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Background & Purpose

There exist geothermal conditions where geothermal wells are thermally cycled rapidly,
implying special cement formulations are needed:

 Brookhaven Natl Lab is developing cement formulations

* Sandia Natl Labs is testing these water saturated cements at elevated P&T

This work evaluates Thermal Shock-Resistant Cement (TSRC) developed by BNL.

Sandia focused on determining thermal expansion, and fluid flow through the TSRC,

and the application of thermal shock to a steel/TSRC sheathed sample.

The key contributions of this work to the geothermal community are

(1)Development of a test system for thermal expansion and fluid flow measurements through
TSRC at elevated P&T conditions relevant to in situ geothermal conditions,

(2) Development of a test system to thermally shock a steel/TSRC sheathed sample at

elevated temperature and pressure conditions relevant to in situ geothermal conditions and,

(3) Evaluation of comparative performance of TSRC and common high-temperature ordinary

Portland Cement (OPC)-based sheath samples under conditions of dry heat thermal shock at
ambient pressures.
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Steel: 3x180 hours to 220/°C
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Displacement, T°C for 1%t and 29 heating cycles for steel at 13.8 MPa confining pressure.

We calculate CTE= 2 to 5 x 10/°C, CTE of carbon steel = 1.2 x10~/°C
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Cement sheathed steel
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Displacement (cm)

Cement sheathed steel, thermal shock testing
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CONCLUSIONS

This work documents additional evaluations of Thermal Shock-Resistant Cement (TSRC)
developed by BNL with focus on thermal expansion, fluid flow through the TSRC, and the
application of thermal shock to a steel/TSRC sheathed sample.

The key contributions of this work to the geothermal community are centered about
development of a test system to make measurements of cement thermal expansion and fluid
flow at elevated T°C and confining pressure (13.8 MPa) and pore water pressure (10.3 MPa)
relevant to geothermal systems.

The thermal expansion coefficient of the water-saturated TSRC is in therange of 1to 5 x 10
>/°C. Over this temperature range at 3.5 MPa effective confining pressure, the estimated
permeability of the TSRC may be temperature dependent and is on the order of 0.1uD.

The test system, modified to thermally shock a steel/TSRC sheathed sample at elevated
temperature and pressure conditions, successfully created a 100°C radial thermal gradient in
about five minutes. Some thermally induced cracking may be present.
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Don’t try this at home
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