\/\.Jw\/\/ & - L \
=
o e P
A .Cl?(t) * ;:b)\] M
z(t) WMMW\ 4 z[A1](t) z[A1, Ao (2) 2[A1, Az, As](¢) I




9 I The Mallat Scattering Transform (MST)
[Mallat 2012; Bruna and Mallat 2013; Mallat 2016]

Mallat Scattering Transform, W
SmlA = Z)‘n]m = Wm{m(t)} = ||z * r,| * ny - x|
n=1

Father Wavelet

M\ﬂ/m/mm .
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Our systems are diffeomorphisms

o Liouville equation

» BBGKY hierarchy

» Master equation

» Vlasov equation
 Boltzmann equation

» multi fluid equations
» Navier-Stokes equations
» MHD equations

» Heat diffusion

» Radiation transport

o Quantum field theory
» Quantum mechanics
» Maxwell’s equations

» Newton’s equations

o ctc.

p(”) = fnT(") = n-particle distribution form, where () = H A wj

=1

i,,(m) w™ = —dH(”), where w( = Zwi

opt™ Generalized BBGKY
Tor o M0 gy P Hierarchy
fr?t) = Zul n+1

this is why Lipschitz continuity (invariance under
diffeomorphism, deformation, or advection) is such a big deal

p = statistical distribution or QFT state




11 I Relation of MST to Generalized Master Equation: ideas of Bogoliubov

f1 relaxes at dynamic rate = (2

fl evolves at collisional rate =

0/ dt

Q
Q<<

fo relaxes at collision rate

fo evolves at correlation rate =

d*Q/dt*  dQ/dt

g < <0

pullback of first two equations in BBGKY hierarchy,

df1

ot
Of2
ot

— +{fi, Hi} = —no/dm dqge { f2, Hi2}

—— +{fo, Hi + Hy + H12} = —no/dm dgs { fs, Hi3 + Has}

can be reduced to, assuming the separation of rates,

0f 1 (P)
ot

- / dp’ f2(p',p) — f2(p,p’)  Generalized Master Equation

= /dp’ AW k@, p) — f1(p) k(p, D) k(p,p') = fo(p.P')




12 ¥ Relation of MST to Generalized Master Equation: manifold safe Wigner-Weyl transformation

Wigner-Weyl transformation takes operators to/from classical phase space (1927).
The Key is a modified Wigner-Weyl transform that is manifold safe.
Need a local Fourier kernel (Mother Wavelet) with a partition of unity (Father Wavelet).

modified Wigner map = W[fl] = /ds V5 (—5) <q + 5 ‘A‘ q— 3> Vp(s) = A(g, p)

modified Wigner function = W[ﬁ] — W[ 1) (f]] = |f*¢pl2 = Wf(q,p)

Now we can identify and calculate,

filp) = EWI[f]) = |f xtbp| * ¢ = Si[p]f

~

i
Fo(p,p) = E(WIFF]) = || % ¥p| %y | % ¢ = Sap,p']

Partition of Unity on the manifold of a torus, T

1 - —
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fT2:SQ[ 7p,]f .

This is the Mayer Cluster expansion on the manifold.

pull back




131 MST as the S-matrix: an alternative dynamical interpretation (l)

From the Lagrangian perspective define the generating function:
Z|J] = N/ [df (p)] (/™) Solf @)+(i/R) [ dp T (p) f(p)

the connection to the canonical formulation is:

S (1)) =E(Tp(F(p1) - F(om)) F(£)) = ||f *x topy |-+ * Up,, | % ¢ = Z[lj] 5pr1) 5J(i9m)

F(p1) f(Pr+1)
& / [
o o
o -
f(Pn) F(pm)

scattering cross section
generalized Green'’s function




14 1 MST as the S-matrix: an alternative dynamical interpretation (ll)

f(0)

define the effective action through Legendre transform:

Slew] =~ w211+ [ dpI(p) (o) PN iy,

vo(p)

expanding in S and ¥ it can be shown that:
f(p)
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S1(A) = f xplx o = E(f(0) F(f)) = 757 = po(p) = fluctuations as a function of = fi(p)
[J] 6J(p) | ;=0 inverse renormalization scale
1 82Z[J] 1

So1£) = I * il by |2 6 = BU W) SO FUD = 5550556 | = o)

two state scattering cross section

(scale dependent renormalization  _ Fap, ')
mass) as a function of initial and — 2\ P
final inverse renormalization scale



Physical inspiration: self organization or inverse turbulent MHD cascade of MagLIF
15 ¥ implosions on Z-machine at Sandia National Laboratories
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16 I Construction of synthetic model

Model Parameters

01 = thickness

0> = length

03 = MRT wavelength

0, = order of axial super Gaussian

0 = amplitude of radial perturbations

0 = amplitude of large-wavelength axial brightness
perturbations

07 = mode number of large-wavelength axial brightness
perturbations

fs = strand separation

09 = amplitude of small-wavelength axial brightness
perturbations

010 = mode number of small-wavelength axial brightness
perturbations

011 = relative strand phase

Stochastic Parameters

(1 = background noise

(2 = signal noise

(3 = amplitude of signal

(4 = radial perturbation phase shift

(5 = large-wavelength axial brightness perturbations phase shift
¢ = small-wavelength axial brightness perturbations phase shift




17 I Classification ensemble

Base Case Class-1 Base Class-1 Realization-1
50 50 50
100 100 100
150 150 150
200 200 200
250 250 250
300 300 300
350 350 350
400 400 400
450 450 450
500 500 500

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
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18 § Classification has excellent performance with significant cluster separation in MST space = I

Class 1 Base Class 2 Base Class 3 Base
w - : classification confusion matrix (dim=10)
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Definition of cluster precision and separation for an affine classifier
r— Pp(x) =o — Z <z, A; > ‘

(projection perpendlcular to an affine space)
1 Z \SXk — Pa, (SX3)|?

E(||SXk||?) '
(precision)
o E(||SXk — Pa,(SX)||?
(0K = 5
E(||SXg — Pa, (SXy)|

(separation factors) !

Z mlnl#kHSXk _PAl(SXk)HZ ‘
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(separation factor)
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Comparison of computer simulation to experimental data
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Significant distortion between simulation and experiment corrected by MST based
20 ¥ background subtraction

x B r—<x,B>

sim data sim data

solution: first principal
component of simulation

to data covariance
projected out (effective
background subtraction)

for AR = 4.5

note: cluster precision and
separation are improved, by
the background subtraction,
from 0.40 to 0.08, and from 1.9
to 4.8, respectively




x I Detailed results of background subtraction

without background subtraction with background subtraction
norm_matrix = norm_matrix =
25.2252 21.1719 26.3623 19.9342 20.0386 21.0724
25.4981 42.8571 32.3066 19.4718 20.1892 22.7075
distance_matrix = distance_matrix =
5.3270 23.9748 11.7816 5.2315 8.6857 9.0674
12.2075 31.0360 19.4757 7.5048 2.0267 10.8905
9.3089 22.9628 11.3718 9.2881 6.7015 8.8512
separation_matrix = separation_matrix =
1.0000 0.5967 ;8734 .. O 40 1.0000 18.3677 1.0494
5.2515 1.0000 .9331 — 2.0579 1.0000 1.5139
3.0537 0.5474 1.0000 p reC] S] On ‘ 3.1522 10.9343 1.0000 r 2 O n = 0 08
R separation = 1.9 o precision = 0.
confusion_matrix = confusion_matrix = .
separation = 4.8
0.4119 0.3694 0.3784 0.4707 0.1694 0.3632
0.2673 0.2370 0.2333 0.3082 0.5855 0.2587
0.3207 0.3936 0.3883 0.2211 0.2451 0.3781
snn|Cdafa

sun'cda,ta)

Csim
3
Csun

u

Cys
data at 5



Use of MST as a metric in the quantification of MagLIF stagnation morphology (i.e., self

21 § organization or emergent behavior)

 metric qualifies similarities between simulation and
experiment

o enables use of images in Uncertainty Quantification &

Verification (UQV)

o allows quantified statements to be made about
morphology

» for example here we can state:

o the simulations correspond to the matching experiments

o there is similarity of the AR-9 data to the AR-4.5
simulation

Csim

P (Csiml| Cdata

Cdata

)

0.6

0.55

0.5

0.45

0.4

0.35

i 0.3

9 0.25

10.2



22 ‘ Regression for parameters of stagnation morphology using MST based metric

Scattering
Coeflicients

Linear Regression
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23 | Regression ensemble

Actual

Predicted




24 | Excellent regression performance
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x I Model fit — PCA space
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x | Singular Value Decomposition (SVD) SVD( CCOV(6;, S;)) = URVT
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| II h
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25 | Fit to experimental image (coated AR9) gives estimate of uncertainty
Actual Predicted
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x I Shot Z3236 regression fit uncertainty
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x I Shot Z3289 regression fit uncertainty
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x I Fit to the two experimental images @
73236 73289
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x I Optimization of MST

Model Validation Set R?
Base 0.9094
8192 training images 0.9237
m =1 0.7238
2 rotations 0.8449
non-logip on features 0.8752

Integrated intensity normalization 0.8849




Relationship of Generalized Master Equation to complexity (i.e., emergent behavior and self
27 & organization)

p = 1/X ,canonical momentum, or quantum numbers I
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Why 3D MHD can exhibit a 2D Navier-Stokes inverse cascade with a resulting large scale,
X B self organized, nonlinear, helical structure?

3D Navier-Stokes when constrained to 2D conserves total 1,
vorticity, relaxes energy while maintaining circulation ‘

total vorticity = / V x ud®z

3D MHD when magnetized has total magnetic and cross
helicity as a topological invariants, dissipates energy but
must maintain helical twist

n“’w' -

T

total magnetic helicity = / A-Bdx

i
-

total cross helicity = / v-B dx




28 I University of Michigan experiments track mode merger (inverse cascade) of liner structure

@ Mode merger event
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X

Axial magnetic field nonlinearly stabilizes liner perturbations into helical structure

time: 250-350 ns. |, = 580 kA

Unmagnetized
* Horizontal striations
* m =0 sausage mode
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29 | Evolution

of distribution function to steady state
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Main questions:

1. What is the steady state? (1st order MST, fixed point of 2nd order MST)
2. How does the physical system get there? (2nd order MST, kinetics)




30

Efficient, professional implementation of MST with visualization

» OpenSource Python package using Karas/TensorFlow, BluSky, that implements the 1D and 2D MST along
with visualization to arbitrary order

 implementation is compatible with efficient inversion of the transformation because of the availability of
derivatives (adjoints)

 implemented in time domain as a convolutional network, so that richer network structures can be investigated

e can be found at: https://github.com/enthought/sandia-blusky

enthought / sandia-blusky @unwatch~ 1 *Star O Yrok 0
© Code Issues 37 Pull requests 1 Wik Security Insignts
Sandia BluSky
m 22 0re ha A
P : R k wain ouy
= blus mo hi n
= notet tia f
atg aQ
LICENS! 1
README.md
P yorym P
cfg
Py f)
% README.md

BluSky - A Python implementation of the wavelet scattering
transform

BluSky is a Python lidrary for that implements the Mallat wavelet scattering transform using Keras/Tensorfiow.
Features include:

* 1D, 2D transforms. 3D on the way.
o arbitrary order
* Morlets & Gabor, modular library allows for arbitrary wavelets(?)

* built in visualization of transform coefficients







x I Technology to be presented

» Nonlinear physics vs. linear physics
o linear instability vs. nonlinear stability
o steady state structures (emergent behavior)
o 2D inverse cascade vs 3D normal cascade
o 2D Navier-Stokes with conserved vorticity and 3D MHD with topological helicity invariant
» Intuitive description of Mallat Scattering Transformation (MST)
» Connection of MST to nonlinear physics
> Enhanced Wigner-Weyl transformation (manifold safe)
o S-matrix (multiple scale, 1/momentum, scattering cross sections)
» Bvidence for nonlinear stability, that is large scale emergent behavior in MagLIFF implosions
> mode merger
o helical structure in liner with modes below linear mode with maximal growth rate
o unexpected convergence to double helical structures with extreme CR>200
» Analysis of stagnation morphology with MST
> advanced background subtraction
o quantitative metric of morphology (that is, steady state nonlinear structure or emergent behavior)

o regression to helical parameters with uncertainty (remarkably linear)



X

MST and kinetics (that is PDE solution)

» MST is advected with the diffeomorphism of a vector field on a manifold

o leads to a set of “extended energies” or topological invariants, that are advected by the flow
» group symmetries can be built into the transformation

o leads to additional constants advected by the flow

o MST is the “pull back™ of the set of N particle distribution forms (i.e., density operators) using a modified version of the Wigner-
Weyl transformation (mother wavelet with compact support replaces Fourier kernel, father wavelets are partition of unity)

o Nth order MST is the Nth order Wigner function, that is N-particle correlation function

> BBGKY hierarchy on manifolds gives evolution of the Nth order distribution function as an advection modified by a “collision
operator” resulting from interaction with the N+1 particle (advective functional of the N+1 order distribution function)

o therefore, MST is the natural coordinate system to analyze statistical mechanics and kinetics
o MST are constants for a steady state system allowing construction of the canonical ensemble following ideas of Jaynes
o examples of generalized advective-collisional systems are:
- Liouville equation
- Boltzmann equation
- Vlasov equation
- MHD
- Navier-Stokes
- quantum field theory
- quantum mechanics



X

Evidence for nonlinear helical structure of liner on Z, stabilized by axial magnetic field
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