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2 Correlating model and experiment requires the correct loads

For the random field generated during vibroacoustic testing, model/test correlation requires identifying
the acoustic pressure power-spectral density (PSD) matrix to generate the response:

Response PSD: input PSD:
• •[s11(0)) •

Slivw)1
s„(w) = 1-1,f(0);.sff(w) 1-1,f(w)H Sff (w) = •••

• •[SA/1(0))
• sA,N(0))

Some approaches to build the input PSD matrix include

Uncorrelated Inputs: diagonal terms from measured pressure levels, off-diagonal terms are zero

Diffuse Field: diagonal terms from measured pressure levels, off-diagonal terms from sinc function
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Incorrect loading can significantly degrade response predictions!



3 Bayesian inference relies on Bayes' Theorem to estimate the
unknown variables and also quantifies uncertainty

Bayes'Theorem: p(aID) oc p(Dla) p(a)
Prior probability p(a): represents knowledge of unknown
variables before collecting any data

Likelihood (Evidence) p(D la): represents the probability of
the measured data given a set of the unknown variables

Posterior probability p(alD):  represents the updated
probability of the unknown variables given the measured data

Maximum a posteriori (MAP) estimate:
mode of the posterior distribution

Uncertainty estimate:
variance of the posterior distribution

x

Several recent studies utilize Bayesian inference for inverse problems in acoustics and structural dynamics:
Zhang (20 I 2 JSV),Antoni (20 I 2 JASA), Pereira (2015 AA), Aucejo (2016 MSSP), Faure (2017 MSSP)
This work follows the framework set forth by Pereira (2015 AA), but with several differences:

Allows for inclusion of the measured input levels from microphone measurements
Estimates/quantifies the uncertainty of unmeasured structural locations
Estimates PSDs when dealing with random signals



I4 Bayesian Inference leads to an estimate of the unknown forces
given the measured structural responses I

Response at each freq. is a combination of deterministic and probabilistic components

x:Vector of the response measurements

H: Matrix of known transfer functions
X(60) = H(co)f(co) + n(co)

f: Vector of unknown forces

n: Vector of the measurement/model errors that is normally
distributed with zero mean and variance cir,

Likelihood function: 

p(xlf, (JD — k(Hf, 4,0

n-N

1 1
 exp [— (x — HOH(x Hf)1
(0-D N cy,r,

Apply Bayes' Theorem to estimate forces:

13(flx,c4,af?) f P(flq)
N, (f,eff)

Estimate the unmeasured responses: 

p(x* lx, af? = f 11(x. 10p(f lx, andf

Prior for the unknown forces: 

13(flan MO, ai?Ef)
exp [ 

1
E 1 f

f

1 
N (cif y i f

MAP Estimate:f = (HHH +11-21-1)1HHx•_#f

Uncertaint e = ,2(ulfu 4,21-1)-1y: ff ,,r, . .

2

Regularization Param: T2 = —r2t
cf.

MAP Estimate:5Z, = HJ

Uncertainty: e„ = H:effa,H

1
1
1
1

Pereira et al. (2015), "Empirical Bayesian regularization of the inverse acoustic problem," Applied Acoustics.



5 For random signals, the Bayesian-based force estimation also
extends to power-spectral densities

Can work with measured response PSD matrix (S„) rather than any specific realization of x:

p(xlsxx) (0,sxx) where Sxx: Measured response PSD matrix

Can estimate input PSD matrix by marginalizing over all possible values of the x :

p(flo-i, = p(flx, al)p(xlSxx)dx

NC(0,Šff)

Input PSD Matrix Estimate:

gff = RHHH T2Ei1) 
111H1 Sxx RHHH T2Ei1) 

11-111 077. (HHH + T2E71) 1

Can estimate the unmeasured response PSD matrix by also marginalizing over all possible values of x :

p(x = p(x,, I x, 6l)p(x1Sxx)dx

(o,Šxx)

Response PSD Matrix Estimate:
=



6 Identifying the regularization parameter reduces to a one-
dimensional optimization problem

Identify the hyperparameters 4, and af using a second application of Bayes' Theorem:

Marginal Likelihood: p(x164,6f) = f P(x1C64)P(fl6ndf

Hyperparameter priors: 

Noise variance: Input variance:
1 fln 2  

1
p(o-4) (0-Dan-Flexp(— P(af) +1 eXp (— ti

( al? )- f 
Ci
f 1

1.2  
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Apply Bayes' Theorem and marginalize out af to obtain the posterior distribution of 1-2:

/ No H
\NONR+an+af

1:02 Iix) OC (T2)an+1[
V Ili sxxlli flf

NR

167,

T2 NR
rj(si

1-1

+ T2)
2

Z-d S? + T2
\i=1 i=1

Optimize 1-2 by minimizing the negative natural logarithm of this posterior distribution:

T
an + 1 an + 1 af + 1) 2

^2
= argmin  ln(T2) + (No + + 111(6/2) + lri + T2) — —1ri(of2)

NRNR NR NR
i=1



7 Identifying the regularization parameter reduces to a one-
dimensional optimization problem
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8 Numerical simulation of a direct-field acoustic test provides
initial validation

Direct-field acoustic test (DFAT) setup:
• Used 4 speaker clusters to excite the cylinder with

uncorrelated white noise
• Defined structural inputs as point forces acting at the

center surface patches using the distributed pressures

Simulated measurements:
• 18 accels located at 6 circumferential locations and 3

axial locations used for estimation procedure
• 12 microphones located at 4 circumferential locations

and 3 axial locations used for tuning parameters of the
2

0-f. prior

• Time-domain measurements polluted by measurement
noise with a SNR =15 dB

DFAT Simulation Setup

Acoustic Domain

rI

Structural Domain

Y

Measurement Locations

1 3

Four cases examined:
1) af = 1 (Small weighting of mic levels), Ef = I (Uncorrelated inputs)

2) af = 100 (Larger weighting of mic levels), Ef = I (Uncorrelated inputs)

3) af = 1 (Small weighting of mic levels), Ef = Correlated in axial, diffuse around circumference

4) af = 100 (Larger weighting of mic levels), Ef = Correlated in axial, diffuse around circumference
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Microphones •



9 Proposed procedure able to estimate the input force PSDs

Case 1: af
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10 Proposed procedure able to estimate the input force PSDs

Case 1: af
If
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ii Proposed procedure able to estimate the input force PSDs

Case I: a
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12 Proposed procedure able to estimate the input force PSDs

Case I: c
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13 I Proposed procedure accurately reproduces the structural
response, even at unmeasured locations
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14 I Proposed procedure accurately reproduces the structural
response, even at unmeasured locations

0

Case 2: af = 100 (Larger weighting of mic levels)

Ef = I (Uncorrelated inputs)
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15 Proposed procedure accurately reproduces the structural
response, even at unmeasured locations

Case I: (
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16 Proposed procedure accurately reproduces the structural
response, even at unmeasured locations .

Case I: (
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Bayesian-based approach able predict inputs that better
reproduce the measured response during vibroacoustic testing

Load estimation strategy developed utilizing
Bayesian inference

Provides point estimates of the unknown
forces/unmeasured responses and quantifies uncertainty

Contains an inherent regularization mechanism in cases of
ill-conditioned inversions

Enables the incorporation of the pressure levels measured
during testing through hyperparameter priors

Extends to PSDs for random inputs/outputs

Numerical simulations offered initial
validation

Consisted of speakers exciting a cylindrical test article in a
direct-field configuration

Predicted the levels of the applied loads and also the
spatial shape

Reproduced the test article's response, even at
unmeasured locations
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Bayesian Inference
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18 Ongoing work centers on experimentally validating the
proposed load-identification strategy I

Reverb-Chamber Test Setup

Perform vibroacoustic test to validate the
proposed load estimation strategy:

Excite the test article with various pressure fields: diffuse,
diffuse+direct, direct

Build FRFs using a calibrated FE model or a hybrid approach
where natural freqs. and damping are from modal test and
shapes are from FE model

Further refine load estimation strategy:

Determine sensitivity to incorrect model
parameters/incorporate some model updating to better
match experimental data

Incorporate local priors for the unknown force that should
offer flexibility for fields with non-uniform pressure levels

Parameterize the spatial correlation matrix (e.g., using a
Gaussian kernel) to better match the field

i



Bayesian-based approach able predict inputs that better
reproduce the measured response during vibroacoustic testing

Load estimation strategy developed utilizing
Bayesian inference

Provides point estimates of the unknown
forces/unmeasured responses and quantifies uncertainty

Contains an inherent regularization mechanism in cases of
ill-conditioned inversions
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20 Extra slides...



2 I Current approaches to correlate models to vibroacoustic
experiments incorporate idealized load configurations

For the random field generated during vibroacoustic testing, model/test correlation requires
identifying the acoustic pressure power-spectral density (PSD) matrix to generate the
response:

Response PSD: S„(co) = 1-1,f(co)Sff(co) I-1,f(co)H

[S11(0 ••• S1N(0)
Input PSD: Sff(co) = E[f(Of(01-1] = : '..

SN1(co) ••• SNA;(0

A common approach utilizes an ideal diffuse field with a spatial correlation
approximated by a sinc function:

sin k (co)rij
Rij (co) =

k(co)rij

k (co): wave number

rij: relative distance between

input i and j

0.8

Cr 0 6
2

to 0.4 -

-0.2 -

-0.4
0 7r 27i 37T 47T

Nondimensional Distance, kr

Sij(co) = Rii(co)ISii(co)Sji(co) Rii(co)S0(60)



22 Physical testing can lead to deviations from this idealized field
due to scattering effects and test setup factors

DFAT Simulation Setup

Direct-field acoustic test (DFAT) setup:
Used 4 speaker clusters to excite the cylinder with
uncorrelated white noise
Defined structural inputs as point forces acting at the
center surface patches using the distributed pressures
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Incorrect load configuration can significantly degrade response predictions!



23 Bayesian-based approach contains an intrinsic regularization in
the case of an ill-conditioned inversion

Return to the force estimates:

•-• -1
MAP Estimate: = (HHH +1♦T 2 pi,J+.441-Lsx.........0.

•

Uncertainty: Eft. = o-7,(HHH 
• 
T
2• 
?1-4-1

Perform a singular-value decomposition:

FIE1/2 = USVH

The regularized force estimates are

MAP Estimate:

Uncertainty: ef f

E1/2i  si  11 Hx

f v s + s •L

= L'
2 v 1/2ir [si2+1-2
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