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2 | Correlating model and experiment requires the correct loads

For the random field generated during vibroacoustic testing, model/test correlation requires identifying
the acoustic pressure power-spectral density (PSD) matrix to generate the response:

Response PSD: Input PSD:

Six(w) = fo(szff(w)’}fo(w)H Sff(w) =

= . .-

511.((1)) 51N.(CU)
SN1.(CU) SNN.((U)

Some approaches to build the input PSD matrix include

= Uncorrelated Inputs: diagonal terms from measured pressure levels, off-diagonal terms are zero

= Diffuse Field: diagonal terms from measured pressure levels, off-diagonal terms from sinc function
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Incorrect loading can significantly degrade response predictions!



3 | Bayesian inference relies on Bayes’ Theorem to estimate the
unknown variables and also quantifies uncertainty

Bayes’ Theorem: p(a|D) < p(D|a) p(a)

Prior probability p(a): represents knowledge of unknown
variables before collecting any data

Likelihood (Evidence) p(D|a): represents the probability of
the measured data given a set of the unknown variables

Posterior probability p(a|D): represents the updated
probability of the unknown variables given the measured data

Pl \ Maximum a posteriori (MAP) estimate:

mode of the posterior distribution

Probability, f(x)

P(a) P(D|a)

Uncertainty estimate:
\\ variance of the posterior distribution

X

= Several recent studies utilize Bayesian inference for inverse problems in acoustics and structural dynamics:
Zhang (2012 JSV),Antoni (2012 JASA), Pereira (2015 AA), Aucejo (2016 MSSP), Faure (2017 MSSP)
=  This work follows the framework set forth by Pereira (2015 AA), but with several differences:
¢ Allows for inclusion of the measured input levels from microphone measurements
*  Estimates/quantifies the uncertainty of unmeasured structural locations
¢ Estimates PSDs when dealing with random signals



+ | Bayesian Inference leads to an estimate of the unknown forces
given the measured structural responses

Response at each freq. is a combination of deterministic and probabilistic components

X: Vector of the response measurements
H: Matrix of known transfer functions

X(w) = Hw)f(w) + n(w)

f: Vector of unknown forces

n: Vector of the measurement/model errors that is normally
distributed with zero mean and variance ¢

Likelihood function: Prior for the unknown forces:
p(x|f,02) ~ N.(Hf, 621) p(flof) ~ N:(0, 07 %)
- L (x— HD¥(x — H) L L prg-ig
=———exp|l-—x - X — = exp |——
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Apply Bayes’ Theorem to estimate forces:

p(f|x, 02, 0f) o p(x|f, a2) p(f|of) — ) ol 9
~ N.(f,.C;r) = Uncertainty: C; = o(H"H \Tzlif_l)
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MAP Estimate: f = (H/H +723-1) " H¥x
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Regularization Param: T2 = J—’Z‘
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Estimate the unmeasured responses:

p(x.|x, 0%, 07) = f p(x. [F)p(f|x, o, of )df MAP Estimate: %, = H,f

~ — . A A H
~ N, (ﬁ*,c** Uncertainty: C,, = H.CsrH,

Pereira et al. (2015), “Empirical Bayesian regularization of the inverse acoustic problem,” Applied Acoustics.
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s | For random signals, the Bayesian-based force estimation also
extends to power-spectral densities

Can work with measured response PSD matrix (S,., ) rather than any specific realization of x:

p(x|S,,) ~ N.(0,S,,) where S,.: Measured response PSD matrix

Can estimate input PSD matrix by marginalizing over all possible values of the x:

p(flo,o7) = [ p(fix, 62, P (xS dx
~ NC(OSff)
Input PSD Matrix Estimate:
Spr = [(HPH +2227%) T HA|s,, [ (HPH + TZZ]?l)_lHH]H + o2 (HHH + 12271)

Can estimate the unmeasured response PSD matrix by also marginalizing over all possible values of x:

62,0%) = j p(x. %, 02, 07 p(x[S ) dx
~ N, (0,§xx)

p(x.

Response PSD Matrix Estimate:




¢ | ldentifying the regularization parameter reduces to a one-

dimensional optimization problem

|dentify the hyperparameters ¢;2 and sz using a second application of Bayes’ Theorem:

1.2 ‘
. 0 2 2N 2 l—a=1,b=2S
: X|oZ,0F) = x|f, o flo7 )df 0
Marginal Likelihood: ~p(x|oZ,07) f p(xIf, 02)p(f|?) | —E
0.8+
Hyperparameter priors: 5 06
o
Noise variance: Input varlance
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Apply Bayes’ Theorem and marginalize out afz to obtain the posterior distribution of TZZ

N NONR+(Xn+(ZfN
o . H
u;S,,u; p 1 By
TZ X) X TZ (Xn+1 Z 1 VXx "+_f+ S +T2
P2 o |G| ) Tyt s ||( )
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Optimize 72 by minimizing the negative natural logarithm of this posterior distribution:

a

N,
+1 ap,+1 ar+1 2
‘ #2 = argmin nN In(z2) + (NO + = +-L >1n(6]?) + E In(s? +12) — N In(67)

R Ng Ng

a2 u; Sxxul
0f = E
f af +1 s + 7;2




|dentifying the regularization parameter reduces to a one-
dimensional optimization problem

“& 1000

(@)
o
o

600 -
400 |
200+

Objective function, J

] | . | s E—
10720 10710 10° 1010 1020

Regularization Parameter, 7

No
+1 ap,+1 ar+1 2 R
In(z?) + <No + nNR + fNR >ln(6f2) + lZl In(s? +12) — N—Rln(afz)

R
Zu Hg xul
f— af+1 s? s




s I Numerical simulation of a direct-field acoustic test provides

initial validation

Direct-field acoustic test (DFAT) setup:

= Used 4 speaker clusters to excite the cylinder with
uncorrelated white noise

* Defined structural inputs as point forces acting at the
center surface patches using the distributed pressures

Simulated measurements:

= |8 accels located at 6 circumferential locations and 3
axial locations used for estimation procedure

" |2 microphones located at 4 circumferential locations
and 3 axial locations used for tuning parameters of the
O'fz prior

* Time-domain measurements polluted by measurement
noise with a SNR =15 dB

Four cases examined:

DFAT Simulation Setup

Acoustic Domain | Structural Domain
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I) af = 1 (Small weighting of mic levels), £, = I (Uncorrelated inputs)
2) ar = 100 (Larger weighting of mic levels), ¥ = I (Uncorrelated inputs)
3) ar = 1 (Small weighting of mic levels), X = Correlated in axial, diffuse around circumference

4) ar = 100 (Larger weighting of mic levels), X = Correlated in axial, diffuse around circumference




9

Proposed procedure able to estimate the input force PSDs

Case |: ar = 1 (Small weighting of mic levels)
¥ = I (Uncorrelated inputs)
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10

Proposed procedure able to estimate the input force PSDs

g of mic levels)

Case I: ay Case 2: af = 100 (Larger weighting of mic levels)

¥ = I (Uncorrelated inputs)
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i1 I Proposed procedure able to estimate the input force PSDs

Casel: 9 Case 3: ay = 1 (Small weighting of mic levels) vels)
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2 | Proposed procedure able to estimate the input force PSDs

Case 1: 4 Case 4: ay = 100 (Larger weighting of mic levels)
¥ = Correlated along axis, diffuse around circumference
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Proposed procedure accurately reproduces the structural
response, even at unmeasured locations

Case I:
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4+ | Proposed procedure accurately reproduces the structural
response, even at unmeasured locations

Case 2: ar = 100 (Larger weighting of mic levels)  levels)
X = I (Uncorrelated inputs)
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s | Proposed procedure accurately reproduces the structural
response, even at unmeasured locations

case 1:{ Case 3: af = 1 (Small weighting of mic levels  levels)
¥ = Correlated along axis, diffuse around circumference
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s | Proposed procedure accurately reproduces the structural
response, even at unmeasured locations

- levels)

Case 4: ar = 100 (Larger weighting of mic levels)
¥ = Correlated along axis, diffuse around circumference
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7 | Bayesian-based approach able predict inputs that better
reproduce the measured response during vibroacoustic testing

Load estimation strategy developed utilizing
Bayesian inference

* Provides point estimates of the unknown
forces/unmeasured responses and quantifies uncertainty

= Contains an inherent regularization mechanism in cases of
ill-conditioned inversions

= Enables the incorporation of the pressure levels measured
during testing through hyperparameter priors

= Extends to PSDs for random inputs/outputs

Numerical simulations offered initial
validation

= Consisted of speakers exciting a cylindrical test article in a
direct-field configuration

" Predicted the levels of the applied loads and also the
spatial shape

= Reproduced the test article’s response, even at
unmeasured locations

Bayesian Inference

P(alD)

P(a) P(Dla)

Probability, f(x)

X

DFAT Simulation Setup

Acoustic Domain | Structural Domain

Response PSDs
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s I Ongoing work centers on experimentally validating the
proposed load-identification strategy

Reverb-Chamber Test Setup

Perform vibroacoustic test to validate the
proposed load estimation strategy:

= Excite the test article with various pressure fields: diffuse,
diffuse+direct, direct

= Build FRFs using a calibrated FE model or a hybrid approach
where natural freqgs.and damping are from modal test and
shapes are from FE model

Further refine load estimation strategy:

* Determine sensitivity to incorrect model
parameters/incorporate some model updating to better
match experimental data

* Incorporate local priors for the unknown force that should
offer flexibility for fields with non-uniform pressure levels

= Parameterize the spatial correlation matrix (e.g., using a
Gaussian kernel) to better match the field



s | Bayesian-based approach able predict inputs that better
reproduce the measured response during vibroacoustic testing

Load estimation strategy developed utilizing
Bayesian inference

* Provides point estimates of the unknown
forces/unmeasured responses and quantifies uncertainty

= Contains an inherent regularization mechanism in cases of
ill-conditioned inversions

= Enables the incorporation of the pressure levels measured
during testing through hyperparameter priors

= Extends to PSDs for random inputs/outputs

Numerical simulations offered initial
validation

= Consisted of speakers exciting a cylindrical test article in a
direct-field configuration

" Predicted the levels of the applied loads and also the
spatial shape

= Reproduced the test article’s response, even at
unmeasured locations

Bayesian Inference

P(alD)

P(a) P(Dla)

Probability, f(x)

X

DFAT Simulation Setup

Acoustic Domain | Structural Domain

Response PSDs
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20 | Extra slides...




21 I Current approaches to correlate models to vibroacoustic
experiments incorporate idealized load configurations

For the random field generated during vibroacoustic testing, model/test correlation requires
identifying the acoustic pressure power-spectral density (PSD) matrix to generate the
response:

Response PSD: S, (w) = Hyr(w)Sss(w) Hyp(w)?

Su(w) - Siy(w)
Input PSD: S;/(w) = E[f(w)f(w)"] = : " :

SNl.((U) SNN.((U)

A common approach utilizes an ideal diffuse field with a spatial correlation
approximated by a sinc function:

1

o
™

sink ((U)Tij
k(w)ri;

k(w): wave number

Rij(w) =

o o o
N A o

Correlation Coefficient, R
o

r;j: relative distance between

S
)

input i and j

o
i

2 3 4r 5 6
Nondimensional Distance, kr

o

5;,(@) = Ry (@) Jsixw)s,-,- (@) ~ Ri;(@)So(®)




2 | Physical testing can lead to deviations from this idealized field

due to scattering effects and test setup factors

DFAT Simulation Setup

Direct-field acoustic test (DFAT) setup:

- Used 4 speaker clusters to excite the cylinder with
uncorrelated white noise

- Defined structural inputs as point forces acting at the
center surface patches using the distributed pressures

Input Force PSDs
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Incorrect load configuration can significantly degrade response predictions!



2 | Bayesian-based approach contains an intrinsic regularization in
the case of an ill-conditioned inversion

Return to the force estimates:

MAP Estimate:f = (H¥H 4472;:7—491#1_,_,

ﬁ’—

Uncertainty: C;r = o5 (H?H -HTZ =an - —>

Regularization Param:

Perform a singular-value decomposition:

Hz}/ 2 — ysvH

The regularized force estimates are
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