
Proceedings of the 2020 28th Conference on Nuclear Engineering
Joint With the ASME 2020 Power Conference

ICONE28-POWER2020
August 2-6, 2020, Anaheim, California, USA

ICONE28-POWER2020-XXXXX

ICONE2020-####

EMULATION METHODOLOGY OF PROGRAMMABLE LOGIC CONTROLLERS FOR
CYBERSECURITY APPLICATIONS

Raymond Fasano, Christopher Lamb
Sandia National Laboratories

Albuquerque, NM

ABSTRACT
A programmable logic controller (PLC) emulation

methodology can dramatically reduce the cost of high-fidelity
OT network emulation without compromising specific
functionality. This PLC emulation methodology was developed
in an ongoing effort at the University of New Mexico 's Institute
for Space and Nuclear Power Studies to develop an emulyticTM
platform for PWR plants funded by DOE's Nuclear Engineering
University Program (NEUP) in collaboration with Sandia
National Laboratories. The developed PLC emulation
methodology is validated to support cybersecurity analyses of
operational technology (OT) networks. This PLC emulation
methodology identifies and characterizes key physical and
digital signatures of interest. The obtained and displayed digital
signatures include the network response, traffic, and software
version, while the selected physical signatures include the
actuation response time and sampling rate. An extensive
validation analysis is performed to characterize the signatures
of the real, hardware-based PLC and the emulated PLC. These
signatures are then compared to highlight differences and
quantift the parameters that can be changed to optimize the
emulation fidelity.

Keywords: Nuclear, Cybersecurity, PLC, Emulation

NOMENCLATURE
DHCP
DOE
HITL
I&C
I/0
ICS
IT
NEUP
OT
PCAP

dynamic host control protocol
department of energy
hardware-in-the-loop
instrumentation & control
input-output
industrial control systems
informational technology
Nuclear Energy University Program
operational technology
packet capture

Mohamed El Genk, Timothy Schriener, Andrew
Hahn

Institute for Space and Nuclear Power Studies and
Nuclear Engineering Department

University of New Mexico
Albuquerque, NM

PID
PLC
VMS

proportional-integral-derivative
programable logic controller
virtual machines

1. INTRODUCTION

Advanced malware attacks against industrial control
systems (ICSs) such as Stuxnet, TRISIS, and CrashOverride
have proven that even air gapped networks are at risk to
infiltration [1-3]. For information technology (IT) systems
emulated computer systems are commonly used to perform
controlled cybersecurity experiments in a contained virtual
environment [4]. In order to extend the same capability to OT
networks emulation models for PLCs are needed. PLCs are
specialized digital computers used for the autonomous operation
and safety systems within critical infrastructure. Therefore, when
emulating PLCs specific considerations should be made to
ensure representative physical and digital response
characteristics. These considerations are typically not considered
when emulating VMs for IT networks due to differences in
functionality and uses.

PLC emulation enables high fidelity cybersecurity and
physical effect modeling of OT networks, such as the
instrumentation and control (I&C) systems in nuclear power
plants, without hardware-in-the-loop (HITL) integration. In a
HITL setup, a physical PLC is integrated into the digital network
being tested. Experiments that use PLCs as HITL are expensive,
difficult to scale, and change relative to the emulated systems.
Running an experiment on an entire I&C system architecture,
which may include dozens of devices, can become impractical if
HITL is used for every digital device on the network. A PLC
emulation methodology, thus, provides a practical path forward
to study the current cybersecurity posture of OT networks for
critical infrastructure and aid in the design of secure architectures
for future designs.

1 © 2019 by ASME

SAND2020-1183C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2. BACKGROUND

Emulated computer systems, also referred to as virtual
machines (VMs), are commonly used to perform controlled
security experiments in a contained virtual environment in
cybersecurity analyses for enterprise IT systems. The
Department of Energy's (DOE) SCEPTRE framework,
developed at SNL to enable cybersecurity analyses of ICSs, can
start up and handle virtual network communication between a
large number of VMS using ICS protocols written to
specification [5]. While this framework has been used to model
digital components of electrical transmission grids and solar
power systems, it has not yet been applied to cybersecurity of
nuclear power plants. Extending the SCEPTRE framework to
modeling the safety I&C systems of nuclear power plants
requires the development of emulation models for the PLCs used
for autonomous control and the safety system actuation within
the plant. PLCs are unique digital computers that require
additional considerations when being emulated since PLCs are
hard real-time systems, use networking protocols specific to
industrial processes, and control physical processes utilizing a
variety of inputs and outputs (I/0).

Most efforts to develop emulation models or VMs for PLCs
have focused mainly on developing virtualization platforms for
PLC programming and not virtualization of the computer
system. For example, Chunjie and Hui have investigated
developing a PLC VM based on IEC 61131-3 standard PLC
programing [6]. This VM was intended to run on the PLCs
themselves to create a platform that supports running common
programing based on the IEC 61131-3 standard, across different
hardware designs. While capable of running PLC control
programming, the developed VM was not designed to replicate
the characteristics of a specific PLC Thamrin and Ismail also
developed a VM for PLCs to create a development environment
for PLC programming [7]. This VM development environment
was planned to help train programmers in the specialized
programming languages used by PLCs. The VM also focused on
only running the PLC's control programming and not creating a
system level virtual machine of a PLC. Gasser also developed a
VM testing environment for using standardized PLC
programming across different PLC hardware, similar to Chunjie
and Hui [8]. Notably, Thiago Alves used OpenPLC, opensource
PLC software, to study the virtualization of control systems for
cybersecurity analysis [9].

None of these prior efforts were aimed at creating
metrics to develop an PLC emulation methodology to couple an
emulated PLC to a simulated process. Thus, the objective of the
present work is to develop an emulation methodology for a PLC
and establish metrics to validate the developed emulated PLC
when coupled to a simulated process. This emulation
methodology is applied to a representative open-source PLC
implementation, and the emulated PLC is validated against the
recorded physical and digital signatures of the real, physical PLC
hardware. The validated PLC emulation methodology will be
incorporated in the DOE SCEPTRE framework to support
cybersecurity investigations of I&C system architectures in

nuclear power plants. The next section details the developed and
validated PLC emulation methodology in this work.

Table 1 outlines the general steps of the PLC emulation
methodology. Emulating a PLC implies that the digital and
physical behavior of the PLC is reproduced by another system
through computational means. The degree of emulation is
determined by the project requirements. A full emulation would
reproduce the functionality of the hardware, firmware, kernel,
and operating system used by the PLC. A partial emulation
would replicate only some of these functionalities. Investigations
of potential vulnerabilities within software programs or the
computer's operating system might only require kernel and
software emulation, while investigating potential exploits of
vulnerabilities in a chipset's instruction set could require full
emulation at the hardware and firmware levels. Several partial
emulators of computer systems are available which emulate the
kernel and software of a device. Full emulators, however, are far
less common due to the drastic increase in complexity and
computational cost.

Step Action

1 Determine the degree of emulation that is needed

2 Use commercial/Open-source emulation software or
develop the emulation that is needed

3 Based on the emulation requirements determine the
physical and digital signatures of the PLC that need to be
emulated

4 Benchmarked the emulated PLC against the real PLC
using a representative test environment to determine the
validity of the emulation

5 Collect data for both the real and emulated PLC and
compare the physical and digital signatures

6 Change the emulation or configuration of the PLCs as
needed until the signatures of the real and emulated PLCs
converge to an acceptable range outlined by the project
requirements

TABLE 1: STEPS WITHIN GENERAL PLC EMULATION
METHODOLOGY

The present work requires that the emulated PLC
approximate the real PLC, such that the differences between the
two systems do not affect the behavior of the connected physics
model and could support planned cybersecurity analysis. For the
present project, this is accomplished using kernel and software
emulation. In addition, the real and emulated systems should be
interchangeable and not impacted by the computer hardware
running the emulation.

Once a PLC emulation is successfully developed, it is
validated against the real system. When obscuring the firmware
and the underlining hardware of a PLC, the only way to
determine if a PLC is real or emulation is to observe the digital
and physical signatures of the device. Table 2 shows the

2 C 2019 by ASME

signature metrics used to validate the PLC emulation. The
selected digital signature metrics of a PLC include the network
response, the network traffic, and the software versions. The
network response of a device quantifies how the network traffic
is transmitted and received and determines the rate of data
transfer. Similarly, the underlying network traffic for the system
determines the type and frequency of the network data packets
being transmitted and/or received. Finally, the software versions
determine if the exact same software is running on the emulated
and real device. If a cybersecurity flaw exists in the software, it
should be exploitable on both the real and emulated PLC in
exactly the same manner

Digital Signatures

- Network response
- Network traffic
- Software versions
Physical Signatures

- Actuation response time
- Sampling rate
TABLE 2: METRICS TO COMPARE A REAL AND

EMULATED PLC

The selected physical signature metrics for the PLC include
the actuation response time and sampling rate (Table 2). The
actuation response time is the time required for a PLC to receive
data, compute an output, and send an actuation signal. Differing
actuation response times would lead to different physical
outcomes, by influencing the time history of the physical
process Similarly, the sampling rate of a digital controller, also
referred to as the scan time, would affect the process being
controlled by influencing the gain values of complex controller
designs. The sampling rate of the PLC also determines whether
the system is running hard real-time. In order to achieve a
deterministic response PLCs are required to run hard real-time.
For time critical applications designers can be confident that
actuation response times will be approximately between one to
two sampling periods plus network latency.

The digital signature metrics are important from a
cybersecurity perspective, while the physical signature metrics
determines the fidelity of the PLC's response to the connected
process. Since PLCs are the interface between the physical and
digital world it is paramount that the signatures of the emulated
and real PLC be quantified to validate the cyber-physical
coupling of the emulation.

3. TESTING METHODOLOGY

The developed emulation methodology for PLCs is
performed and validated using a representative, open-source
PLC architecture consisting of a Raspbeny Pi 4 minicomputer
running the OpenPLC software, implementing IEC 61131-3
standard programming for PLCs [10]. The Raspbeny Pi is
chosen because of the availability of its open source operating

system to create images, the functionality of its on-board
digital/analog IO, compatibility with OpenPLC, and the ability
to emulate the operating system. The specifications of the real
and emulated PLCs are summarized in Table 3. VMware
emulation software is used to emulate an Ubuntu Server kernel
and software for the emulated PLC [11]. Both the real and
emulated PLCs run the same operating system and OpenPLC
software. To reduce the differences between the Raspberry Pi 4
hardware and the PC running the VMware emulation software,
four gigabytes of RAM and four processor cores are allocated to
the emulated PLC in VMware.

System Real Emulated

Hardware Raspbeny Pi 4 VMware Virtual Machine

CPU Broadcom BCM2711,
Quad core Cortec-
A72 (ARM v8) 64-bit
SoC @ 1.5Ghz

AND FX-8370 64-bit
SoC @ 4.3Ghz
(4 virtual cores)

RAM 4 Gb 4 Gb

Operating
System

Ubuntu 19.10 Ubuntu 19.10

Control
Software

OpenPLC Version 3 OpenPLC Version 3

Network
Interface

Gigabit Ethernet Gigabit Ethernet

TABLE 3: REAL AND EMULATED PLC
SPECIFICATIONS

The testing environment used to validate the PLC emulation
against the physical hardware links the real or emulated PLC to
a transient simulation model running in Matlab Simulink (Fig. 1)
[12]. The Simulink simulation running on a separate Linux
server takes the place of an external physical process being
controlled by the PLC within the testing environment. Using a
simulated process complicates the comparison of the actuation
response times of the real and emulated controllers due to an
additional requirement of running the simulation in sync with
real time when using asynchronous communication. Actual
physical processes are continuous and do not add the additional
complexity of getting a simulated process to run in sync with
real-time. However, when doing cybersecurity research on
physical processes, such as a nuclear reactor, using a simulated
process is the only option due to safety and cost. The nuances of
using a simulated process versus a physical process and the effect
on the real and emulated PLC comparison are explained in more
detail in proceeding sections.

3 © 2019 by ASME

Raspberry Pi — Real PLC Raspbian VM — Virtual PLC

Simulation Windows PC Running in Realtime

Wireshark & Simulation/PLC Data

Server —

Simulink

Publisher

with

Server

Record

Client —

Simulink

Subscriber

FIGURE 1: OVERVIEW OF REAL AND EMULATED
PLC COMPARISON EXPERIMENTAL SETUP

An interface program is developed to handle the inter-
process asynchronous communication of data values between the
Simulink simulation and the remote PLC. The interface
communicates state variables generated within the Simulink
simulation to a python script using an S-function which
communicates, using shared memory, with an external Python
script (Fig. 2).

; Data Transfer Interface

Physics-Based

Dynamic Model of

Nudear Power Plant

(Nmullnk)

r-
SCEPTRE

i a. Data

FIGURE 2: LINKING BLOCK DIAGRAM FOR TEST
SYSTEM SHOWING DATA FLOW BETWEEN SIMULINK
SIMULATION MODEL AND REAL/EMULATED PLCS

The python interface program creates a ModbusTCP/IP
server to write or read input and output registers on either the
emulated or real PLC. ModbusTCP/IP was originally a serial
protocol and that was specifically created to be used with PLCs.
ModbusTCP/IP is currently still used in OT networks making it
an ideal protocol to benchmark the real and emulated PLCs
network response characteristics. Each PLC uses OpenPLC
runtime, which is compatible with ModbusTCPAP, to take the
values written to input registers and use those values to calculate
a response to be written to the output registers. The inter-process
communication programs used in these analyses are
asynchronous with the Simulink simulation and allow for closed-
loop HITL integration. Process variables are generated by the
Simulink simulation, communicated to a HITL PLC (real or

emulated), and the response from the PLC is piped back into the
Simulink simulation to be used as an actuation signal.

Figure 1 shows the components of the test network used for
testing and validation. The test network is a simple ethernet
network. It consists of a Linux server, which is the computer
running the Simulink model, a UniFi switch, and a PLC. For each
experiment, only one PLC is connected to the UniFi switch at a
time. The Simulink simulation within the benchmark testing
environment uses a square wave with an amplitude of one, a
period of five seconds, a pulse with of twenty percent of the
period, and a zero second phase delay.

The square wave is outputted by the Linux server via
ModbusTCP/IP and is sent to the UniFi switch to be routed to
the real or emulated PLC. An isolated testing network was used
to eliminate network routing differences between the real and
emulated PLC. The local Dynamic Host Configuration Protocol
(DHCP) server was run on the Linux server to handle IP address
allocation. The Wireshark utility was used to capture network
data traffic between the Linux server and the real or emulated
PLC [13].

When the PLC receives a new value from the Linux
server, the implemented ladder logic programming in OpenPLC
determines if the square wave is above or below a predefined
setpoint. A setpoint value of 0.5 was used to determine the state
of the output register. An input value greater than 0.5 would
result in a value of one, while a value less than 0.5 results in a
value of zero. The total Simulink simulation length for each run
was three-hundred seconds using a major time step of 50 ms. The
Python interface program reads the output register of the PLC
and sends the response back to the Linux server to be used in the
Simulink Simulation as an actuation response signal. In this
experiment the real and emulated actuation response signals
were recorded in Simulink for consistency.

The following sections describe the results of the validation
testing of the emulation methodology. A total of five tests were
run for both the real and emulated PLC to characterize the digital
and physical characteristics of each PLC independently. First in
Section 3.1, an analysis is performed investigating the real-time
condition of the linked Simulink simulation and PLC. Sections 4
and 5 present the validation testing of the digital signatures of
the emulated PLC. Sections 6 and 7 present the validation testing
for the physical signatures, showing the results of the sampling
rate and actuation response time, respectively.

3.1 REAL-TIME CONDITION

As addressed previously, a simulated process is used to
provide process variables to the real and emulated PLCs instead
of a physical process. Therefore, the simulation model attempts
to run in sync with real time by using custom code in the Python
interface program to ensure that both the real and emulated
controllers receive the same values from the simulation at the
same rate. Real-Time synchronization or a consistent
implementation of real-time sync is required for comparing the
real PLC and emulated PLC when using asynchronous
communication. If the simulated process operates at a different

4 © 2019 by ASME

rate, it will affect the actuation response time of the controller.
For example, if the simulation for the real PLC runs at a slower
rate relative to the simulation for the emulated PLC, it is possible
that the real PLC will record faster actuation response times.
Furthermore, in applications were the response of transient
physics models is important, real-time sync of the simulation
becomes paramount. Accurate timing of asynchronous signals
enables reproducibility of the physical response of transient
physics models coupled with real or emulate PLCs. Validity of
system response is out of the scope of this work, making the real-
time sync implementation less significant allowing for an
approximate real-time implementation to be acceptable for a
comparison.

To investigate how the timestep size impacted the real-
time synchronization, Simulink simulations were run with major
time steps of 25, 50, 100, 250, and 500ms. It was found that the
deviation from real-time sync and the major time step were
inversely proportional to each other. The computer running the
simulation has a fundamental limit of how fast it can run the
simulation. If the computational time is greater than the major
time step no real-time sync software implementation will be able
to overcome this limitation. Given the computation resources of
the Linux server used, 50 ms was chosen as a representative
major time step for more complex physics models with
acceptable real-time sync performance given the external Python
interface used.

25

20

Real-Time Deviation of Slmulink
Simulation Probability Distribution Function

—e— Emulated PLC
-a— Real PLC

0 o o e-th
-80 -60 -40 -20 0 20 40 60 80

Deviation from Real-Time (ms)

FIGURE 3: SIMULINK SIMULATION DEVIATION FROM
REAL-TIME SYCN

Figure 3 shows the real-time deviation of the Simulink simulated
process, calculated by subtracting wall time from simulation
time, when communicating the real and emulated PLC. Positive
deviation from real time is the Simulink simulation running

slower than real-time and negative deviation is faster. Error bars
are the first and third quartile of the data collected.

On average the Simulink simulation had a deviation
from real-time of -2.3ms (14.85 sigma) when communicating
with the emulated PLC and an average deviation of -2.66ms
(14.29 sigma) when communicating with the real PLC. The real-
time deviation between the real and emulated PLC are within
statistics of each other enabling the controllers to be compared
without the simulated process effecting the validity of the
comparison.

4. NETWORK RESPONSE

The network response characteristics of the emulated and
real PLCs using a representative industrial protocol are collected
using Wireshark to capture the network traffic between the Linux
server and the PLC. Wireshark is run on the Linux server for all
simulation cases. The network response of the emulated and real
PLCs is evaluated by comparing the ModbusTCP/IP packet
round-trip time and the network statistics for the ModbusTCP/IP
socket communication between the Linux server and real or
emulated PLC. The network round trip time is important because
the slowest exchange of ModbusTCP/IP packets determines the
physical limit of outputting the data by the simulation to the PLC
and fingerprinting the devices on the network. Therefore, the
lower limit of the sampling time for the PLC is that of the slowest
communication of data from the server to the client. In other
environments, the communication method may be different from
the ModbusTCP/IP communication used here, but the
underlining principle of quantifying the rate at which data can be
transferred to quantify the network response remains pertinent.

The ModbusTCP/IP protocol uses query and response
packets to read and write holding registers on PLCs. Figure 4
shows the network response to query-response and Fig. 5 shows
the response-query packet pairs for the real and emulated PLCs.
The Python Interface program along with network latency
controlled the rate at which query-response and response-query
packets were sent and received. As seen in Fig. 4 the emulated
PLC has a higher probability of sending and receiving
ModbusTCP/IP packets at a faster rate than the real PLC,
suggesting an overall faster Query-Response network response.
Overall the emulated PLC has a faster response time with an
average of 0.73 ms than the real PLC with an average of 1.78 ms.
Interestingly, the response-query round-trip time shows that the
real and emulated PLC had virtually the same response
characteristics, Fig. 5. For response-query packet round-trip
times the emulated PLC has an average round-trip time of 23.56
ms and the real PLC has an average round-trip time of 21.87 ms.

The Query-Response characteristics are dictated by the
individual hardware for each PLC, while the Response-Query
characteristics are dependent on the Python interface code. In
this case the emulated PLC hardware is faster than the emulated
PLC leading to a noticeable difference in the Query-Response
characteristics. Overall however, the major time step used in the
Simulink process simulator was 50 ms. Relative to the
magnitude of the major time step the difference in network

5 © 2019 by ASME

response characteristics has a negligible effect on the physical
process.

Pr
ob

ab
il

it
y
(
%
)

100

80

80

40

20

Query-Response Packet Round-Trip
Time Probability

—e— Emulated PLC
-8— Real PLC

0 A
0 2 4 6 8 10 12 14 16

Packet Round-Trip Time (ms)

FIGURE 4: QUERY-RESPONSE MODBUSTCP/IP
PACKET ROUND-TRIP TIME

35

30

25

F 20

2
2 15

10

5

0

Response-Query Packet Round-Trip
Time Probabilitv

— Emulated PLC
-8— Real PLC —

0 20 40 60 80 100 120

Packet Round-Trip Time (ms)

FIGURE 5: RESPONSE-QUERY MODBUSTCP/IP PACKET
ROUND-TRIP TIME

From a digital perspective the network response characteristics
are significantly different such that network monitoring would
be able to distinguish the real and emulated PLC.

5. NETWORK TRAFFIC

The collected packet capture (PCAP) data is analyzed to
determine the types of packets sent during the experiment. The
data for all experiments was combined for the real and emulated
PLC to decrease the differences in the time of day each
experiment is ran. It is possible that some programs will send out
network communication based on the time of day or the current
state of the operating system. The numbers and categories of data
packets collected by the Wireshark utility are given in Table 4
for the emulated and real PLC tested. The vast majority (> 99%)
of the collected data packets are TCP/IP packets. The fraction of
the total packets collected in each category between the real and
emulated PLCs differed by < 1%.

PLC
Type

Packet
Type

Average STD
Percentage of
Total (%)

Real
TCP 25666.60 1946.36 99.86
UDP 35.20 8.15 0.14

Emulated
TCP 27455.40 1266.14 99.84
UDP 43.60 16.88 0.16

TABLE 4: NETWORK TRAFFIC CAPTURE FOR THE
REAL AND EMULATED PLC

The network traffic signatures for the emulated PLC are
determined to be comparable to the real PLC with the exception
of the bandwidth; the emulated PLC had a slightly higher
bandwidth. The collected PCAP data in Table 4 shows however,
that the emulated PLC can use the same network protocols and
generate packets of the same data types and with similar
proportions to the total level of network traffic as the real PLC.
These similarities in types and proportions of network traffic are
important for the capability of the emulated PLC to represent the
real PLC in cyber-security investigations.

6. SAMPLING RATE

The rate at which a PLC samples the controlled process is a
very important parameter based on classical control theory, and
in terms of determining if the PLC is fast enough to monitor the
physical process in [14]. The sampling rate of the real and
emulated PLC is measured using an iterative algorithm
implemented in Python that writes a value to a register, waits for
the PLC to execute its ladder logic, and records the time it takes
the PLC to submit a new control action based on the new input.
This method assumes that the python script is running at a much
faster rate than the ladder logic program and that the
computational time required to record the elapsed time is
negligible relative to the sampling rate. These are valid
assumptions for the current testing setup. The real and emulated
PLCs are tested with sampling rates specified in the OpenPLC
program of 1, 25, 50, 100, 250, and 500 ms, and the actual
sampling rate is recorded using the Python sampling rate
algorithm to check for any deviations from the ideal specified
rate.

6 © 2019 by ASME

Ac
tu
al
 S
a
m
p
l
i
n
g
 R
at

e
(
m
s
)

Ac
tu
al
 S
am
pl
in
g
Ra
te
 (
m
s
)

100

80

60

40

20

0

550

500

450

400

350

300

250

200

150

Real & Emulated PLC Sampling Rate

c Emulated PLC
❑ Real PLC

0 20 40 60 80

Ideal Sampling Rate (ms)

100

----0 Emulated PLC
o Real PLC

150 200 250 300

ideal Sampling Rate (ms)

FIGURE 6: SAMPLING RATE FOR THE REAL AND
EMULATED PLC (FIGURE 6A TOP AND FIGURE 6B

BOTTOM)

I --I

350 400 450 500 550

Figures 6a and 6b present the results of the sampling
rate analyses for the emulated and real PLCs, respectively. The
sampling rate results for 1 —100 ms are shown in Fig. 6a, with
the results for sampling rates of 175-500 ms shown in Fig. 6b.
The actual and ideal sampling rates are nearly equivalent in the
mean for both the emulated and real PLCs from 1-500 ms.
Comparing the variance in the actual measured sampling rate, for

sampling times above 50 ms the real PLC experienced less
variance than the emulated PLC. The difference in the variance
between the emulated and real PLCs decreased as the sampling
rate increased, with the smallest variance observed at a sampling
rate of 250ms.

These results for the sampling rate suggest that the
emulated PLC matches the same average sampling rate as the
real PLC. In order to achieve the most consistent results and
enable the best comparison between controllers a sample rate of
> 250 ms should be used. In these analyses a sampling rate of
250 ms is used for the real and emulated PLC across all
experiments.

7. ACTUATION RESPONSE TIME

An important physical signature to measure for quantifying
the performance of a PLC is the actuation response time. The
actuation response time is defined here as the time it takes for the
PLC to execute a control action based on the inputs being
sampled from the process being controlled. To determine if the
observed actuation response deviates from an ideal response,
internal logic in the Simulink simulation model is used to
generate a 'true' response signal. This ideal 'true' signal is
recorded internally by Matlab Simulink and is not dependent on
the signals transmitted to and received from the PLC.

Thus, the ideal response represents a control action with
zero time lag relative to the process simulation. The ideal
response is compared against the generated responses of the real
or emulated PLC to quantify any time lag in response time due
to network communication or differences in PLC computational
time. First, the state variable signal received by the PLCs is
compared to the original signal generated by the Simulink model
to verify that the real and emulated PLCs are receiving the same
and correct input data. The results show that each the real and
emulated PLC, for all tests, received the same square wave signal
generated by the Simulink model.

Once the PLC receives the square wave input, the
ladder logic implemented in OpenPLC determines if the current
square wave value is above or below the setpoint of 0.5. If the
square wave value is above 0.5, the command output is a value
of one, and if it is below 0.5, the output is zero. Therefore, the
command signal creates an output signal that is also a square
wave over time. The controller response signal transmitted by
the connected PLC is recorded within the running Simulink
simulation and compared to the ideal baseline signal to identify
the response time lag. This time lag in the response of the PLC
is unavoidable due to the Python interface code being
asynchronous and the sampling rate of the PLC, in this case the
sampling rate is 250 ms.

The actuation response for the emulated and real PLCs
are shown in Fig. 7. The controller response for both the
emulated and real PLCs consistently lags the ideal response
signal as expected. However, a non-physical response of the
PLCs is observed due to the real-time sync Python interface code
used. The sampling rate of the PLCs is 250ms, therefore it is
impossible for the PLCs to respond to an external signal faster

7 © 2019 by ASME

than 250 ms. In this case response signals are observed for both
the real and emulated PLC at 150ms and 200ms. As shown in the
Section 6 the sampling rates for both PLCs are highly consistent
and are near real-time with-in — ±10ms at a sampling rate of 250
ms. The Python interface code's real-time sync code is also

consistent but deviates from real-time up to ±5Oms (Fig. 3).
When the real-time deviation accumulates such that the Simulink
simulation is running slower than real-time, relative to the PLC,
it is possible for the PLC to respond faster than physically
possible. This non-physical result is only applicable to when
time dependent processes are being simulated and
communicating asynchronously with external devices.

Pr
ob

ab
il

it
y
(
%
)

35

30

25

20

15

10

5

0

Extemal PLC Actuation Response
i une rrooaosny uismouuon runcuon

—e— Emulated PLC _
-e— Real PLC

:

_

•

0 100 200 300 400 500 800

Actuation Response Lag (ms)

FIGURE 7: ACTUATION RESPONSE OF THE
REAL AND EMULATED PLC

For the purposes of this report although a non-physical
result was observed from the simulated processes perspective the
relative actuation response between the real and emulated PLC
are in good agreement. The emulated PLC had a slightly faster
actuation response time with an average response time of
280.59ms, compared to an average response time of 284.06ms
for the real PLC. The results suggest that each controller can be
used interchangeably in cyber-physical emulation experiments
without compromising the outcomes of the physical process
being controlled.

As noted in Section 3.1, the inter-process Python code
used in this analysis is asynchronous with the Simulink
simulation. This is for better validation comparison between the
real and emulated PLCs. The delay in the actuation response
signal generated by the OpenPLC programming can be
characteristic to the PLCs computing hardware and software. A
synchronous inter-process communication method could be
employed to eliminate the time lag between the observed and

ideal actuation response signals by ensuring that the Simulink
simulation will wait for the PLC control signal before continuing
to the next timestep. The minimum size of the simulation
timestep to be used, however, will still be limited by the network
response time for the communication between the PLC and
server PC running the process simulation model. A synchronous
interface code also has the added advantage of being able to run
faster than real-time.

8. CONCLUSION

This work developed a PLC emulation methodology and
applies it to validating an emulation of a Raspberry 4 as the
benchmarking hardware for a PLC running the open-source
OpenPLC program. The chosen PLC emulation uses the
VMware software to emulate the software of the physical device
and employs the same OpenPLC control program software and
network communication protocols as the real PLC. The
validation testing analyses investigates the emulated and real
PLCs linked to a process simulation model running within
Matlab Simulink A Simulink S-function and Python interface
script were used to handle the inter-process communication
between Simulink and the OpenPLC control program running on
both the emulated and real PLCs. Characterizing the physical
and digital signatures within the framework of the PLC
emulation methodology enables the development of a PLC
emulation for OT cybersecurity testing without the need for
HITL. This methodology can be applied to more industry
representative PLCs such as Allen Bradley, Rockwell, Siemens,
ect. depending on project requirements.

The validation testing analyses have shown that the real
and emulated PLCs, if properly configured, can have digital and
physical signatures that approximate each other. Using the same
software on both systems implies that any vulnerabilities in the
OS, applications, and communication protocols used on the real
system would be reflected in the emulated system and that the
internal logic programming is highly consistent between the two.

The testing effort characterized the digital signatures of
the network response and types and proportions of network
traffic recorded between the PLC and server PC running the
Simulink process simulation. The analyses of the network
response showed that the emulated PLC has a slightly higher
bandwidth capacity relative to the real PLC, however this was
found to not have a significant impact on the relative
communication speeds relative to the real PLC. The difference
in bandwidth did influence the recorded network response and
traffic, with the emulated PLC transmitting slightly more data
packets than real PLC. Although the total number of packets was
found to be different, the PCAP analyses showed that the
emulated PLC generated the same type of network traffic as
observed using the real PLC. When looking at the relative
proportions of the data packets the real and emulated PLC did
not have a difference of greater than 1% between TCP/IP and
UDP/IP packet transmission.

Validation analyses investigating the sampling rate of
OpenPLC Runtime found that on average the sampling rate set

8 © 2019 by ASME

in OpenPLC matched the ideal sampling rate. For sample rates <
250 ms however, the variance of the sampling rate is significant.
The smallest difference in the sampling rates of the emulated and
real PLC systems occurred for a sampling rate of 250 ms.

Finally, the physical signatures of the actuation
response time and sampling rate are also characterized for the
real PLC and compared against the developed PLC emulation.
The validation testing analyses showed that the difference
between actuation signal response times of the real and emulated
PLC was found to be within 2%, Table 5. Nonphysical actuation
response times were also observed due to the real-time
implementation of the simulated process. This result suggests
that future cyber-physical emulation experiments using
asynchronous communication with time dependent processes
should ensure that the simulated process runs in real-time
ensuring that the cumulative error is never greater than one major
time step. This complication can be avoided by using
synchronous communication, but additional programming
would be required to incorporate time dependent controllers,
such as proportional-integral-derivative (PID) controllers.

PLC
Type

Signature
Average
(ms)

STD
(ms)

Network QR 1.78 3.19
Response RQ 21.87 9.04

Real
Network
Traffic

TCP/IP 25666.60 1946.36
UDP/IP 35.20 8.15

Sampling Rate 249.99 0.70
Actuation Response Time 284.06 79.03
Network QR 0.73 0.61
Response RQ 23.56 8.75

Emulated
Network
Traffic

TCP/IP 27455.40 1266.14
UDP/IP 43.60 16.88

Sampling Rate 250.00 3.35
Actuation Response Time 280.59 77.10

TABLE 5: SUMMARY OF DIGITAL AND PHYSICAL
SIGNATURE DATA

The validation testing analyses demonstrate PLC emulation
with actuation responses and sampling rates which are nearly
indistinguishable from the real PLC to the process simulation
being controlled. From a cybersecurity perspective, this PLC
emulation runs the same software, communicates using the same
communication protocols, and generates the same types and
proportions of network traffic data types as the real device.
Employment of the developed PLC emulation methodology
shows the importance of selecting the proper configuration
parameters to ensure that the emulated PLC behaves comparable
to the real system, confirming the need for detailed
characterization and comparison of the physical and digital
signatures as is performed in this work. Special attention should
be given to the time dependencies of the PLC, such as the
sampling rate or how the PLC interfaces with the simulated
process, to ensure representative behavior of the process being
modeled.

ACKNOWLEDGEMENTS
This research is being performed using funding

received from the DOE Office of Nuclear Energy's Nuclear
Energy University Program under Contract No. Nu-18-NM-
UNM-050101-01. Sandia National Laboratories is a multi-
mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. DOE's National Nuclear Security
Administration under contract DE-NA-0003525. The views
expressed in the article do not necessarily represent the
views of the U.S. DOE or the United States Government.

REFERENCES

[1] Falliere, N., Murchu, L., and Chien, E., 2011, "W32 Stuxnet
Dossier," Symantec.
[2] Dragos, 2017, "TRISIS-Hatman Malware Analysis of Safety
Systems Targeted Malware."
[3] Dragos, 2017, "CrashOverride Analysis of the Threat to
Electric Grid Operators."
[4] Nance, K., Hay, B., Dodge, R., Seazzu, A., and Burd, S.,
2009, "Virtual Laboratory Environments: Methodologies for
Educating Cybersecurity Researchers," Methodological
Innovations Online.
[5] Camacho-Lopez, T. R., 2016, "SCEPTRE," Electricity
Subsector Coordinating Council & Government Executives
MeetingAlbuquerque, NM.
[6] Zhou, C., and Chen, H., 2009, "Development of a PLC
Virtual Machine Orienting IEC 61131-3 Standard," 2009
International Conference on Measuring Technology and
Mechatronics Automation, pp. 374-379.
[7] Thamrin, N., and Ismail, M., 2011, "Development of Virtual
Machine for Programmable Logic Controller (PLC) by Using
STEPS Programming Method," IEEE International Conference
on System Engineering and Technology, IEEE.
[8] Gasser, T., 2013, "Virtual Machine and Code Generator for
PLC-Systems."
[9] Alves, T. R., Das, R., and Morris, T., 2016, "Virtualization of
Industrial Control System Testbeds for Cybersecurity," ICSS.
[10] Alves, T. R., Buratto, M., de Souza, F. M., and Rodrigues,
T. V., 2014, "OpenPLC: An Open Source Alternative to
Automation," Ieee Glob Humanit C, pp. 585-589.
[11] VMWare, 2019, "VIvIWare Workstation."
[12] MathWorks, 2019, "Matlab & Simulink R2019b," Natick,
Massachusetts, United States.
[13] Combs, G., 2019, "Wirshark."
[14] Nise, N. S., 2015, Control Systems Engineering.

9 © 2019 by ASME

