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Testing with a 6-DOF shaker shows potential and using modal
analysis can better inform these tests

6-DOF shakers show promise for vibration testing:

Enables simultaneous multi-axis testing rather than testing each axis individually
Can potentially reproduce the responses/stresses obtained in the field
environment provided the boundary conditions between the next-level
assembly and the test fixture are similar

Focus here is on reproducing the response of base-mounted
components/payloads on a shaker with a rigid fixture

How can we incorporate modal analysis to better inform shaker tests?

Use the Modal Craig-Bampton procedure that requires the modal parameters from a
modal test of the test article on the fixture

Use this procedure to transform the free-free modes to a set of fixed-base and rigid-
body modes that simulates the boundary conditions on a shaker table

|dentify how the test article’s modes respond to the shaker’s rigid-body inputs
Predict shaker inputs required to replicate the field environment



3 | Experimental data obtained from an acoustic environment

provided the reference response

Acoustic Test Details:

= Component of interest was the Removable
Component (RC), a test article developed for
the dynamics environment community

* The RC was mounted in the Modal Analysis
Test Vehicle (Hardware developed by
developed by the Atomic VWeapons
Establishment, AWE, UK)

* The MATYV was subjected to an acoustic

environment with a sound-pressure level
(SPL) up to 147 dB

= Response measurements taken on the RC
using 4 triaxial accelerometers

measurements for this study

Removable Component (RC)

Modal Analysis Test Vehicle (MATY)

Diagram Top-down view

Mayes et al. (2019), “Predicting system response at unmeasured locations,” International Modal Analysis Conference.



+ I A modal test of the RC on the fixture provided the required

Modal Test of the RC on the fixture:

modal parameters

Performed the modal test by suspending the
RC/Fixture with bungee cords and impacting
with modal hammer at various locations

Constructed rigid-body modes analytically
with component geometries and measured

masses
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5 | A transformation to fixed-base/rigid-body motion enables a
replication of the inputs provided by a shaker

Begin with the modal equations from the free-free modal test:
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s I Modal Craig-Bampton procedure transforms free-free modes to
a set of fixed-base modes (p) + fixture-driven modes (s) I

Fixture-Driven Modal Transformation:

Equate the motion at the fixture in combined system to that of the fixture only:
Xp ® Ppq = [‘I’F,RB ‘PF’E]S where W pp: Rigid-body motion of fixture calculated analytically

Y. - Elastic motion of fixture — without model, can
~ O} [Wprg Prils TE: !
q J [ FRB F'E], use the dominant singular vectors of the SVD of
'I" the measured fixture+RC elastic mode shapes
S

Fixed-Base Modal Transformation:

Constrain the fixture motion to zero: Xxp ~ ®pq = [‘PF'RB ‘I’F,E]s =0

Rewrite constraint equation as [lpF RB lpFE]+q>Fq = () =—— = L,M
— ' ) Transform L— = hul(B,)

B,

Inserting this transformation into free-free modal equations results in a coupling between coordinates

Ljrwn [[wlgree] + iw [ZZfreewfree] - wzlq] Lmn =0

The eigensolution of these equations generates the fixed-base frequencies w§, and eigenvectors I

—
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Mayes et al. (2015), “A modal Craig-Bampton substructure for experiments, analysis, and control specifications,” International Modal Analysis Conference.




7 | The transformed modal model can estimate the required 6-
DOF shaker inputs and the corresponding test response

Transforming the free-free modal equations results in a coupling between the p and s modes:
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From the first row, the prescribed fixture motion drives the p modes:
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Only include rigid-body fixture motion

Consequently, the s modes also drive the physical response:

XRC = ?RC (TpHps + Ts)ls

I
Hys

A least-squares fit estimates the input PSD and corresponding response PSD:

Estimated Input

Estimated Response

Sxx = HxssssHJIZs — [ §SS - (Hxs)+sxx(HJIZs)+ ]_’[ §xx = Hxsgsngs




s I 6-DOF shaker able to control the RC to match the response
measured in the acoustic environment I

ASDs for each response
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The 6-DOF shaker accurately reproduces the
response in all directions and at all frequencies
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9 | This approach also enables an estimation of the 6-DOF rigid-

body inputs
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Accurately reproducing the measured response
requires inputs in all directions, including rotations



o I This approach applies not only to a 6-DOF shaker, but also a

traditional SDOF shaker

ASDs for each response
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Shaker constrained to motion in the

x direction

Targeting responses in the x direction can
accurately reproduce these responses,
especially at lower frequencies
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I Modal analysis can aid in planning shaker tests

Modal Craig-Bampton Procedure:

* Transforms the modes from a free-free modal test of
component on the fixture to a set of fixed-base and
fixture-driven modes

= Enables an assessment of the feasibility of the
shaker/rigid fixture to match the measured response

= Enables an estimate of the shaker inputs required to
best match the measured environmental response

Shaker Performance Predictions:

* The 6-DOF shaker can successfully control the RC on a 1 a_—
rigid fixture to reproduce the measured environmental
response in all directions simultaneously

= A traditional SDOF shaker can also control the RC to
reproduce the measured environmental response in a
single direction
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