
Manage Internal Queue w/ Flux
for Common Workflows

Slides & Content Generated by

Anthony Agelastos, Gary Lawson, Dong Ahn, Mark Grondona,

Slides Presented by

LLNL Flux Team

Stephen Herb

liffr NffSit

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-1164PE

2 Acknowledgments ■

This presentation would not have been possible without the following direct contributions

LLNL
o Dong Ahn
O Jim Garlick

O Mark Grondona
o Stephen Herbein
O Daniel Milroy
o Tapasya Patki

o Francesco Di Natale

SNL
O Anthony Agelastos

o Gary Lawson

... with motivation/need exhibited from the following indirect contributions

SNL
O Micheal Glass (ASC IC/ATDM)
O Brian Adams (ASC Dakota)
o Paul Wolfenbarger (ASC CompSim DevOps)
O Richard Drake (ASC CompSim DevOps)
o Steve Monk (FOUS)
O Ann Gentile (FOUS)

3 I Executive Summary

There are many workflows that require launching and processing jobs in bulk.
o Testing, Uncertainty Quantification (UQ), Verification and Validation (V&V), optimization, parameter study,
and Design of Experiments (DoE) are typical activities that require bulk processing.

The activities above are lumped into 2 the following 2 categories.

Unit a Reg

Develo• men tens of thousands
run for

every commit (many times per day)

V Ensemble Processing

1 0 .

millions .
1 11 •

may need to ha
f fast test case

arge resources.

thousands-
for a study using

These cases, individually, are fast but their quantity exceeds what is reasonable for submitting to
traditional HPC queues which are optimized for lower numbers of longer-running jobs.

4 Executive Summary (contd.)

s.

This presentation provides a demonstration of using Flux to address these use cases.

iMethOudn
o A simple test case was created for the demonstration.

O A modern Flux installation was created (the version bundled with TOSS is stale).

o Caveats, experiences, results, and methods for extending to more complicated problems are disseminated.

o Discuss observed barrier to entry from someone _not_ on the development team.

o The example is simple to help prospective users understand Flux's small barrier to entry for evaluation.

kResults
O Flux installation was robust and easy.

O Getting Flux working as an internal queue for problems is very fast and reliable.

O Information supporting both activity categories is presented.

•

5 Installing Flux

Experiences & Notes

o Instructions for "developer" and Spack builds were followed and resulted in success on the 1st hy.

O Intel compiler versions 16, 19 & GNU compiler versions 4.8, 8.2 were tried and all resulted in a build of Flux on TOSS.

O Certain OpenMPI versions contain bugs and cause cause issues with Flux.

O Bug: https://github.com/open-mpi/ompi/issues/6730

O PR: https://github.com/open-mpi/ompi/pull/6764

O Currently, avoid most versions >= 3.1.0 (issue confirmed on 3.1.0, 3.1.3, 4.0.0, 4.0.1)

O Test case was performed with OpenMPI 1.10.

O Test suite worked as expected and displayed passing/failing tests.

Compiling and installing Flux was easy Et reliable on TOSS/RHEL.

6 I Unit & Regression Test Case: Description

mpi_greet_after_sleepis a simple MPI
application that does the following:
. MPI_Barrier () (syncs ranks after initialization)

. sleep (20) (sleeps for 20 sec.)

o get_time_of_day () (gets current date & time)

. MPI Barrier () (syncs ranks)

o rank 0 process spits out location and timing info

•

$ srun -N 2 -n 72 impi greet after sleep
Hello WORLD! I am noae ama42 with 72 ranks

Started at: Mon Jan 27 22:13:55 2020

Finished at: Mon Jan 27 22:14:15 2020

Simple application is used to create example test case

7 Unit & Regression Test Case: Using with Flux CLI

Get an allocation on 4 nodes
. salloc -N 4 --time=4:00:00

Tell Flux you want backfill
. export FLUXQMANAGEROPTIONS="queue-policy=easy"

Start Flux upon the 4 nodes with 1 Flux instance per node
. srun --pty --mpi=none -N 4 -n 4 flux start -o,-S,log-filename=mpi_greet_after_sleep.log

Submit a case
. flux mini submit -N 4 -n 144 -t 30 ./mpi_greet_after_sleep »submit id 2>&1

Get job output if desired
. flux job attach 'cat submit_id'

This is a high-level overview of the entire process! There are not many steps!

8 I Unit & Regression Test Case:Workload

The workload contains the following
41 jobs:

O 1x 4-node job

O 2x 3-node jobs

O 4x 2-node jobs

O 10x 1-node jobs

O 8x 1/2-node jobs

O 16x 1/4-node jobs

The workload was designed to take
~'3:00 if the entire 4-node allocation
was wholly utilized.

2-node 2-node

2-node 2-node

 ,
\

 J

N

 /
,

 J

1/2 1/2 1/2 1/2 1/2 1/2 1/2

.1/4 EIBIBEICIEBENE111111111111111111111111111 A

Workload contains jobs that only require a fraction of a node's resources up to 4 nodes.

9 I Unit & Regression Test Case: Ordered Submission

Submission Order (# nodes)
1. 4 22. 1/2

2. 3 23. 1/2

3. 3 24. 1/2

4. 2 25. 1/2

5. 2 26. 1/4

6. 2 27. 1/4

7 . 2 28. 1/4

8. 1 29. 1/4

9. 1 30. 1/4

10. 1 31. 1/4

11. 1 32. 1/4

12. 1 33. 1/4

13. 1 34. 1/4

14. 1 35. 1/4

15. 1 36. 1/4

16. 1 37. 1/4

17. 1 38. 1/4

18. 1/2 39. 1/4

1/2 1/419. 40.

20. 1/2 41. 1/4

21. 1/2

Wave 1

2

3

4

5

6

7

8

9

10

T -1 -
IN tilIC 1 IN tilIC Li IN tilIC .3 IN tilIC 4

I

.

,

1 .I
,

1

ano 2-node

2-node 2-node

2-node 1-node 1-node

1-node 1-node 1 -2ade „ _,11,
1/2 1/2 1-node 1/2 v 1/2

,_.,,
1/2 1/4 1/4 IA

1/4
IA 1 1/4

 FM
IA IA yit

The packing was nearly optimal; runtime variations and inconsistent start times are cause
for extra wave.

10 I Unit & Regression Test Case: Random Submission

Submission Order (# nodes)
1. 1/4 22. 1/2

2. 1 23. 2

3. 1/4 24. 1/4

4. 1/4 25. 1/2

5. 1/4 26. 1

6. 3 27. 4

7 . 1/4 28. 1/4

8. 1 29. 1/4

9. 1/4 30. 1/4

10. 1/4 31. 2

11. 1 32. 1/2

12. 1 33. 1/2

13. 1 34. 1/4

14. 1/4 35. 2

15. 1/2 36. 1/4

16. 1/4 37. 1

17. 1 38. 3

18. 1/2 39. 1

19. 1 40. 1/2

20. 1/4 41. 2

21. 1/2

Wave 1

2

3

4

5

6

7

8

9

10

11

Packing was I

1\T- -1 - 1\T- -1 - A
IN ULIC 1 IN ULIC G IN ULIC .3 IN ULIC ̀-t

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

I
1

1/2 1/4 1/4 1/2 1/2
_i

MMIEJEJ 1/2
2-node

1-noe-

AI 1
1/2 2-node

2-node

A I 3-n

2-node

depth optimization + job start/stopss optimal due to queue not synced.

11 I Unit & Regression Test Case: Random Submission (contd.)

Extra Specialization
o Can specify queue depth optimization parameter via:
FLUX QMANAGER OPTIONS="queue-policy=easy queue-params=queue-depth=<#>"

o Queue depth = 2 had 12 waves

o Queue depth = 20 had 11 waves

o Queue depth = 41 had 10 waves

o Queue depth = 100 had 10 waves]
o More detailed discussion regarding this at https://github.com/flux-framework/flux-sched/issues/572

Simple tuning of the queue depth reduced the amount of waves down to 10.

12 I Enhancing the Test Case: Submitting Scripts

OLD: Submit a case (directly calling application mpi greet after sleep)
. flux mini submit -N 4 -n 144 -t 30 ./mpigreetaftersleep

NEW: Submit a case (calling script internal script . sh)
. flux mini submit -N 4 -n 144 flux start ./internal script.sh

NEW: Within script (internal script . sh) execute parallel application with this
. flux mini run -N 4 -n 144 -t 30 ./mpigreetaftersleep

Scripts can be run as well and each script can run different sized applications that Flux will manage.

13 I Limitations with Large Ensemble Processing

Flux Interface

• Flux supports a command line interface (which was leveraged for the technology demonstration herein).

O Flux also provides a Python API and other methods for ingesting jobs.

0 Python API is the preferred method for interacting with Flux for medium-to-complicated workflows.

Issue with Submitting Large Ensembles

o Methods described herein have a "slow" ingest rate of 4-8 job/s. This would require almost 2 days for 1
million jobs, which may not work for such a large ensemble.

o Thankfully, they have bulk loaders and methods directly accessible with their Python API to drastically
increase this to over 600 job/s (needing about 30 minutes to submit a full stack of 1 million jobs).

° Refer to discussions within https://github.com/flux-framework/flux-sched/issues/573 for more details.

■

Flux has a diverse set of accessor methods that can tailor to many workflows.

1
1

14 Conclusions & Future Work

ibonclusions
O Flux was easy to install, run, and extend to suit the simple example herein.

o Flux is very easy to use for managing internal queues and provides good behaviors right out of the box with
minimal tinkering.

O Flux is the most comprehensive solution tested to date for dynamic workflows conslsting of heterogeneous
jobs.

IFuture WM
o SNL Dakota team is crafting a dynamic, heterogeneous optimization case that involves real simulation codes
being driven by Dakota. Flux will be put in the loop to manage the resource allocations as a more expanded
example case to share with the broader Dakota user base.

O Data herein will be disseminated to various teams whose testing strategies can be enhanced with Flux.

•

