SAND2020- 1164PE

Manage Internal Queue w/ Flux
for Common Workflows

Slides & Content Generated by

Anthony Agelastos, Gary Lawson, Dong Ahn, Mark Grondona, Stephen Herbein

_ — — om NYSE
Slides Presented b y Sandia National Laboratories is a multimission
LLNL Flux Team

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 I Acknowledgments

This presentation would not have been possible without the following direct contributions

LINL SNIL
> Dong Ahn

° Anth Agelast
° Jim Garlick nthony Agelastos
> Mark Grondona ° Gary Lawson
° Stephen Herbein
> Daniel Milroy

o Tapasya Patki
° Francesco Di Natale

... with motivation/need exhibited from the following indirect contributions

SNL
> Micheal Glass (ASC IC/ATDM)

Brian Adams (ASC Dakota)

Paul Wolfenbarger (ASC CompSim DevOps)
Richard Drake (ASC CompSim DevOps)
Steve Monk (FOUS)

Ann Gentile (FOUS)

(e]

o

(e]

(o]

(o]

3 | Executive Summary

There are many workflows that require launching and processing jobs in bulk.

o Testing, Uncertainty Quantification (UQ), Verification and Validation (V&V), optimization, parameter study,
and Design of Experiments (Doll) are typical activities that require bulk processing,

The activities above are lumped into 2 the following 2 categories.

Unit & Regression Testing Ensemble Processing

Development teams have of Analysts may need to have

test cases that, ideally, would be of fast test cases using
using low- low-to-large resources.

to-medium scale resources.

These cases, individually, are fast but their quantity exceeds what is reasonable for submitting to
traditional HPC queues which are optimized for lower numbers of longer-running jobs.

4 | Executive Summary (contd.)

° This presentation provides a demonstration of using Flux to address these use cases.

> A simple test case was created for the demonstration.

> A modern Flux installation was created (the version bundled with TOSS is stale).

o Caveats, experiences, results, and methods for extending to more complicated problems are disseminated.
> Discuss observed barrier to entry from someone _not_ on the development team.

° The example is simple to help prospective users understand Flux’s small barrier to entry for evaluation.

° Flux installation was robust and easy.
o Getting Flux working as an internal queue for problems is very fast and reliable.

o Information supporting both activity categories is presented.

s | Installing Flux

Experiences & Notes
° Instructions for “developer” and Spack builds were followed and resulted in success o7 he 17 try.
° Intel compiler versions 16, 19 & GNU compiler versions 4.8, 8.2 were tried and all resulted in a build of Flux on TOSS.
o Certain OpenMPI versions contain bugs and cause cause issues with Flux.

° Bug: https://github.com/open-mpi/ompi/issues/6730
o PR: https://github.com/open-mpi/ompi/pull /6764

o Currently, avoid most versions >= 3.1.0 (issue confirmed on 3.1.0, 3.1.3, 4.0.0, 4.0.1)

° Test case was performed with OpenMPI 1.10.
° Test suite worked as expected and displayed passing/failing tests.

Compiling and installing Flux was easy & reliable on TOSS/RHEL.

¢ I Unit & Regression Test Case: Description |
$ srun -N 2 -n 72 ./mpi greet after sleep
mpi greet after sleepisa simple MPI Hello WORLD! I am node ama42 with 72 ranks
application that does the following: Started at: Mon Jan 27 22:13:55 2020

o MPI Barrier () (syncs ranks after initialization) Finished at: Mon Jan 27 22:14:15 2020
> sleep(20) (sleeps for 20 sec.)
° get_time of day() (gets current date & time)

° MPI Barrier() (SynCS ranks)

o rank 0 process spits out location and timing info

Simple application is used to create example test case

7 I Unit & Regression Test Case: Using with Flux CLI

Get an allocation on 4 nodes
o gsalloc -N 4 ——-time=4:00:00

Tell Flux you want backfill

° export FLUX QOMANAGER OPTIONS="queue-policy=easy"

Start Flux upon the 4 nodes with 1 Flux instance per node

° srun --pty —--mpi=none -N 4 -n 4 flux start -o,-S,log-filename=mpi greet after sleep.log

Submit a case
o flux mini submit -N 4 -n 144 -t 30 ./mpi greet after sleep >>submit id 2>&l

Get job output if desired

o flux job attach "cat submit id’

This is a high-level overview of the entire process! There are not many steps!

s I Unit & Regression Test Case: Workload

The workload contains the following

41 jobs:

° 1x 4-node job
2x 3-node jobs
4x 2-node jobs
10x 1-node jobs
8x /2-node jobs
° 16x Ya-node jobs

o

o

o

(¢]

The workload was designed to take

=3-:00 if the entire 4-node allocation

was wholly utilized.

I

~
\

J

2-node

2-node 2-node

2-node

|][|

[

|

N

~
J
™
J
~
J
J

|

|

1[
7
“\~

v | ovn | o | %

Va

[2

(i (%% %] % %] %] %

Workload contains jobs that only require a fraction of a node’s resources up to 4 nodes.

| 7
AT TARARATATE

o I Unit & Regression Test Case: Ordered Submission

Submission Order (# rnodes)

1. 4 22 1, Node 1 Node 2 Node 3 Node 4

2. 3 23, VY, —— , = , , ,

3.3 24 Wave 1 _4-nod []

4, 2 25. Vs 2

5. 2 26. VY4 3

6. 2 27. VY4

7. 2 28. Vi 4

8. 1 29. Y4 5

9. 1 30. Vi

10.1 31. Y 6

11.1 32. Y, v

12. 1 33. Y4

13.1 34. Yi 8

14.1 35 Y 9

15. 1 36. Va4

16.1 37. Y 10

17 1 38. Vi

18. Y2 39. Vi

;3 Z 2 j(l) Z N The packing was nearly optimal; runtime variations and inconsistent start times are cause
S 2 4

for extra wave.

(NS
i
o

0o I Unit & Regression Test Case: Random Submission

Submission Order (# rnodes)

Ly, 20 1 Node 1 Node 2 Node 3 Node 4
3 1 28 2 ———
3. Vi 24 YA Wave | N I
4 Ve 25 20 Y | | v | v
5. Y4 26, 1
6. 3 27. 4 3 S [
7. Vi 28. Vi 4 oo | Va4 | Va . Va Va
8. 1 29. Y 5 w | %l w1 % | v de
9. Ya 30. Y - '
10. va 31. 2 6 | 1-n¢ |
1.1 32, % v T
12.1 33. Y —_—
3.1 34 Y 8| " /2 ode Vs | Va V2
14. %4 35, 2 9] | ode
15. % 36. Y T
1 3C
16. v 37. 1 0 E
7.1 38. 3 11 ode
18. % 39. 1
19.1 40. Y
20 1/4 41 2 9 ® Op dl duc U cuce dep O e U O 2] o
21. Vs

\ v, \
- O e B 00}

11 I Unit & Regression Test Case: Random Submission (contd.)

Extra Specialization

° Can specify queue depth optimization parameter via:
FLUX QOMANAGER OPTIONS="queue-policy=easy queue-params=queue-depth=<#>"

° Queue depth = 2 had 12 waves
° Queue depth = 20 had 11 waves
> Queue depth = 41 had 10 waves
[> Queue depth = 100 had 10 Wavesj
> More detailed discussion regarding this at https://github.com/flux-framework/flux-sched/issues/572

Simple tuning of the queue depth reduced the amount of waves down to 10.

12 I Enhancing the Test Case: Submitting Scripts

OLD: Submit a case (directly calling application mpi greet after sleep)
o flux mini submit -N 4 -n 144 -t 30 ./mpi greet after sleep

NEW: Submit a case (calling script internal script.sh)

o flux mini submit -N 4 -n 144 flux start ./internal script.sh

NEW: Within script (internal script.sh) execute parallel application with this
°o flux mini run -N 4 -n 144 -t 30 ./mpi greet after sleep

Scripts can be run as well and each script can run different sized applications that Flux will manage.

13 | Limitations with Large Ensemble Processing

Flux Interface
° Flux supports a command line interface (which was leveraged for the technology demonstration herein).

° Flux also provides a Python API and other methods for ingesting jobs.

o Python API is the preferred method for interacting with Flux for medium-to-complicated workflows.

Issue with Submitting Large Ensembles

> Methods described herein have a “slow” ingest rate of 4-8 job/s. This would require almost 2 days for 1
million jobs, which may not work for such a large ensemble. ®

° Thankfully, they have bulk loaders and methods directly accessible with their Python API to drastically
increase this to over 600 job/s (needing about 30 minutes to submit a full stack of 1 million jobs). ©

o Refer to discussions within https://github.com/flux-framework/flux-sched/issues/573 for more details.

Flux has a diverse set of accessor methods that can tailor to many workflows.

14 | Conclusions & Future Work

Conclusions

° Flux was easy to install, run, and extend to suit the simple example herein.

° Flux is very easy to use for managing internal queues and provides good behaviors right out of the box with
minimal tinkering,

° Flux 1s the most comprehensive solution tested to date for dynamic workflows consisting of heterogeneous

jobs.

> SNL Dakota team 1s crafting a dynamic, heterogeneous optimization case that involves real simulation codes
being driven by Dakota. Flux will be put in the loop to manage the resource allocations as a more expanded
example case to share with the broader Dakota user base.

° Data herein will be disseminated to various teams whose testing strategies can be enhanced with Flux.

