

A Bayesian Approach for Identifying the Spatial Correlation of Acoustic Loads During Vibroacoustic Testing

AUTHORS:

Garrett K. Lopp and Ryan Schultz

Sandia National Laboratories

PRESENTER:

Garrett K. Lopp

Correlating model and experiment requires the correct loads

For the random field generated during vibroacoustic testing, model/test correlation requires identifying the acoustic pressure power-spectral density (PSD) matrix to generate the response:

Response PSD:

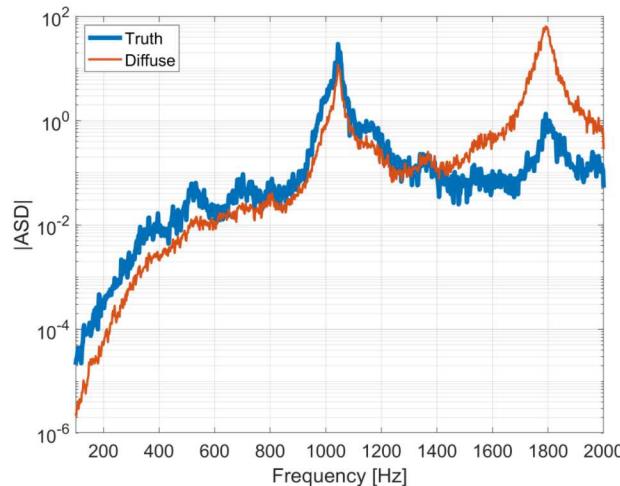
$$\mathbf{S}_{xx}(\omega) = \mathbf{H}_{xf}(\omega) \boxed{\mathbf{S}_{ff}(\omega)} \mathbf{H}_{xf}(\omega)^H$$

Input PSD:

$$\mathbf{S}_{ff}(\omega) = \begin{bmatrix} S_{11}(\omega) & \dots & S_{1N}(\omega) \\ \vdots & \ddots & \vdots \\ S_{N1}(\omega) & \dots & S_{NN}(\omega) \end{bmatrix}$$

Some approaches to build the input PSD matrix include

- Uncorrelated Inputs: diagonal terms from measured pressure levels, off-diagonal terms are zero
- Diffuse Field: diagonal terms from measured pressure levels, off-diagonal terms from *sinc* function



Incorrect loading can significantly degrade response predictions!

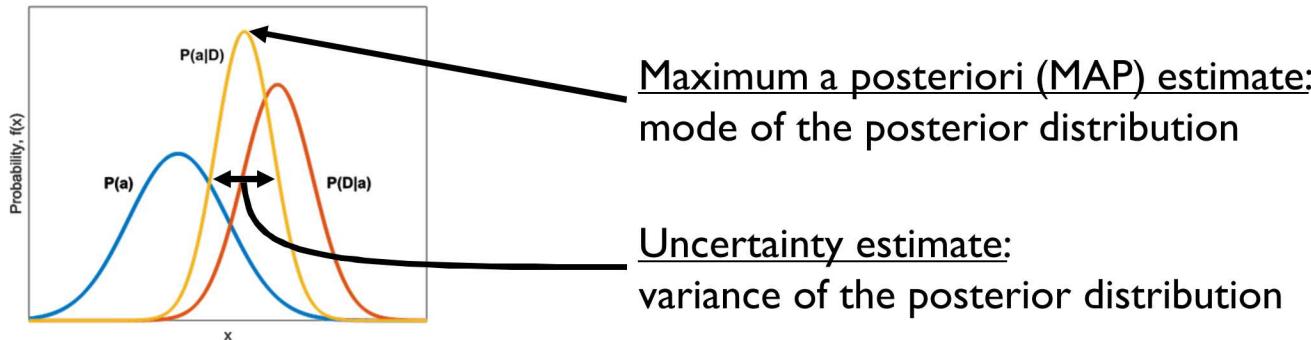
Bayesian inference relies on Bayes' Theorem to estimate the unknown variables and also quantifies uncertainty

Bayes' Theorem: $p(a|D) \propto p(D|a) p(a)$

Prior probability $p(a)$: represents knowledge of unknown variables before collecting any data

Likelihood (Evidence) $p(D|a)$: represents the probability of the measured data given a set of the unknown variables

Posterior probability $p(a|D)$: represents the updated probability of the unknown variables given the measured data



- Several recent studies utilize Bayesian inference for inverse problems in acoustics and structural dynamics:
Zhang (2012 JSV), Antoni (2012 JASA), Pereira (2015 AA), Aucejo (2016 MSSP), Faure (2017 MSSP)
- This work follows the framework set forth by Pereira (2015 AA), but with several differences:
 - Allows for inclusion of the measured input levels from microphone measurements
 - Estimates/quantifies the uncertainty of unmeasured structural locations
 - Estimates PSDs when dealing with random signals

Bayesian Inference leads to an estimate of the unknown forces given the measured structural responses

Response at each freq. is a combination of deterministic and probabilistic components

$$\mathbf{x}(\omega) = \mathbf{H}(\omega)\mathbf{f}(\omega) + \mathbf{n}(\omega)$$

\mathbf{x} : Vector of the response measurements

\mathbf{H} : Matrix of known transfer functions

\mathbf{f} : Vector of unknown forces

\mathbf{n} : Vector of the measurement/model errors that is normally distributed with zero mean and variance σ_n^2

Likelihood function:

$$p(\mathbf{x}|\mathbf{f}, \sigma_n^2) \sim N_c(\mathbf{H}\mathbf{f}, \sigma_n^2 \mathbf{I}) \\ = \frac{1}{\pi^{N_o} (\sigma_n^2)^{N_o}} \exp \left[-\frac{1}{\sigma_n^2} (\mathbf{x} - \mathbf{H}\mathbf{f})^H (\mathbf{x} - \mathbf{H}\mathbf{f}) \right]$$

Prior for the unknown forces:

$$p(\mathbf{f}|\sigma_f^2) \sim N_c(\mathbf{0}, \sigma_f^2 \Sigma_f) \\ = \frac{1}{\pi^{N_i} (\sigma_f^2)^{N_i} |\Sigma_f|} \exp \left[-\frac{1}{\sigma_f^2} \mathbf{f}^H \Sigma_f^{-1} \mathbf{f} \right]$$

Apply Bayes' Theorem to estimate forces:

$$p(\mathbf{f}|\mathbf{x}, \sigma_n^2, \sigma_f^2) \propto p(\mathbf{x}|\mathbf{f}, \sigma_n^2) p(\mathbf{f}|\sigma_f^2) \\ \sim N_c(\hat{\mathbf{f}}, \hat{\mathbf{C}}_{ff})$$

MAP Estimate: $\hat{\mathbf{f}} = (\mathbf{H}^H \mathbf{H} + \tau^2 \Sigma_f^{-1})^{-1} \mathbf{H}^H \mathbf{x}$

Uncertainty: $\hat{\mathbf{C}}_{ff} = \sigma_n^2 (\mathbf{H}^H \mathbf{H} + \tau^2 \Sigma_f^{-1})^{-1}$

Regularization Param: $\tau^2 = \frac{\sigma_n^2}{\sigma_f^2}$

Estimate the unmeasured responses:

$$p(\mathbf{x}_*|\mathbf{x}, \sigma_n^2, \sigma_f^2) = \int p(\mathbf{x}_*|\mathbf{f}) p(\mathbf{f}|\mathbf{x}, \sigma_n^2, \sigma_f^2) d\mathbf{f} \\ \sim N_c(\hat{\mathbf{x}}_*, \hat{\mathbf{C}}_{**})$$

MAP Estimate: $\hat{\mathbf{x}}_* = \mathbf{H}_* \hat{\mathbf{f}}$

Uncertainty: $\hat{\mathbf{C}}_{**} = \mathbf{H}_* \hat{\mathbf{C}}_{ff} \mathbf{H}_*^H$

For random signals, the Bayesian-based force estimation also extends to power-spectral densities

Can work with measured response PSD matrix (\mathbf{S}_{xx}) rather than any specific realization of \mathbf{x} :

$$p(\mathbf{x}|\mathbf{S}_{xx}) \sim N_c(0, \mathbf{S}_{xx}) \quad \text{where} \quad \mathbf{S}_{xx}: \text{Measured response PSD matrix}$$

Can estimate input PSD matrix by marginalizing over all possible values of the \mathbf{x} :

$$\begin{aligned} p(\mathbf{f}|\sigma_n^2, \sigma_f^2) &= \int p(\mathbf{f}|\mathbf{x}, \sigma_n^2, \sigma_f^2) p(\mathbf{x}|\mathbf{S}_{xx}) d\mathbf{x} \\ &\sim N_c(0, \hat{\mathbf{S}}_{ff}) \end{aligned}$$

Input PSD Matrix Estimate:

$$\hat{\mathbf{S}}_{ff} = \left[(\mathbf{H}^H \mathbf{H} + \tau^2 \boldsymbol{\Sigma}_f^{-1})^{-1} \mathbf{H}^H \right] \mathbf{S}_{xx} \left[(\mathbf{H}^H \mathbf{H} + \tau^2 \boldsymbol{\Sigma}_f^{-1})^{-1} \mathbf{H}^H \right]^H + \sigma_n^2 (\mathbf{H}^H \mathbf{H} + \tau^2 \boldsymbol{\Sigma}_f^{-1})^{-1}$$

Can estimate the unmeasured response PSD matrix by also marginalizing over all possible values of \mathbf{x} :

$$\begin{aligned} p(\mathbf{x}_*|\sigma_n^2, \sigma_f^2) &= \int p(\mathbf{x}_*|\mathbf{x}, \sigma_n^2, \sigma_f^2) p(\mathbf{x}|\mathbf{S}_{xx}) d\mathbf{x} \\ &\sim N_c(0, \hat{\mathbf{S}}_{xx}) \end{aligned}$$

Response PSD Matrix Estimate:

$$\hat{\mathbf{S}}_{**} = \mathbf{H}_* \hat{\mathbf{S}}_{ff} \mathbf{H}_*^H$$

Identifying the regularization parameter reduces to a one-dimensional optimization problem

Identify the hyperparameters σ_n^2 and σ_f^2 using a second application of Bayes' Theorem:

Marginal Likelihood: $p(\mathbf{x}|\sigma_n^2, \sigma_f^2) = \int p(\mathbf{x}|\mathbf{f}, \sigma_n^2)p(\mathbf{f}|\sigma_f^2)d\mathbf{f}$

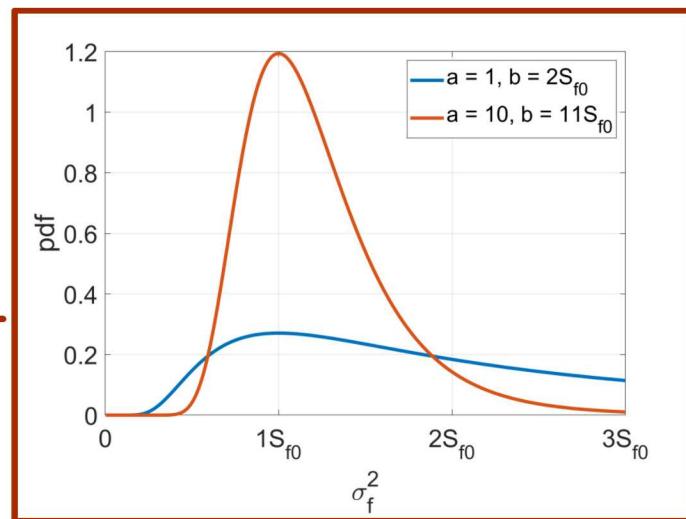
Hyperparameter priors:

Noise variance:

$$p(\sigma_n^2) \propto \frac{1}{(\sigma_n^2)^{\alpha_n+1}} \exp\left(-\frac{\beta_n}{\sigma_n^2}\right)$$

Input variance:

$$p(\sigma_f^2) \propto \frac{1}{(\sigma_f^2)^{\alpha_f+1}} \exp\left(-\frac{\beta_f}{\sigma_f^2}\right)$$



Apply Bayes' Theorem and marginalize out σ_f^2 to obtain the posterior distribution of τ^2 :

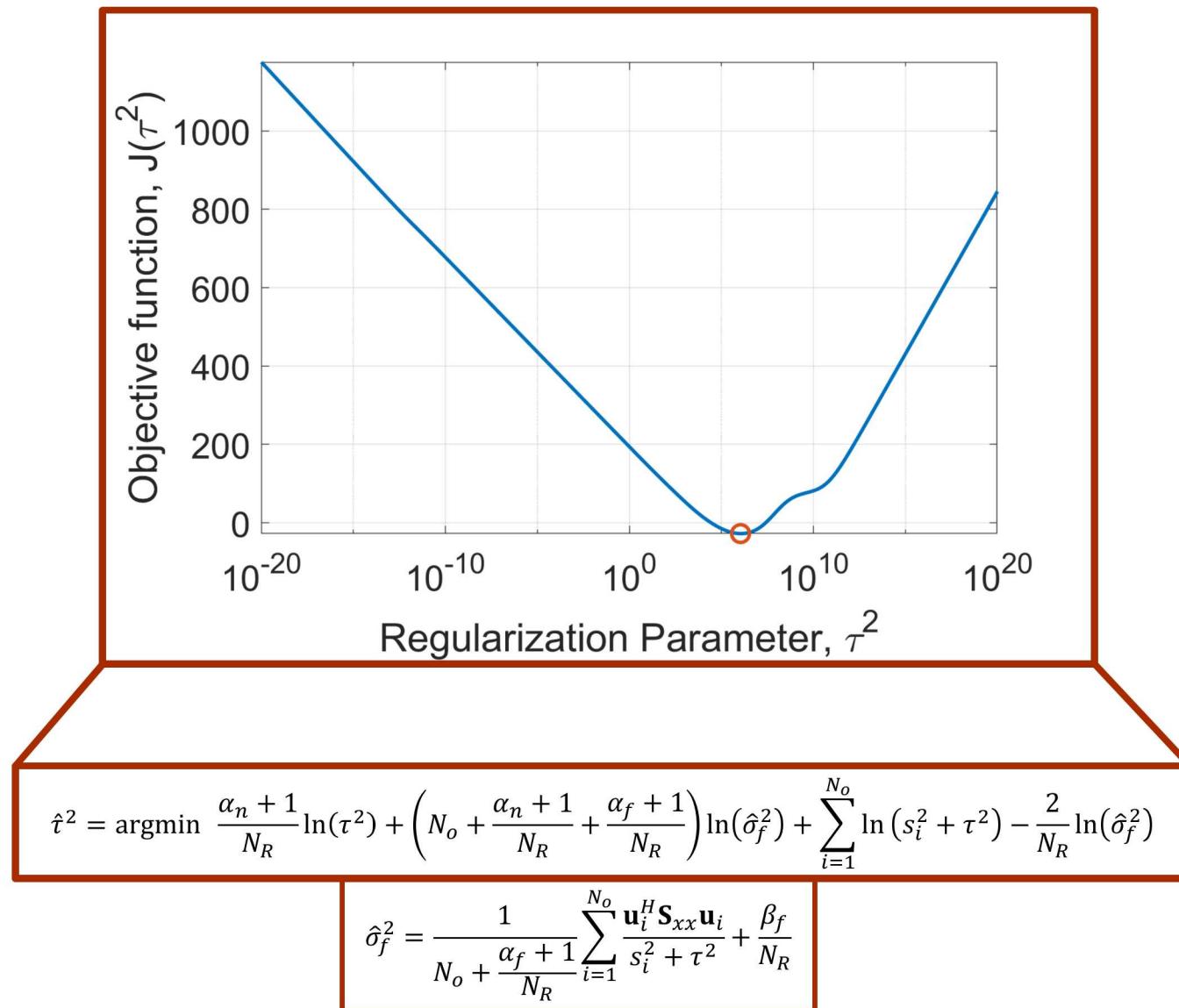
$$p(\tau^2|\mathbf{x}) \propto \left[(\tau^2)^{\alpha_n+1} \left(\sum_{i=1}^{N_o} \frac{\mathbf{u}_i^H \mathbf{S}_{xx} \mathbf{u}_i}{s_i^2 + \tau^2} + \frac{\beta_f}{N_R} + \frac{1}{\tau^2} \frac{\beta_n}{N_R} \right)^{N_o N_R + \alpha_n + \alpha_f} \prod_{i=1}^{N_o} (s_i^2 + \tau^2)^2 \right]^{-1}$$

Optimize τ^2 by minimizing the negative natural logarithm of this posterior distribution:

$$\hat{\tau}^2 = \operatorname{argmin} \frac{\alpha_n + 1}{N_R} \ln(\tau^2) + \left(N_o + \frac{\alpha_n + 1}{N_R} + \frac{\alpha_f + 1}{N_R} \right) \ln(\hat{\sigma}_f^2) + \sum_{i=1}^{N_o} \ln(s_i^2 + \tau^2) - \frac{2}{N_R} \ln(\hat{\sigma}_f^2)$$

$$\hat{\sigma}_f^2 = \frac{1}{N_o + \frac{\alpha_f + 1}{N_R}} \sum_{i=1}^{N_o} \frac{\mathbf{u}_i^H \mathbf{S}_{xx} \mathbf{u}_i}{s_i^2 + \tau^2} + \frac{\beta_f}{N_R}$$

Identifying the regularization parameter reduces to a one-dimensional optimization problem



Numerical simulation of a direct-field acoustic test provides initial validation

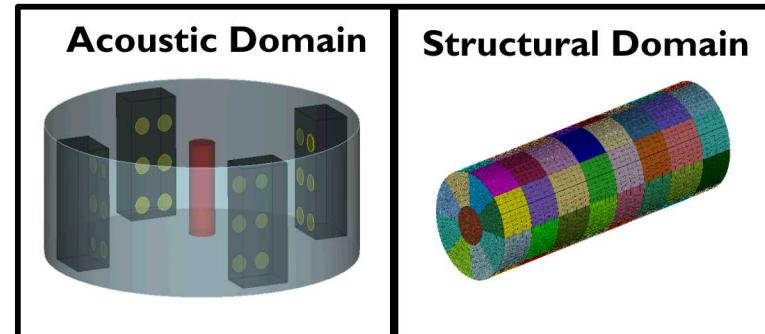
Direct-field acoustic test (DFAT) setup:

- Used 4 speaker clusters to excite the cylinder with uncorrelated white noise
- Defined structural inputs as point forces acting at the center surface patches using the distributed pressures

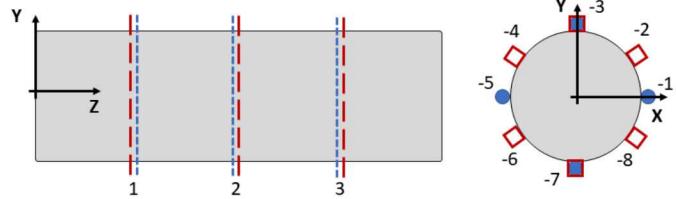
Simulated measurements:

- 18 accels located at 6 circumferential locations and 3 axial locations used for estimation procedure
- 12 microphones located at 4 circumferential locations and 3 axial locations used for tuning parameters of the σ_f^2 prior
- Time-domain measurements polluted by measurement noise with a SNR = 15 dB

DFAT Simulation Setup



Measurement Locations

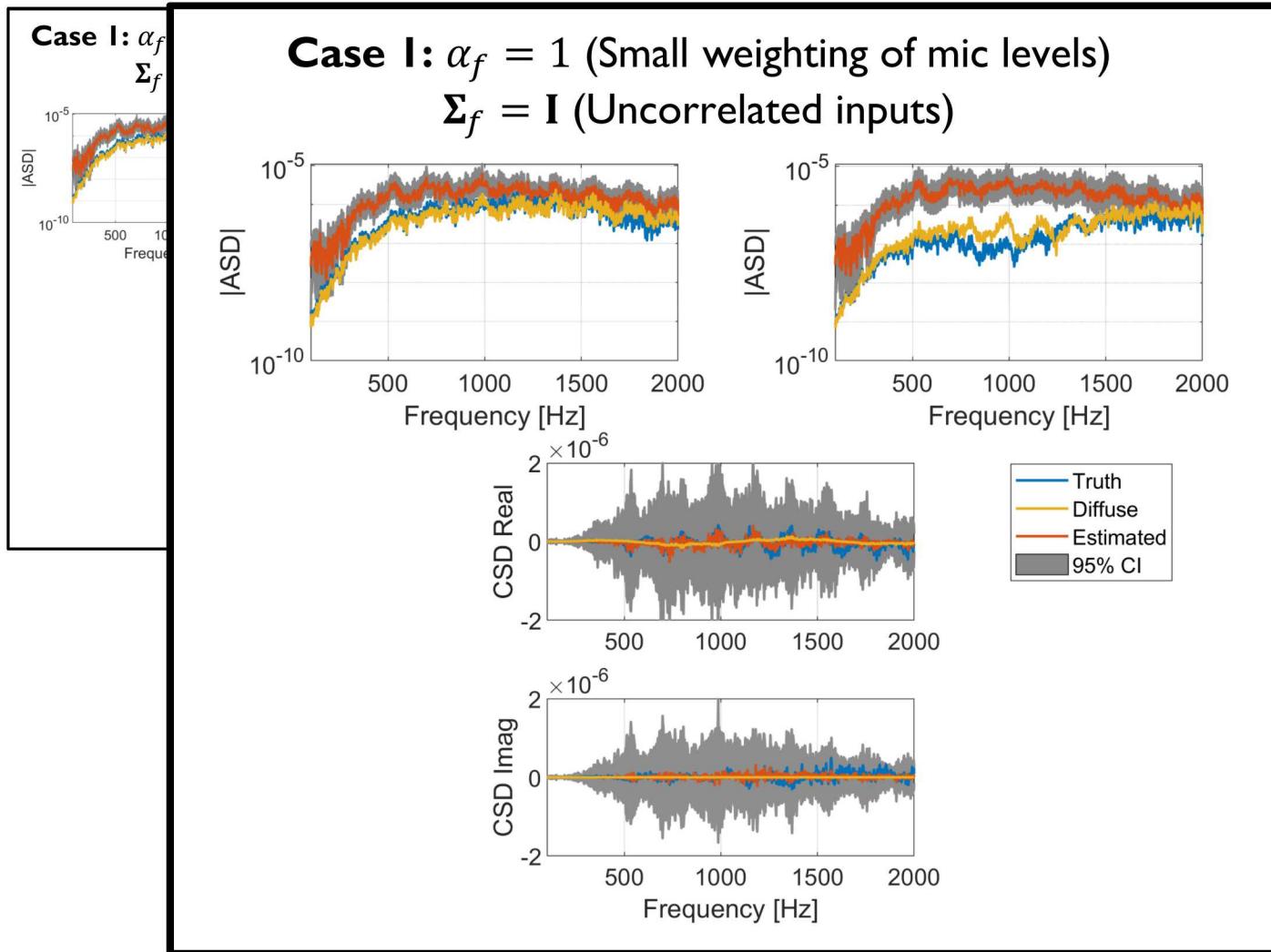


Accelerometers
Microphones

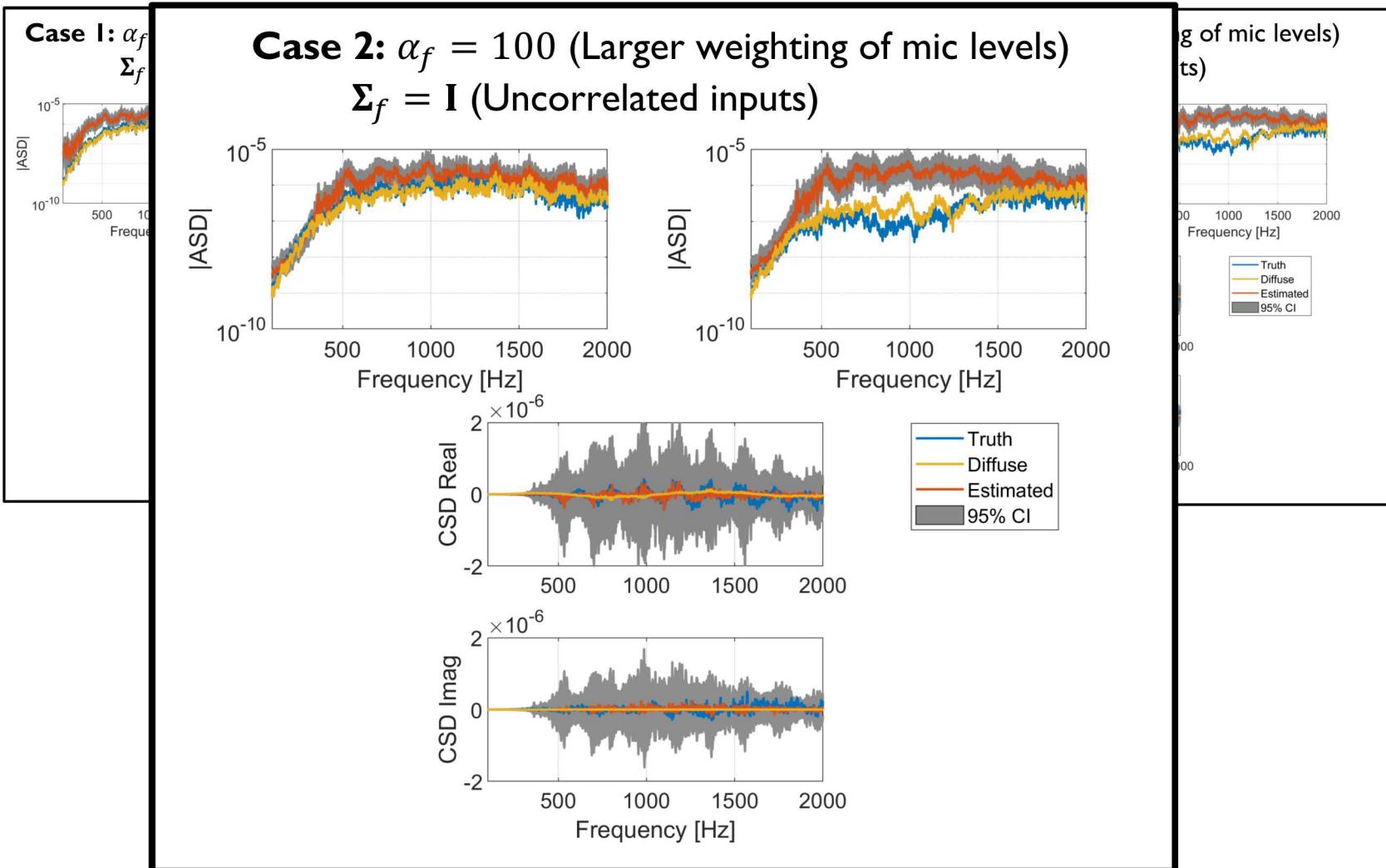
Four cases examined:

- $\alpha_f = 1$ (Small weighting of mic levels), $\Sigma_f = \mathbf{I}$ (Uncorrelated inputs)
- $\alpha_f = 100$ (Larger weighting of mic levels), $\Sigma_f = \mathbf{I}$ (Uncorrelated inputs)
- $\alpha_f = 1$ (Small weighting of mic levels), Σ_f = Correlated in axial, diffuse around circumference
- $\alpha_f = 100$ (Larger weighting of mic levels), Σ_f = Correlated in axial, diffuse around circumference

Proposed procedure able to estimate the input force PSDs

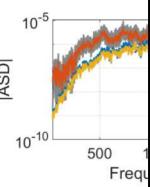


Proposed procedure able to estimate the input force PSDs



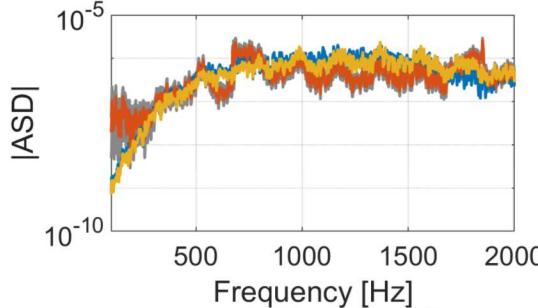
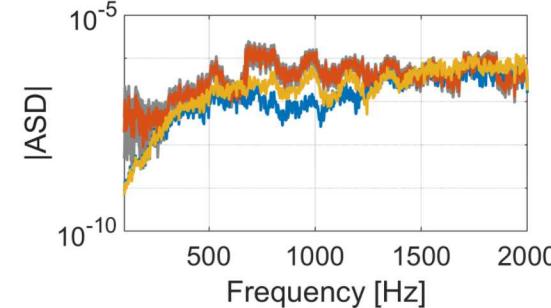
Proposed procedure able to estimate the input force PSDs

Case 1: $\alpha_f = 1$
 $\Sigma_f = \text{Correlated along axis}$

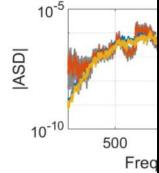
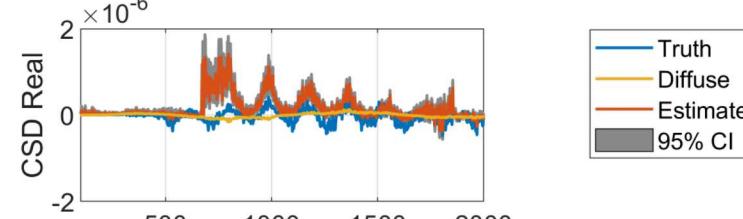
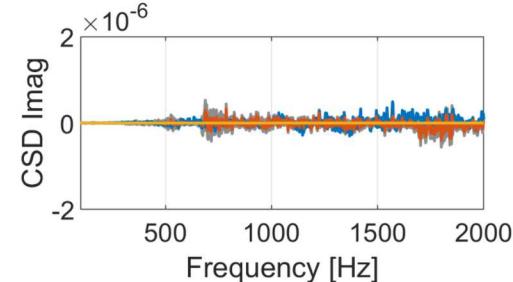
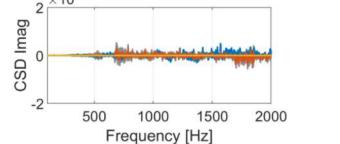


Case 3: $\alpha_f = 1$ (Small weighting of mic levels)

$\Sigma_f = \text{Correlated along axis, diffuse around circumference}$



Case 3: $\alpha_f = 1$
 $\Sigma_f = \text{Correlated along axis}$



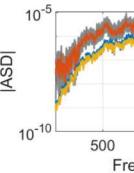
levels)

0 2000

Correlated
CI

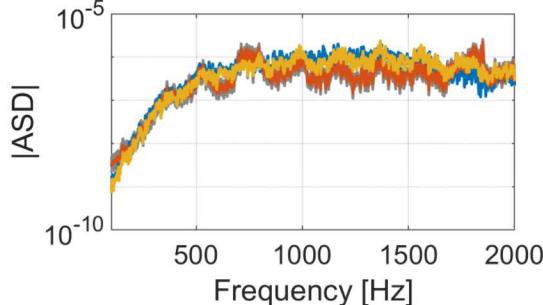
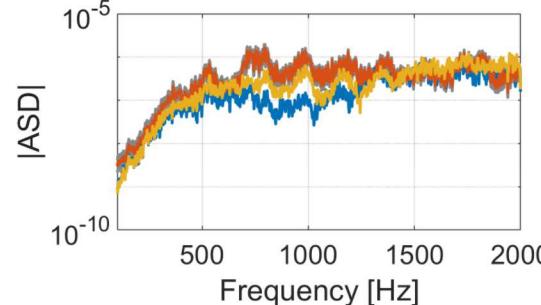
Proposed procedure able to estimate the input force PSDs

Case 1: $\alpha_f = 1$
 $\Sigma_f =$

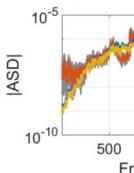
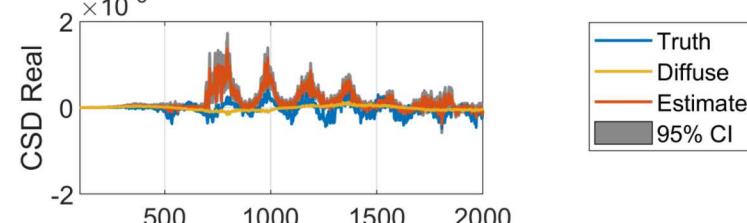
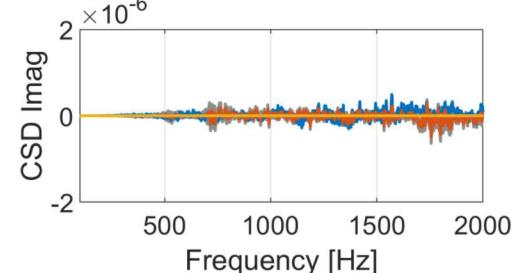
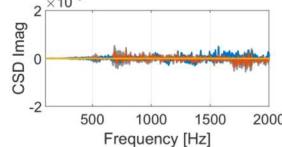
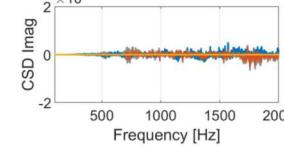


Case 4: $\alpha_f = 100$ (Larger weighting of mic levels)

Σ_f = Correlated along axis, diffuse around circumference

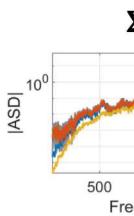


Case 3: $\alpha_f = 100$
 $\Sigma_f =$

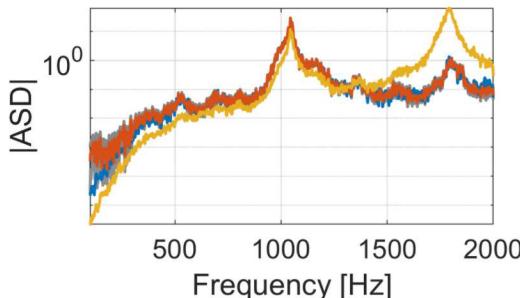
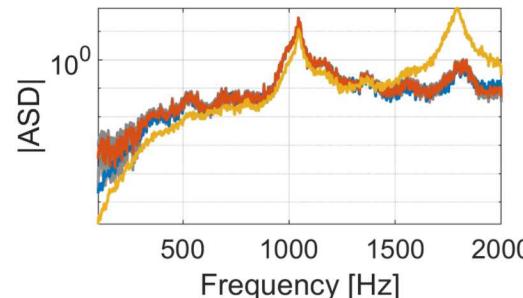
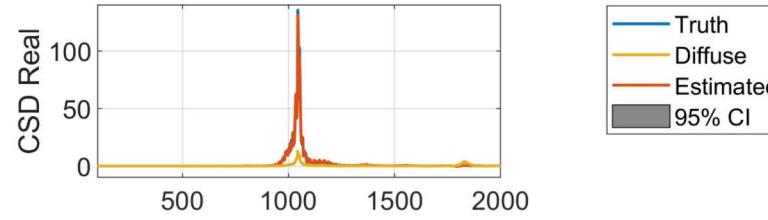
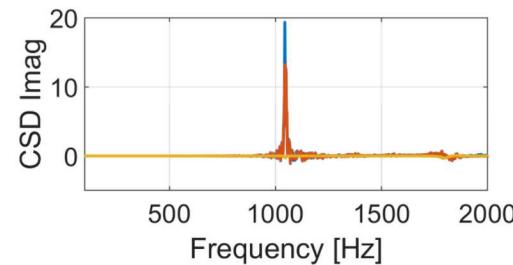


Proposed procedure accurately reproduces the structural response, even at unmeasured locations

Case I: $\alpha_f = 1$

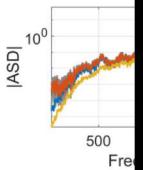


Case I: $\alpha_f = 1$ (Small weighting of mic levels)
 $\Sigma_f = \mathbf{I}$ (Uncorrelated inputs)

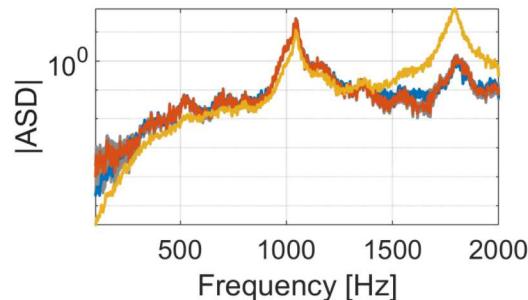
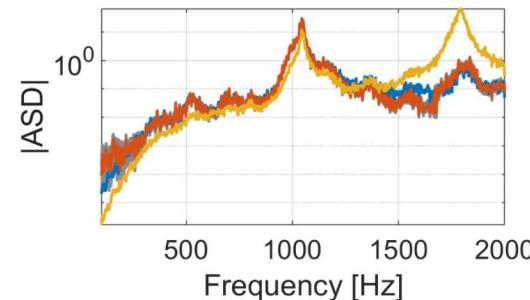
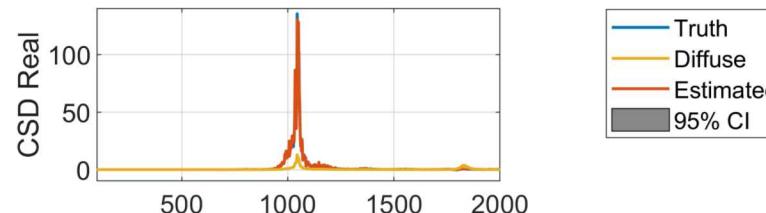
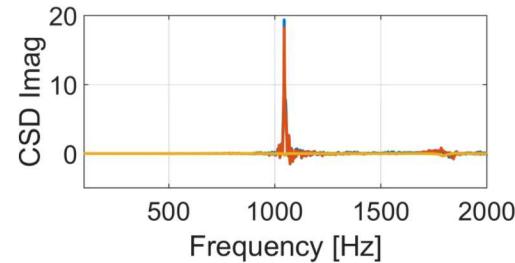


Proposed procedure accurately reproduces the structural response, even at unmeasured locations

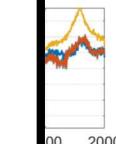
Case 1: $\alpha_f = 10$



Case 2: $\alpha_f = 100$ (Larger weighting of mic levels)
 $\Sigma_f = \mathbf{I}$ (Uncorrelated inputs)



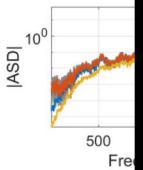
mic levels)



with
use
estimated
95% CI

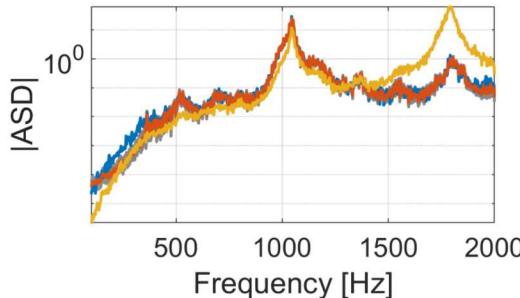
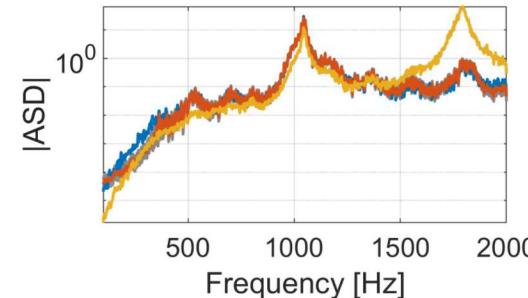
Proposed procedure accurately reproduces the structural response, even at unmeasured locations

Case 1: $\alpha_f = 0$

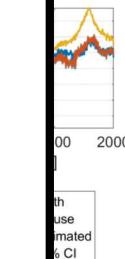


Case 3: $\alpha_f = 1$ (Small weighting of mic levels)

Σ_f = Correlated along axis, diffuse around circumference

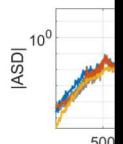
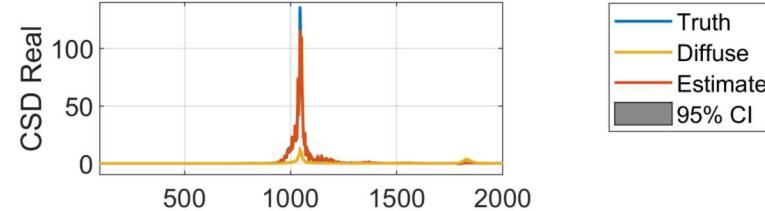
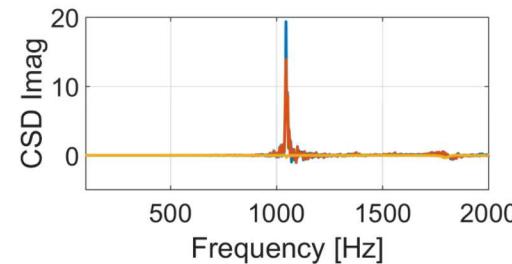
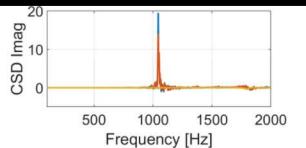


mic levels)



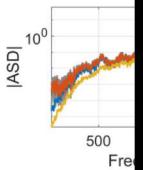
Case 3: $\alpha_f = 1$

$\Sigma_f = 0$



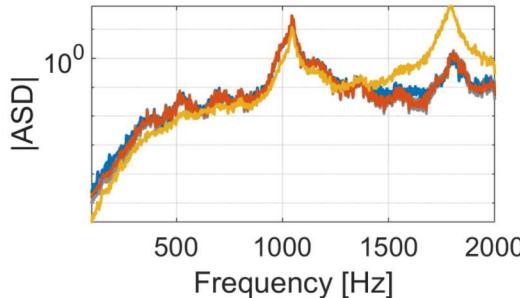
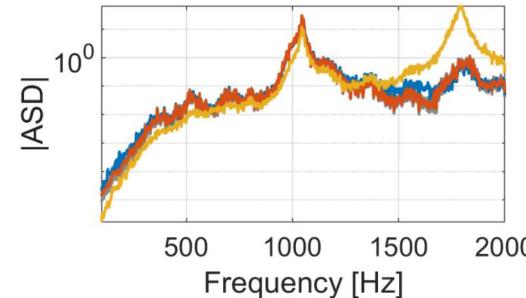
Proposed procedure accurately reproduces the structural response, even at unmeasured locations

Case 1: $\alpha_f = 1$



Case 4: $\alpha_f = 100$ (Larger weighting of mic levels)

Σ_f = Correlated along axis, diffuse around circumference

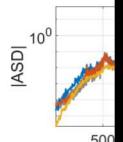
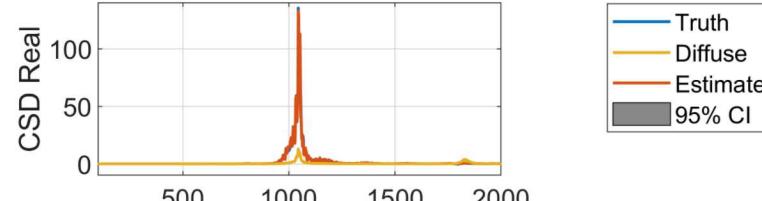


mic levels)

with
use
estimated
% CI

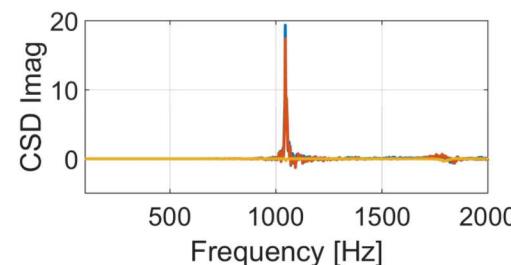
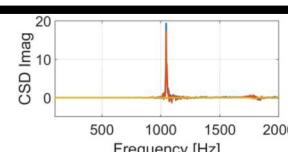
Case 3: $\alpha_f = 1$

$\Sigma_f = 0$



— Truth
— Diffuse
— Estimated
— 95% CI

els)
ound circumf.



with
use
estimated
% CI

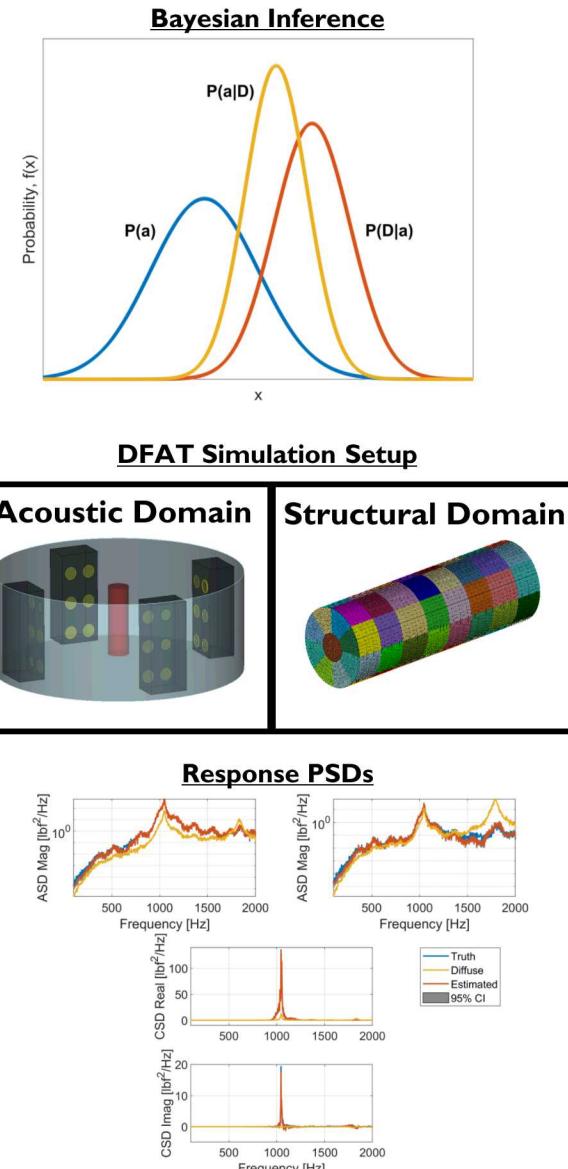
Bayesian-based approach able predict inputs that better reproduce the measured response during vibroacoustic testing

Load estimation strategy developed utilizing Bayesian inference

- Provides point estimates of the unknown forces/unmeasured responses and quantifies uncertainty
- Contains an inherent regularization mechanism in cases of ill-conditioned inversions
- Enables the incorporation of the pressure levels measured during testing through hyperparameter priors
- Extends to PSDs for random inputs/outputs

Numerical simulations offered initial validation

- Consisted of speakers exciting a cylindrical test article in a direct-field configuration
- Predicted the levels of the applied loads and also the spatial shape
- Reproduced the test article's response, even at unmeasured locations



Ongoing work centers on experimentally validating the proposed load-identification strategy

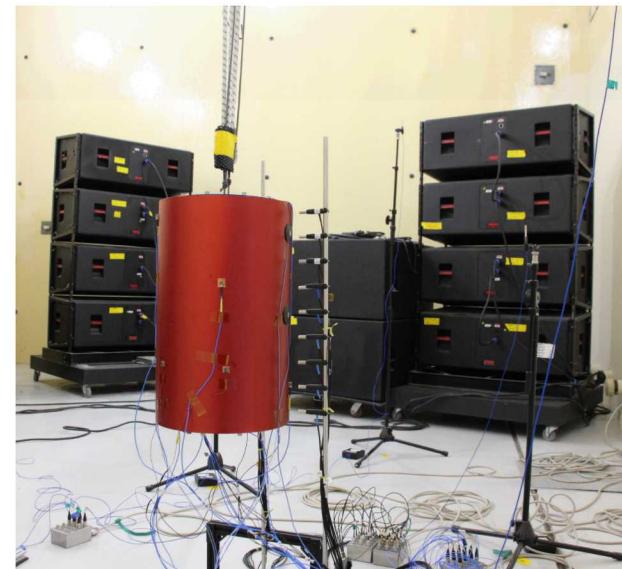
Perform vibroacoustic test to validate the proposed load estimation strategy:

- Excite the test article with various pressure fields: diffuse, diffuse+direct, direct
- Build FRFs using a calibrated FE model or a hybrid approach where natural freqs. and damping are from modal test and shapes are from FE model

Further refine load estimation strategy:

- Determine sensitivity to incorrect model parameters/incorporate some model updating to better match experimental data
- Incorporate local priors for the unknown force that should offer flexibility for fields with non-uniform pressure levels
- Parameterize the spatial correlation matrix (e.g., using a Gaussian kernel) to better match the field

Reverb-Chamber Test Setup



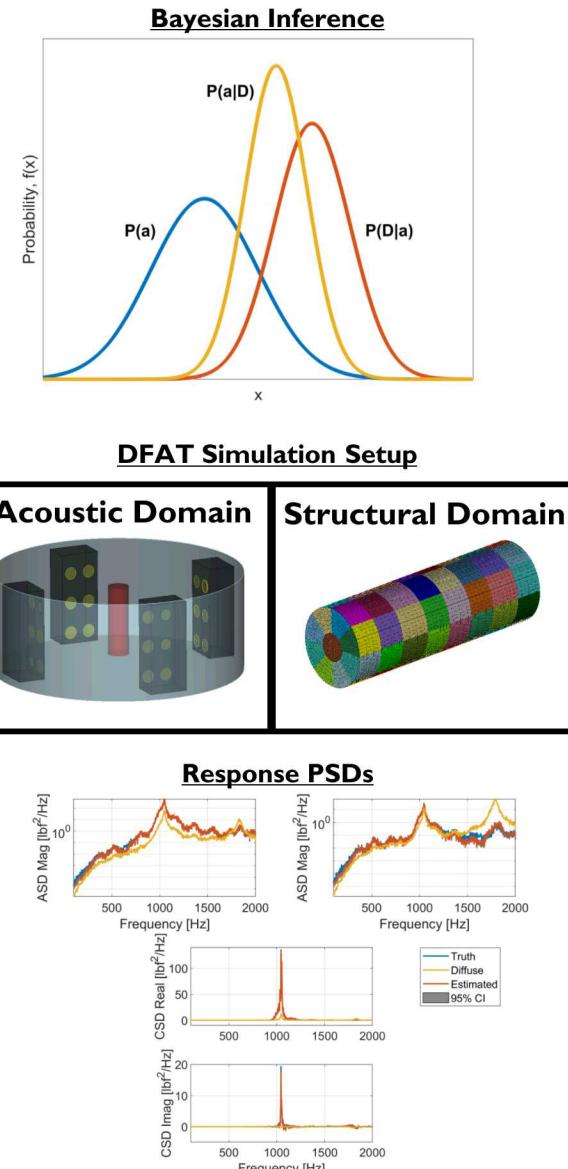
Bayesian-based approach able predict inputs that better reproduce the measured response during vibroacoustic testing

Load estimation strategy developed utilizing Bayesian inference

- Provides point estimates of the unknown forces/unmeasured responses and quantifies uncertainty
- Contains an inherent regularization mechanism in cases of ill-conditioned inversions
- Enables the incorporation of the pressure levels measured during testing through hyperparameter priors
- Extends to PSDs for random inputs/outputs

Numerical simulations offered initial validation

- Consisted of speakers exciting a cylindrical test article in a direct-field configuration
- Predicted the levels of the applied loads and also the spatial shape
- Reproduced the test article's response, even at unmeasured locations



Extra slides...

Current approaches to correlate models to vibroacoustic experiments incorporate idealized load configurations

For the random field generated during vibroacoustic testing, model/test correlation requires identifying the acoustic pressure power-spectral density (PSD) matrix to generate the response:

$$\textbf{Response PSD: } \mathbf{S}_{xx}(\omega) = \mathbf{H}_{xf}(\omega) \mathbf{S}_{ff}(\omega) \mathbf{H}_{xf}(\omega)^H$$

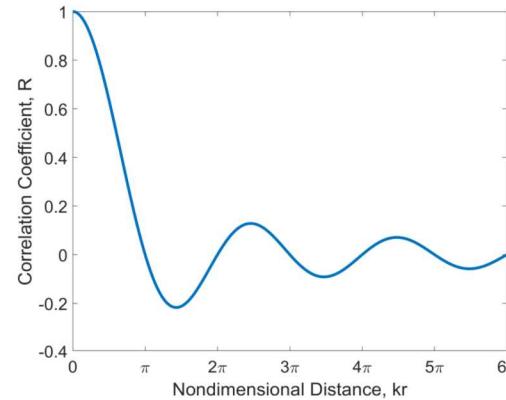
$$\textbf{Input PSD: } \mathbf{S}_{ff}(\omega) = \mathbb{E}[\mathbf{f}(\omega)\mathbf{f}(\omega)^H] = \begin{bmatrix} S_{11}(\omega) & \cdots & S_{1N}(\omega) \\ \vdots & \ddots & \vdots \\ S_{N1}(\omega) & \cdots & S_{NN}(\omega) \end{bmatrix}$$

A common approach utilizes an ideal diffuse field with a spatial correlation approximated by a sinc function:

$$R_{ij}(\omega) = \frac{\sin k(\omega)r_{ij}}{k(\omega)r_{ij}}$$

$k(\omega)$: wave number

r_{ij} : relative distance between input i and j



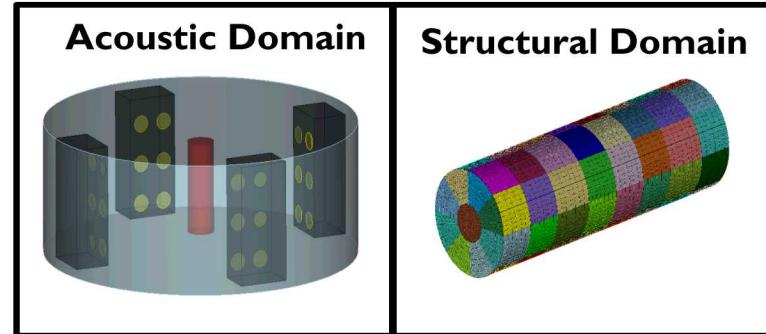
$$S_{ij}(\omega) = R_{ij}(\omega) \sqrt{S_{ii}(\omega)S_{jj}(\omega)} \approx R_{ij}(\omega)S_0(\omega)$$

Physical testing can lead to deviations from this idealized field due to scattering effects and test setup factors

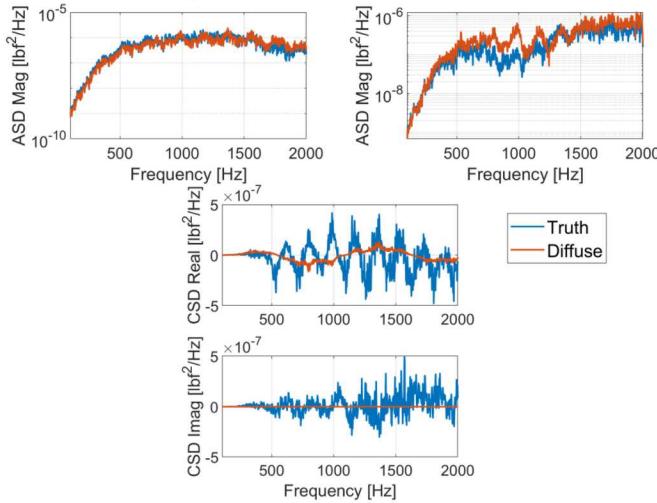
DFAT Simulation Setup

Direct-field acoustic test (DFAT) setup:

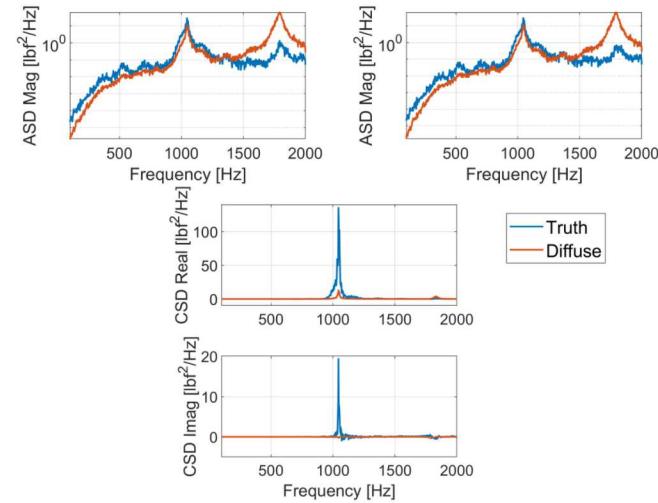
- Used 4 speaker clusters to excite the cylinder with uncorrelated white noise
- Defined structural inputs as point forces acting at the center surface patches using the distributed pressures



Input Force PSDs



Response PSDs



Incorrect load configuration can significantly degrade response predictions!

Bayesian-based approach contains an intrinsic regularization in the case of an ill-conditioned inversion

Return to the force estimates:

$$\text{MAP Estimate: } \hat{\mathbf{f}} = (\mathbf{H}^H \mathbf{H} + \tau^2 \Sigma_f^{-1})^{-1} \mathbf{H}^H \mathbf{x}$$

$$\text{Uncertainty: } \hat{\mathbf{C}}_{ff} = \sigma_n^2 (\mathbf{H}^H \mathbf{H} + \tau^2 \Sigma_f^{-1})^{-1}$$

Regularization Param:

$$\tau^2 = \frac{\sigma_n^2}{\sigma_f^2}$$

Perform a singular-value decomposition:

$$\mathbf{H} \Sigma_f^{1/2} = \mathbf{U} \mathbf{S} \mathbf{V}^H$$

The regularized force estimates are

$$\text{MAP Estimate: } \hat{\mathbf{f}} = \Sigma_f^{1/2} \mathbf{V} \left[\left(\frac{s_i^2}{s_i^2 + \tau^2} \right) \frac{1}{s_i} \right] \mathbf{U}^H \mathbf{x}$$

$$\text{Uncertainty: } \hat{\mathbf{C}}_{ff} = \sigma_n^2 \Sigma_f^{1/2} \mathbf{V} \begin{bmatrix} \left[\frac{1}{s_i^2 + \tau^2} \right] & \mathbf{0} \\ \mathbf{0} & \left[\frac{1}{\tau^2} \right] \end{bmatrix} \mathbf{V}^H (\Sigma_f^{1/2})^H$$

