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EXECUTIVE SUMMARY 
The Asynchronous Iterative Solvers for Extreme-Scale Computing (AsyncIS) project aims to 
explore more efficient numerical algorithms by decreasing their overhead. AsyncIS does this by 
replacing the outer Krylov subspace solver with an asynchronous optimized Schwarz method, 
thereby removing the global synchronization and bulk synchronous operations typically used in 
numerical codes. 
 
AsyncIS—a U.S. Department of Energy (DOE)-funded collaboration between Georgia Tech, the 
University of Tennessee, Knoxville, Temple University, and Sandia National Laboratories—also 
focuses on the development and optimization of asynchronous preconditioners (i.e., 
preconditioners that are generated and/or applied in an asynchronous fashion). The novel 
preconditioning algorithms that provide fine-grained parallelism enable preconditioned Krylov 
solvers to run efficiently on large-scale distributed systems and manycore accelerators like 
GPUs.  
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1. INTRODUCTION 

Extreme-scale supercomputers, like upcoming exascale machines, will have massive amounts of 
parallelism, both at the node level and within nodes. This massive parallelism will pose 
challenges to the efficient execution of numerical codes that use global synchronization or a bulk 
synchronous parallel model of computation. This is because any load imbalance or 
nonuniformity in hardware performance will cause all processing units to idle at a 
synchronization point, waiting for the slowest unit. Irregular and adaptive DOE simulation codes 
are particularly at risk, and this problem is exacerbated by non-application irregularities such as 
OS jitter, different rates of memory error corrections due to variability in chip manufacturing, 
and CPU speeds unpredictably being throttled depending on local cooling characteristics. 
Balance can be very difficult to achieve, especially for large numbers of processors and 
relatively small workloads per processor. A significant bottleneck will be the Krylov subspace 
iterative methods, which have become a mainstay of DOE’s implicit simulation codes. The inner 
products in the Krylov methods are global synchronization points that generally involve every 
single processing unit that is participating in the computation. 
 
A key idea of this project is to replace the outer Krylov subspace solver with the asynchronous 
optimized Schwarz (AOS) method, thereby removing the global synchronization and bulk 
synchronous requirements. Subdomain solves in the optimized Schwarz method use a 
preconditioned Krylov subspace method. Thus, the Krylov subspace method is moved to an 
inner level, acting on subdomains the sizes of which are chosen such that performance non 
uniformities are small or can be tolerated. Such subdomains can span multiple compute nodes, 
corresponding to the type of distributed-memory solvers we use today. Within a compute node, 
however, massive thread-level parallelism for the preconditioner must still be addressed. For 
this, we studied fine-grained parallel preconditioners where asynchrony can also play a part. 
 
We further developed and analyzed asynchronous preconditioners, i.e., preconditioners that are 
based on asynchronous iterations. To accelerate convergence, we needed an alternative to 
preconditioners for many large-scale problems that decouple subdomains, communication across 
subdomains for elliptic partial differential equations (PDEs), and others. Asynchronous methods 
can be designed to adaptively perform communication when necessary. For this, we proposed to 
study a new relaxation method that we call “Distributed Southwell,”' which can be naturally 
implemented in an asynchronous fashion. Distributed Southwell algorithms could be very 
effective as multigrid smoothers and as components of physics-based block preconditioners. 
 
Convergence of these new methods were analyzed and established mathematically. The methods 
were also explored in a software framework for asynchronous iterative methods. 
Leadership-class DOE computers were targeted, as well as large-scale DOE applications in fluid 
flow and ice-sheet simulation. To measure success, the AOS method with various types of 
subdomain solvers were benchmarked against preconditioned Krylov subspace 
methods—including pipelined (non-blocking) GMRES, recent hierarchical and nested Krylov 
subspace methods, and also preconditioned inexact Chebyshev methods. We anticipated that the 
asynchronous methods’ competitiveness would depend on the degree of load imbalance and 
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other imbalances in the system; however, we hoped to see a trend toward better performance, for 
example, of AOS over standard Krylov subspace methods as machine configurations increase in 
size, even if theoretical load balance is perfect. As a contingency, we note that AOS could also 
be used as a preconditioner within a Krylov subspace method.  In this case, the subdomain solves 
in the AOS method can be approximate. By shifting the burden of work between GMRES and 
AOS through tuning the accuracy of the subdomain solves, we can control the number of 
iterations, and thus the amount of global synchronization.  
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2. MAJOR ACTIVITIES 

Year 1 
The role of the University of Tennessee, Knoxville (UTK), in the first year of the AsyncIS 
project focused on supporting the project partners’ efforts to implement parallel versions of 
Southwell iterations on HPC systems and advance fine-grained subdomain preconditioners. With 
the project partners from Georgia Tech making quick progress in the development of parallel 
Southwell techniques, the UTK team primarily worked on the node-level preconditioners 
providing fine-grained parallelism. In the last months, we developed, implemented, tested, and 
presented new preconditioning strategies to the scientific community. 

Southwell Implementation 
In the first months of the project, the team members at Georgia Tech made significant advances 
in the development, analysis, and implementation of parallel versions of asynchronous Southwell 
iterations. Due to the obvious progress in this research direction, UTK’s research efforts 
concentrated on the fine-grained subdomain solvers. 

Robust ILU 
The fine-grained ILU algorithm based on fixed-point iterations succeeds in generating 
incomplete factorizations if the bilinear fixed-point equations are not too ill conditioned, and the 
iterations do not violate the limits of the floating point format used. This work package aims to 
increase the numerical stability of the fixed-point iterations and enhance the accuracy of the 
generated incomplete factors. Together with our project partners, we advanced the fixed-point 
iterations that generate the incomplete factors; however, we realize more work is needed to attain 
the level of robustness we are targeting. The research efforts moved in this direction in the 
following months. To enhance the quality of incomplete factorization preconditioners generated 
via fixed point iterations, we developed a new class of parallel threshold ILU. Conversely to 
existing thresholding techniques, our strategy does not arise from decomposing the global system 
into subproblems (a strategy that only allows for coarse-grained parallelism), but from 
combining the fixed-point-based ILU algorithm with a dynamically changing sparsity pattern. 
This way we can leverage the fine-grained parallelism available in manycore accelerators 
equipped with shared memory. From the theoretical perspective, we modified the fixed-point 
ILU algorithm from minimizing the nonlinear residual form to minimizing the ILU residual 
norm. The latter is expected to be a better metric for the preconditioner quality. Numerical 
experiments confirm that the new strategy is, in terms of preconditioner quality, competitive with 
existing threshold-ILU strategies. At the same time, the parallelization potential makes the new 
algorithm much faster when running on parallel architectures. We presented the new parallel 
threshold ILU at community events and had a high-profile publication [1, 2]. 

Hybrid Triangular Solver 
The goal of this work package is the development of new types of sparse triangular solves that 
allow leveraging of the high concurrency levels that are typical of manycore accelerators like 
GPUs. With this objective, we derived a new strategy for incomplete factorization 
preconditioning. Instead of generating sparse triangular factors along with level scheduling 
information, we approximated the inverse of the sparse triangular factors. For the approximate 
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inverse, we used the same nonzero pattern shared by the incomplete factor. This motivated 
naming the strategy “incomplete sparse approximate inverses (ISAI)” [3]. In the preconditioner 
application, the exact sparse triangular solves that were parallelized using level scheduling are 
replaced by multiplication with the sparse approximate inverses. Compared with exact triangular 
solves, sparse matrix vector multiplications typically provide a much higher level of parallelism. 
Additionally, for most manycore technologies, highly optimized implementations exist for a 
sparse matrix vector product as part of vendor libraries like Intel’s MKL or NVIDIA’s 
cuSPARSE. Although the ISAI preconditioning strategy solves the incomplete factors only 
approximately, the significantly faster preconditioner application can accelerate the overall 
solution process. The accuracy of the ISAI preconditioning can also be enhanced by using a few 
stationary iterations (Jacobi relaxations). We demonstrated the effectiveness of ISAI 
preconditioning using a large number of test problems with different origins [1]. For the 
preconditioner generation, we developed efficient routines that make heavy use of batched 
operations. We presented the ISAI preconditioning strategy at community events and reported 
the achieved performance on Intel’s Xeon Phi architecture and NVIDIA GPUs in scientific 
publications [3, 4, 5, 6]. We made the implementation publically available in the MAGMA 
Sparse open-source software library. This accelerator-focused, node-level software module 
contains a collection of sparse solvers, preconditioners, and eigensolvers and will become a key 
component in the sparse linear algebra software ecosystem, as the DOE Exascale Computing 
Project 1.3.3.11 STMS11-PEEKS aims to develop a generic interface to the Trilinos software 
infrastructure. 
 
The project team at UTK also supported the project efforts that aim to replace exact sparse 
triangular solves with block-Jacobi relaxations. Together with colleagues from Georgia Tech, we 
addressed the challenge of deriving efficient blocking techniques and reported promising 
strategies in scientific publications [7]. Furthermore, we addressed the challenge of the efficient 
computation of block-Jacobi matrices on manycore accelerators by deriving techniques that 
involve batched factorization and inversion. We considered Gauss-Jordan, Gauss-Huard, and LU 
factorization (the de facto standard) and compared the implementations for the distinct 
algorithms with respect to performance, numerical stability, and their efficiency when used for 
block-Jacobi preconditioning [8, 9, 10, 11]. As we did for the ISAI preconditioning, we made the 
implementation of block Jacobi-based sparse triangular solves publically available in the 
MAGMA Sparse software module. 

Year 2 

Synchronous and Asynchronous Schwarz Software 
In the second year of the project, we developed a software framework to study the performance 
of the asynchronous Schwarz method. The major results are provided below. 
 
We used our software to examine the potential of the AOS method on current and future 
distributed-memory computers. Previous work has already demonstrated the asynchronous 
method’s potential to improve the performance of the synchronous method by removing global 
synchronization points. In contrast to previous work, however—which used non-blocking, 
two-sided communication—we studied the use of several one-sided (remote memory access) 
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communication mechanisms that are truly asynchronous (with passive target completion). In 
addition, previous work used the imbalanced workloads and heterogeneous compute nodes to 
emphasize the advantages of asynchronous iterative methods. To extend those previous studies, 
we studied performance with 2-D regular meshes that are evenly distributed on the Cori 
supercomputer at the National Energy Research Scientific Computing Center (NERSC). Our 
performance results using the Message Passing Interface (MPI) or Symmetric MEMory 
(SHMEM) for the asynchronous communication on the Intel Haswell or Knights Landing (KNL) 
CPUs of the Cori supercomputer demonstrate that when asynchronous communication is well 
supported (e.g., the communication progresses behind the local computation), the asynchronous 
method can outperform the synchronous method—even for the balanced problem using 
homogeneous nodes [12]. 
 
We extended the software to solve a general linear system of equations using the classical 
Schwarz method and to use an iterative method for solving the local subdomain problems. We 
are studying the relationship of the stopping criteria to the inner and outer iterations and the 
potential of the asynchronous iteration to overcome the load imbalances among the processes 
(e.g., differences in the required number of iterations for solving the local problems). We plan to 
use this framework to utilize both CPUs and GPUs on the node.  

Production-Ready Pipelined or Communication-Avoiding Krylov Solvers 
For the second year of the project, we also continued our development of the pipelined and 
communication-avoiding Krylov solvers, which can be used to compare the performance of the 
asynchronous iterative solvers developed on a large scale by the UTK or Sandia group. The 
solver will become available through the Trilinos public GitHub repository, so that it will be 
readily available to other groups. The target applications mentioned in the proposal (e.g., the 
NaLu low-Mach fluids simulation code and the Albany ice-sheet model) currently rely on the 
Trilinos linear solvers. 

Asynchronous Parallel Threshold ILU Generation 
In the first year of the project, the UTK team put a great deal of effort into developing an 
asynchronous iterative algorithm for generating a threshold ILU preconditioner. We continued 
these efforts in Year 2 and finally developed a robust parallel threshold ILU (ParILUT) that has 
good scalability properties on multicore and manycore architectures [4]. Furthermore, the 
generic design of the algorithm enables easy control of the fill-in, and the user can benefit from 
updating a previously generated preconditioner to a similar system. 
 
We realized an implementation of the ParILUT algorithm for multicore based on OpenMP and 
an implementation for manycore that targets NVIDIA GPUs. Both implementations are well 
documented and ready-to-use components of the MAGMA Sparse open-source software 
package. Aside from the general ILU, we also developed multiple Cholesky variants for 
symmetric, positive-definite systems. As the implementation is the first GPU implementation of 
a threshold ILU preconditioner, the UTK team published a scientific paper detailing the ParILUT 
algorithm and the performance achieved on modern GPUs [6]. 
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Parallel Triangular Solver 
In Year 2, the UTK team continued developing new types of sparse-triangular solvers that allow 
for leveraging the high concurrency levels typical of manycore accelerators like GPUs. We also 
devised a new strategy for incomplete factorization preconditioning. As stated for Year 1, instead 
of generating sparse-triangular factors along with level scheduling information, we approximated 
the inverse of the sparse-triangular factors—ISAI [13]. We pushed production code 
implementations of this ISAI strategy for parallel triangular solvers on GPUs and made the code 
publicly available in the MAGMA Sparse open-source software package. 
 
Furthermore, the UTK team completed the joint research effort with Georgia Tech on blocking 
techniques in triangular solves based on block-Jacobi [3]. In the context of quickly generating 
block-Jacobi matrices for iterative triangular solves, we investigated the option of 
mixed-precision algorithms [14]. The idea here is to store part of the preconditioner in a 
lower-than-working precision to reduce the cost of accessing the data in main memory, and 
thereby accelerate the triangular solve. 

Year 3 

Asynchronous Parallel Threshold ILU Generation 
We further advanced the parallel generation of threshold-based ILU preconditioners. In 
particular, as the quick generation of a threshold separating the ​k​ smallest entries of a matrix, we 
focused on designing selection and sorting algorithms for GPUs that are highly parallel, efficient, 
and allow for reducing the threshold accuracy in favor of a reduced run time. The technology 
alone became relevant outside of the threshold-ILU research topic [10]. The ParILUT algorithm 
based on the new selection algorithm has been deployed as production-ready functionality for 
NVIDIA GPUs in the Ginkgo open-source software package. The technology is now used in 
scientific simulations based on the MFEM and deal.II finite element packages. 

Parallel Triangular Solver 
Despite the advantages in developing efficient iterative triangular solves [3], the UTK team 
continued research on designing fast and accurate triangular solves. Based on the strategy of 
using block-Jacobi iterations for solving the triangular systems arising in ILU factorization 
preconditioning, this algorithm was enhanced by reducing the floating-point precision where the 
numerical properties allow [8]. We deployed the technology for iterative triangular solves in the 
Ginkgo open-source software package. 

Integration 
The use of the asynchronous parallel threshold ILU preconditioners in scientific applications is 
efficient, but not always so right out of the box. In particular, many applications allow for some 
tuning of the ParILUT parameter—such as sweep count, fill-in, and thresholds—to the specific 
problem. The UTK team worked closely with a team of researchers from Lawrence Livermore 
National Laboratory to deploy ParILU and ParILUT technology in an MFEM application. 
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Asynchronous Subdomain Solves 
The UTK team, in cooperation with Pratik Nayak (KIT, Germany), investigated the use of 
asynchronous subdomain solves in a restricted additive Schwarz (RAS) solver on a multi-GPU 
supercomputer. The focus was on quantifying the benefits of (1) the use of asynchronous 
subdomain solves and (2) the use of asynchronous communication strategies (asynchronous, 
GPU-aware MPI). The findings were published in a scientific paper [9]. 

Asynchronous Stochastic Gradient Descent (SGD) Solvers 
The SGD algorithm is widely employed for training machine learning models such as deep 
neural networks (DNNs). One of the most popular variants, the mini-batch SGD, not only offers 
good convergence properties but is also easily parallelizable. However, parallel implementations 
of mini-batch SGD can be inefficient and can have poor speedups due to the need for 
synchronization. Therefore, we investigated the use of asynchronous SGD for training DNNs. 
We developed new asynchronous SGD algorithms and implemented them in the open-source 
MagmaDNN library [15]. Different from previous asynchronous algorithms, we considered the 
case where the gradient updates are not particularly sparse, and we compared the parallel 
efficiency of the asynchronous implementation with that of the traditional synchronous 
implementation. The results show that the asynchronous SGD not only offers good convergence 
but is able to outperform the synchronous variant on multicore CPUs and GPUs [16]. 
 
Furthermore, we investigated the current challenges in designing deep learning artificial 
intelligence (AI) and integrating it with traditional high-performance computing (HPC) 
simulations. We evaluated existing packages for their ability to efficiently run deep learning 
models and applications on large-scale HPC systems, the identified challenges, and the proposed 
new asynchronous parallelization and optimization techniques for current large-scale 
heterogeneous systems and upcoming exascale systems. The approaches and future challenges 
were illustrated in materials science, imaging, and climate applications, and were presented and 
published in a position paper at the 2020 Smoky Mountains Computational Sciences and 
Engineering Conference (SMC 2020) [17].  
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3. CONCLUSIONS AND RESULTS 

Summary of Conclusions 
In this project, we advanced the technology in terms of asynchronous algorithms for generating 
incomplete factorizations and applying sparse-triangular solves like they occur in incomplete 
factorization preconditioning. In particular, we developed the first algorithm that can generate a 
threshold-based, incomplete-factorization preconditioner on GPUs. We also advanced the 
technology for iterative triangular solves. We successfully deployed the new algorithms as 
production-ready software in the MAGMA Sparse and Ginkgo software ecosystems, and the new 
technology is already used by finite-element applications. The achievements and the new 
technology have been presented and advertised at several conferences and detailed in scientific 
papers. 

Significant Results 

Software 
The developed ParILUT algorithm for the asynchronous generation of an incomplete 
factorization preconditioner and the ISAI algorithm for the parallel sparse triangular solves 
(preconditioner application) are available in the MAGMA Sparse and the Ginkgo open-source 
software packages.  
 
In the context of the ECP effort to efficiently disseminate scientific software, the MAGMA 
Sparse and Ginkgo software packages were integrated into the xSDK software ecosystem 
(​https://xsdk.info/​). This makes the developed methods available on all supercomputing facilities 
that install the xSDK software package by default. 

Knowledge 
The ParILUT algorithm is a natural starting point for further research on algorithms that adapt 
matrix values and sparsity patterns dynamically for a given problem. Furthermore, the need for a 
fast and accurate sorting algorithm for GPUs has resulted in significant research advances in the 
field of parallel sorting algorithms.  

Integration 
Within the US Exascale Computing Project, the Ginkgo and MAGMA Sparse software 
packages, along with the asynchronous factorization and trisolver algorithms, were integrated 
into the xSDK software ecosystem. The technology is now available and used within the deal.II 
and MFEM software packages. 
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4. OPPORTUNITIES FOR PROFESSIONAL DEVELOPMENT 

Dr. Dalal Sukkari worked on the project as a Post-Doctoral Research Associate. Dr. Sukkari 
studied asynchronous SGD methods and their use in DNN frameworks. 
 
Dr. Stephen Wood worked on the project as a Post-Doctoral Research Associate. Dr. Wood 
investigated convergence and robustness of asynchronous ILU preconditioner generation via the 
ParILU algorithm. 
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5. PROJECT PARTICIPANTS 
Below is a table of participants and the total hours they worked on the AsynchIS project. 
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Participant Role Hours 

Ahmad Ahmad  Research Scientist 104 

Hartwig Anzt  Research Scientist 1287 

Jack Dongarra  PI 133 

Azzam Haidar  Research Scientist 78 

Dalal Sukkari  PostDoc 43 

Stanimire Tomov  Research Scientist 156 

Stephen Wood  PostDoc 87 

Ichitaro Yamazaki Research Scientist 823 



6. PRODUCTS 

Papers 
1. Yamazaki, I., E. Chow, A. Bouteiller, and J. Dongarra, “Performance of Asynchronous 

Optimized Schwarz with One-sided Communication,” Parallel Computing, vol. 86, pp. 
66-81, August 2019. DOI: 10.1016/j.parco.2019.05.004 

2. Chow, E., H. Anzt, J. Scott, and J. Dongarra, “Using Jacobi Iterations and Blocking for 
Solving Sparse Triangular Systems in Incomplete Factorization Preconditioning,” Journal of 
Parallel and Distributed Computing, vol. 119, pp. 219–230, November 2018. DOI: 
10.1016/j.jpdc.2018.04.017 

3. Anzt, H., J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti, “Adaptive Precision 
in Block-Jacobi Preconditioning for Iterative Sparse Linear System Solvers,” Concurrency 
and Computation: Practice and Experience, vol. 31, no. 6, pp. e4460, March 2019. DOI: 
10.1002/cpe.4460 

4. Anzt, H., T. Huckle, J. Bräckle, and J. Dongarra, “Incomplete Sparse Approximate Inverses 
for Parallel Preconditioning,” Parallel Computing, vol. 71, pp. 1–22, January 2018. DOI: 
10.1016/j.parco.2017.10.003 

5. Anzt, H., J. Dongarra, G. Flegar, and E. S. Quintana-Orti, “Variable-Size Batched LU for 
Small Matrices and Its Integration into Block-Jacobi Preconditioning,” 46th International 
Conference on Parallel Processing (ICPP), Bristol, United Kingdom, IEEE, August 2017. 
DOI: 10.1109/ICPP.2017.18 

6. Anzt, H., J. Dongarra, G. Flegar, E. S. Quintana-Orti, and A. E. Thomas, “Variable-Size 
Batched Gauss-Huard for Block-Jacobi Preconditioning,” International Conference on 
Computational Science (ICCS 2017), vol. 108, Zurich, Switzerland, Procedia Computer 
Science, pp. 1783-1792, June 2017. DOI: 10.1016/j.procs.2017.05.186 

7. Anzt, H., J. Dongarra, G. Flegar, and E. S. Quintana-Orti, “Batched Gauss-Jordan 
Elimination for Block-Jacobi Preconditioner Generation on GPUs,” Proceedings of the 8th 
International Workshop on Programming Models and Applications for Multicores and 
Manycores, New York, NY, USA, ACM, pp. 1–10, February 2017. DOI: 
10.1145/3026937.3026940 

8. Anzt, H., E. Chow, T. Huckle, and J. Dongarra, “Batched Generation of Incomplete Sparse 
Approximate Inverses on GPUs,” Proceedings of the 7th Workshop on Latest Advances in 
Scalable Algorithms for Large-Scale Systems, pp. 49–56, November 2016. DOI: 
10.1109/ScalA.2016.11 

9. Anzt, H., E. Chow, and J. Dongarra, “ParILUT - A New Parallel Threshold ILU,” SIAM 
Journal on Scientific Computing, vol. 40, issue 4: SIAM, pp. C503–C519, July 2018. DOI: 
10.1137/16M1079506 

10. Chow, E., H. Anzt, J. Scott, and J. Dongarra, “Using Jacobi Iterations and Blocking for 
Solving Sparse Triangular Systems in Incomplete Factorization Preconditioning,” Journal of 
Parallel and Distributed Computing, vol. 119, pp. 219–230, November 2018. DOI: 
10.1016/j.jpdc.2018.04.017 

11. Anzt, H., T. Huckle, J. Bräckle, and J. Dongarra, “Incomplete Sparse Approximate Inverses 
for Parallel Preconditioning,” Parallel Computing, vol. 71, pp. 1–22, January 2018. DOI: 
10.1016/j.parco.2017.10.003 
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Presentations and Invited Talks 
1. “ParILUT - A Parallel Threshold ILU for multicore and GPUs, SIAM Conference on Parallel 

Processing for Scientific Computing (PP20),” Seattle, Washington, U.S., 2020 
2. “Algorithm Design in the Advent of Exascale Computing,” 4th International Symposium on 

Research and Education of Computational Science (RECS), Tokyo, October 2019. 
3. “ParILUT - A Parallel Threshold ILU for GPUs,” 33rd IEEE International Parallel and 

Distributed Computing Symposium, Rio de Janeiro, May 2019 
4. “Approximate and Exact Selection on GPUs,” 9th International Workshop on Accelerators 

and Hybrid Exascale Systems (AsHES), Rio de Janeiro, May 2019 
5. “ParILUT - A new Parallel Threshold ILU,” 9th Joint Laboratory for Extreme Scale 

Computing (JLESC) workshop, Knoxville, April 2019 
6. “Batched Factorization and Inversion Routines for Block-Jacobi Preconditioning on GPUs,” 

Workshop on Batched, Reproducible, and Reduced Precision BLAS 2017, Atlanta. 
7. “Preconditioning on Parallel and Hybrid Architectures, SIAM Conference on Computational 

Science & Engineering,” SIAM CSE 2017, Atlanta. 
8. “Batched Routines in Preconditioning – The Future of Incomplete Factorization 

Preconditioners,” Workshop on Batched, Reproducible, and Reduced Precision BLAS 2016, 
Knoxville. 

9. “ParILUT – A New Parallel Threshold ILU,” SIAM Conference on Parallel Processing, 
SIAM PP 2016, Paris. 

10. “Asynchronous SGD for DNN Training on Shared-Memory Parallel Architectures,” 
IPDPSW 2020. 

11. “Integrating Deep Learning in Domain Sciences at Exascale,” 2020 Smoky Mountains 
Computational Sciences and Engineering Conference (SMC 2020), August 2020. 

12. “How to Build Your Own Deep Neural Network,” PEARC20, July 2020. 
13. “Integrating Deep Learning in Domain Sciences at Exascale (MagmaDNN),” DOD HPCMP 

virtual seminar, December 8, 2020. 

Software Releases 
● Gingko release 1.2.0 incorporates the ParILUT preconditioner for multicore and GPUs 

https://github.com/ginkgo-project/ginkgo/releases/tag/v1.2.0 
● MagmaDNN v1.2 release 

https://bitbucket.org/icl/magmadnn/get/release-magmadnn-v1.2.tar.gz  
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