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Improving Qubit Readout with Hidden Markov Models*

Luis A. Martinez, Yaniv J. Rosen, and Jonathan L. DuBois
Lawrence Livermore National Laboratory, CA 94550, USA

We demonstrate the application of pattern recognition algorithms via hidden Markov models
(HMM) for qubit readout. This scheme provides a state-path trajectory approach capable of detect-
ing qubit state transitions and makes for a robust classification scheme with higher starting state
assignment fidelity than when compared to a multivariate Gaussian (MVG) or a support vector
machine (SVM) scheme. Therefore, the method also eliminates the qubit-dependent readout time
optimization requirement in current schemes. Using a HMM state discriminator we estimate fideli-
ties reaching the ideal limit. Unsupervised learning gives access to transition matrix, priors, and
IQ distributions, providing a toolbox for studying qubit state dynamics during strong projective

readout.

I. INTRODUCTION

Quantum processors employing superconducting
qubits are now reaching new milestones in their simula-
tion [1-4] and computational capabilities [5]. There are
numerous technical challenges in the implementation of
a fault tolerant quantum processor, but at the core is
the ability to generate high fidelity gates [6, 7], perform
quantum error correction [8, 9], and the ability to
make high-fidelity qubit readout measurements [10]. In
particular, high-fidelity single shot qubit readout enables
faster quantum protocols while simultaneously allowing
for reduced errors in their characterization. Apart from
improving T; times of superconducting qubits [11, 12],
optimizing hardware design and configuration [10], and
invoking new qubit-cavity coupling schemes [13], read-
out fidelity may be improved by applying classification
schemes utilizing machine learning algorithms [14, 15].

Here we demonstrate the application of pattern recog-
nition algorithms, via hidden Markov models [16], to the
heterodyned readout signal of a superconducting qubit
[17]. The Markov structure allows for a state-path tra-
jectory approach by discretizing each shot into a sequence
of uncorrelated segments. The result is a robust start-
ing state classification scheme with higher fidelity than
when compared with multivariate Gaussian (MVG) and
support vector machines (SVM) classifiers [18]. The ad-
vantage arises from the ability to detect transitions with
high probability and, thus, circumvent measurement ob-
fuscation caused by qubit state relaxation. In addition,
the application of hidden Markov models for qubit read-
out can naturally be extended to multi-level qudit sys-
tems. Unsupervised learning with hidden Markov models
provide the capability of extracting distribution parame-
ters, transition matrices, and starting state probabilities
(priors), therefore, providing a valuable toolbox for qubit
readout and measurement error correction [19, 20].

This paper is organized as follows. First, an exam-
ple illustrating the evolution of the readout signal in the
IQ plane is presented, followed by a description of the
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experimental system used to generate the experimental
data. We continue with a brief description of the MVG
and SVM classifiers and define the fidelity metrics be-
fore detailing the implementation of the hidden Markov
model (HMM) classifier. Next, we extract the statistical
variations associated with training HMMs and calculate
classification errors. Finally, we calculate the readout fi-
delity of a HMM state classifier and compare it with the
ideal fidelity metric defined in reference [14].
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FIG. 1. Running average (colored line) of the heterodyned
signal of a single shot in a two-qubit four-state system. The
different colors correspond to time evolution. The star marker
denotes the demodulated IQ value over the entire measure-
ment time. Bayes classifier and contour lines representing
probability distributions shown for reference.

Random noise and qubit decay processes reduce read-
out fidelity. In Fig. 1 the trajectory of a single shot
measurement for two coupled qubits in a 3D CQED sys-
tem [21] is tracked in the IQ plane. For reference, Fig.
1 also includes a Bayes classifier trained on several sin-
gle shots for each qubit state. The contour lines repre-
sent the probability distributions learned with a general
mixture model. From the running average of the hetero-
dyned signal (colored line) we see the signal starts near
the prepared |0, 1) state (purple), wanders around the IQ
plane, and finally decays to the ground state |0,0) (yel-
low). Integration over the total readout time, denoted
by the star marker, illustrates that this shot would had
been classified to state |0,1) with low probability. This



example illustrates that, apart from optimizing hardware
parameters [10], choosing an appropriate readout inte-
gration time plays an important role in mitigating qubit
relaxation.

II. METHODS

The experimental quantum platform is a 3D cavity
QED [17, 21] system utilizing a strong-projective disper-
sive measurement scheme [22]. In this platform the qubit
state information is encoded in the amplitude and phase
of the readout signal. For a single shot measurement,
a readout pulse of width W and radio frequency w, is
applied to the readout resonator, filtered, and amplified.
At this stage, as indicated in Fig. 2(a), a fidelity limit
is imposed by the signal to noise ratio (SNR) and the
CQED system parameters [10]. For the purpose of this
work, these parameters are to be associated with hard-
ware and, therefore, assumed to be fixed after some initial
optimization. Next, the amplified signal is mixed down,
with a RF-mixer and a local oscillator tone at frequency
wro, to an intermediate frequency Q;r = w, —wro. The
IF signal is then digitally decomposed in quadrature and
demodulated by picking out the Fourier component at
Qrr. The demodulation process integrates both the in-
phase and quadrature components for a total integration
time Ty, (Fig. 2(b)). At this stage the readout fidelity
may be optimized by appropriately tuning of the integra-
tion time. Insufficient state distinguishability may arise
for relatively short integration times, whereas qubit de-
cay obfuscates the readout signal for long times. The
demodulation of each single shot results is a (I,Q) co-
ordinate and the histogram of several shots forms the
probability distribution in the IQ-plane as illustrated in
Fig. 2(c).

Preparing a state classifier involves a training proce-
dure in which a training dataset is used to learn the model
parameters (Fig. 2(d)). For the multivariate Gaussian
(MVG) model, the training solely consists of learning the
mean array [ and covariance matrix 3. The goodness-of-
fit of the MVG model is severely affected for longer read-
out times because the IQ distributions for states exhibit-
ing state transitions become skewed and, therefore, non-
Gaussian [23]. Support vector machines (SVM) provide
both supervised and unsupervised learning capabilities
[18, 24]. Because SVMs are geometric models and can,
therefore, partially circumvent random noise processes,
they provide excellent classification results by finding an
optimal hyperplane which provides maximum separation
between clusters. However, SVMs also succumb to T3 ef-
fects, and so, an optimal integration time is required for
maximum readout fidelity.

A. Fidelity Metrics

Before describing HMMSs we define the fidelity metrics
used herein, and remind the reader we are operating in
the strong projective measurement limit. In the absence
of qubit state decay and assuming Gaussian noise, the IQ
distributions for each readout state are Gaussian. The
ideal fidelity, F,q, defined by the misclassification proba-
bility, is computed from the integration of the overlapped
regions of the projected Gaussian probability distribu-

tions [14];
Fia = ;(l—l-erf(\/?)). (1)

Here, R is a measure of the separation between the two
distributions in question [14].
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S denotes the measurement outcome after the integration
of the signal, i.e. the demodulated value, and var(S) is
the variance of S. In practice, the I1Q probability dis-
tributions are also well modeled by Gaussian distribu-
tions so long we operate in the limit where the integra-
tion time is much less than the relaxation time. However,
for relatively long integration times (T}, = 5% x T1), the
distributions are skewed by relaxation transitions and a
Gaussian model is no longer adequate.

If the readout state probability distributions are not
Gaussian, the method of calculating fidelity described
above in Eq. (1) is not suitable. Instead, fidelity of
classification systems may generally be assessed through
various statistical figures of merit [25]. Here we use the
assignment fidelity, (F,), to compare the MVG, SVM,
and HMM classifiers. The assignment fidelity is adapted
from a more general distortion measure which is equiva-
lent to the infidelity. Introduced by Shanon’s information
theory [26], it gives a quantitative measure for perfor-
mance of classification systems which generalizes to the
confusion matrix formalism illustrated in Fig. 2(e). For
the two state case the assignment fidelity is

Fu=1- 3(P(O]1) + P(1[0)), Q)

where P(i|j) is the probability the label ¢ is assigned
when state j is prepared. Note, that this definition makes
P(i|j) dependent on the fidelity of the gate used to pre-
pare the state, and the starting state population at the
start of the readout measurement.

B. Hidden Markov Models for Qubit Readout

Hidden Markov models are a special case of Bayesian
networks in which underlying hidden stochastic Markov
processes yield observations which themselves are asso-
ciated with a probability distribution. HMMs have been
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FIG. 2. Summary of Qubit Readout. (a) Factors determining readout fidelity begin with the quantum hardware; Hamiltonian
parameters, and SNR. (b) Apart from hardware, fidelity may be improved at the demodulation stage. Conventional demod-

ulation scheme requires tuning to an optimal integration time in which the distributions are approximately Gaussian (c).

(d)

Regression analysis can be used to train models for improved classification performance. (e) Classification errors are extracted

from the misclassification probabilities.

used to measure the relaxation time of the nuclear spin
state of a nitrogen-vacancy defect in diamond [27], and
more recently in a proposed robust readout scheme for
bosonic systems in the dispersive coupling regime [28].
For this work the relevant parameters (see appendix sec-
tion 2) of a HMM are [16]:

(4)

O = (1,Q) pair observation sequence
D = {d}, set of qubit states
N = number of qubit states in the model
m = set of initial state distributions
By = (I,Q) pair probability distribution
given state d € D

A = [a;;], state transition matrix

Preparing a readout measurement as a Markov chain
requires partitioning a single shot of total time ¢ into
several uncorrelated segments. Note that the total read-
out time ¢ does not necessarily correspond to the readout
pulse width W, and typically t < W. Each segment is
demodulated for a short time interval At, resulting in a
single observation in the form of an IQ pair; O; = (I;, Q;).
Therefore, each shot becomes a discretized sequence of
observations of size n = t/At, where n is an integer. The
emission probability distribution, By = P(O|d), is the
probability that the observation pair (I, Q) was emitted
from state d. For qubit readout, By corresponds to the
2-dimensional probability distributions in IQ-space that
randomize the readout measurement based on the hidden
state (e.g., Fig. 2(c)). The hidden states are identified
with the qubit states; for two states D = {]0),|1)}. The
Markov assumption requires that the state d; be only
dependent on the preceding state d;_i. This is satis-
fied since in this regime, the probability of transitioning
from the excited state in one observation segment to the
ground state in the next is fixed by P,(At) = e~ 2/T1,

The transition matrix A = [a;;] gives the transition
probabilities between the qubit states. The off-diagonal
elements of the form a;; for ¢ > j are associated with
qubit state relaxation, and elements in which 7 < j can

be attributed to qubit excitations, e.g. due to heating.
The initial state distributions 7 represent the initial state
probability of state d, i.e. the priors. For example, in the
ideal case in which the excitation rate is zero (ag; = 0),
the transition matrix (A) for the two state case is given
by

1 0
1— efAt/Tl,eff eiAt/Tl’eff ’

(5)

Qi =

where 4,5 € {0,1}, and T} s is the effective relaxation
time which accounts for measurement induced dephasing
[29]. In practice, the heating rate is not necessarily zero
and can be extracted from the learned transition matrix
element, F01 = a01/At.

A HMM is defined by the set of parameters A =
(A,B,m,N). There are three well known solved prob-
lems with hidden Markov models, and they are briefly
re-summarized in the following [16]. First, given a HMM
A= (A,B,7,N) and a sequence of observations O one
can determine the probability of the sequence given the
model A, P(O|)). This probability can be computed in
a straightforward fashion by summing the product of the
observation sequence probability and the state sequence
probability over all possible state sequences. However,
this process is computationally intensive. In practice, ei-
ther of the so-called forward or backward algorithms are
used to compute P(O|X) [16]. Note that both the forward
and backward algorithms enable the efficient applicabil-
ity of HMMs. Second, given a model A and observation
sequence O, an optimal hidden state sequence can be
computed. This feature of HMMs allows for the pre-
diction of the optimal state sequence by calculating the
probability of being in state d at observation O;. The
predicted hidden state sequence is then composed by se-
lecting the most probable state at each observation. And
third, given an observation sequence O and the number
of hidden states N, the model parameters can be com-
puted by solving the maximum likelihood problem using
the Baum-Welch algorithm [30]. This key feature enables
the unsupervised training of HMMs.
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FIG. 3. State path prediction with hidden Markov models for
readout of a single 20 us shot. Each shot is discretized into a
sequence of 80 ns observations (0;), and each observation is an
(I,Q) pair emitted from the hidden state having an emission
probability distribution Bg. The forward-backward algorithm
computes the probability of being in the ground (blue) or
excited (red) state, {|0),|1)} respectively. The probability the
qubit was in the excited state at the start of the measurement
was 99.98%.

The application of the forward-backward algorithm via
HMDMs for single shot readout yields a predicted state
path that is based on the probability of being in state
d at each observation O; of the sequence. Because the
forward-backward algorithm finds the best-fit state se-
quence given an observation sequence and model, the re-
sult is the determination of the qubit state at each index
with high probability. In particular, the determination
of the qubit state dy at the start of the readout measure-
ment, can be made with high probability even in cases
where a relaxation transition occurs during the readout
measurement. This is of key importance in qubit appli-
cations where the quantity of interest is the qubit state
immediately at the start of the readout measurement.
For example, Fig. 3 illustrates the predicted state-path
of a 20 us single shot using the forward-backward algo-
rithm. The red line indicates the probability of being

in the excited state d; = |1) at each observation index,
while the blue line represents the probability of being in
the ground state d; = |0) at each observation. It can

been seen that for this single shot a relaxation transition
is predicted near observation index ¢ = 125, yet the prob-
ability the qubit was in the excited state at the start of
the readout measurement (dy = [1)) is 99.98%.

C. HMM Implementation

The HMM readout scheme was implemented in Python
with the Pomegranate package [31]. Preparing a HMM in
Pomegranate could be achieved by “baking” a model if

the model parameters, A = (A, B, 7, N), were known.
Alternatively, unsupervised training using the Baum
Welch algorithm learned the model parameters from a
dataset, but the number of states N was required a-priori.
Since the segments must be uncorrelated, preparing the
heterodyned readout signal required careful selection of
the segment demodulation time At. Hence, to find a
suitable segment demodulation time we calculated the
autocorrelation of the heterodyned readout signal and
determined the point of minimum correlation. Although
there were several points of minimum correlation, corre-
sponding to the intermediate frequency (277 = 25 MHz)
of the signal, we sought the shortest possible time to
ensure that the probability distributions formed by the
discretized 1Q observation segments, By, remained Gaus-
sian. However, while training hidden Markov models, we
found that the first minimum at 40 ns (one intermediate-
frequency period) led to large statistical variations in the
learned parameters. The next autocorrelation minimum
which led to consistent HMM parameters corresponded
to a segment demodulation time of At = 80 ns (two
intermediate-frequency periods).

The complete experimental dataset consisted of 25,250
single shots prepared in the ground state, and 25,250
shots prepared in the excited state. Fach excited state
measurement shot was taken with a pulse sequence con-
sisting of a 25 ns m-pulse R, (7), followed by a W = 20 us
rectangular readout pulse. The ground state shots were
obtained with the same readout pulse but without any
qubit excitation preceding it. The readout signal had a
delay time of approximately 250 ns before the detection
of the readout pulse, and another 250 ns was trimmed
from the readout signal to ensure the readout cavity was
in steady state. Therefore, the total delay between the
qubit pulse and observations was 500 ns. Note that due
to this delay we expect the assignment fidelity, defined
by Eq. (3), to be limited by the starting state population
which is on the order of exp(—0.5/14.46) = 96.6%, where
we used the effective relaxation time T3 oyy = 14.46 us
as extracted from the HMM scheme (discussed below).
After these adjustment, each single shot consisted of a
sequence {O;} of 243 IQ observations (further details of
our 3D cQED system can be found in [21]).

D. Unsupervised Learning with HMMs

Before proceeding to the main results we discuss the
validation procedures used to confirm the reliability and
consistency of hidden Markov models via Pomegranate.
First, since qubit readout with HMMs gives access to
the transition rates during the measurement, it is pos-
sible to extract the effective relaxation rate Tj .rf un-
der the influence of the readout signal. However, due
to measurement induced decoherence the relaxation rate
is not necessarily equal to the conventionally measured
T1 [29, 32] (operating in the strong projective regime).
Therefore, to determine the accuracy in estimating T4 sy



State |0.4pus |2.16pus [6us
4 0 6381 |6410 6399
o 5 1 6046 5371 4063
Trans | 73 719 2038
|0) Total | 12500 |12500 |12500
0 |1)
[1)-0)

-2 0 2 4 6
|

FIG. 4. Single shot state discrimination with a hidden Markov
model (HMM) initial state classifier for three different readout
times (7). A HMM is used to classify each shot into one of
three cases; (blue) shots predicted to have started and remain
in the ground state during the readout, (red) shots predicted
to have started and remain in the excited state, and (yellow)
shots in which a relaxation transition occurred during the
readout. The table lists the counts.

with unsupervised learning of HMMs, we generated 31
simulated datasets with the relaxation rates varying lin-
early from 1 us to 16 ps. The learned relaxation rates
were then calculated from the transition matrix element,
T c5r = (—80/In(a11)) ns, where a1; was extracted from
unsupervised learning using the Baum Welch algorithm.
The standard deviation of the differences between the
actual and learned T .5 values was 0.175 s, and indi-
cated that we could estimate the effective T} . ¢ to within
1.25% in this range (see appendix). For our experimental
dataset the learned T} sy value was (14.460+.175) us. In
comparison, measuring 77 using the standard R, (7w) —
variable darktime — readout pulse method resulted in
Ty = 21 &1 ps. The difference of approximately 32%
between the conventionally measured T} and the learned
value was consistent with the qubit induced dephasing
[29, 32] caused by the readout amplitude of ~ 20 pho-
tons [21], estimated via a AC-Stark shift calibration [33].
Similarly, the |0) — |1) excitation rate estimated from
the ag; transition matrix element was I'g; = 9.6 +0.2Hz,
which is reasonable given previous residual excited-state
population measurements [34].

Next, bootstrap sampling techniques were used to ex-
tract the statistical variations in unsupervised training
of HMMs via Pomegranate. The bootstrap technique
consisted of generating 100 randomized subsets for each
state from the experimental dataset. Each randomized
bootstrapped subset consisted of a total of 2,000 ground
state and 2,000 excited state single shot measurements.
HMDMSs were then trained from each bootstrap subset us-
ing the Baum Welch algorithm. The standard deviation

from the bootstrap technique on the learned transition
matrix parameters was under 0.03%, and under 1% for
the means of the IQ distributions, indicating good consis-
tency in unsupervised training of hidden Markov models
via Pomegranate (see appendix for details).

III. MAIN RESULTS
A. Hidden Markov Model State Classifier

The HMM classifier was implemented by using unsu-
pervised learning on a training data subset consisting of
2000 shots prepared in the ground state and 2000 shots
prepared in the excited state. For single shot classifi-
cation the starting state probabilities of the HMM were
then modified such that 7y = 71y = 0.50. The classifi-
cation scheme was based on the state-path predicted by
the forward-backward algorithm, and a “0” or “1” label
was assigned based on the state that had the maximum
starting state probability. The remaining 46,500 shots
were used as a test dataset. In Fig. 4, 6,250 excited
state shots and 6,250 ground state shots were classified
with the HMM readout scheme for three different readout
times. Shots that were predicted to start and remain in
the excited state during the readout measurement were
labeled in red, and those predicted to have started and
remain in the ground state were labeled in blue. Most
importantly, with the HMM readout scheme transitions
can be detected with high certainty while maintaining
high fidelity in the determination of the starting state of
the measurement. This is illustrated by labeling in yellow
those shots in which a transition was predicted.

Next, the excited state assignment fidelity F,1 =
1 — P(0]1) defined by equation (3) is compared for the
HMM readout classifier against a multivariate Gaussian
(MVG) classifier, and a support vector machines (SVM)
classifier. Here the full dataset of 46,500 shots was clas-
sified, and errors for the HMM classifier were extracted
from the bootstrap samples. Fig. 5(a) shows the clas-
sification readout fidelity, J, 1, for the excited state as
a function of the readout time in units of T3 .rs. The
assignment fidelities for the HMM, SVM, and MVG clas-
sifiers were 96.5%=+0.4%, 95.9%+0.4%, and 96.1%40.4%,
respectively. A striking difference between the datasets
is that the HMM method is impervious to qubit state
transitions. Since the HMM scheme can determine the
starting state of shots that underwent a state transition
with high probability, the readout fidelity remains fixed
as a function of the readout time beyond ~ 1 us. Note
that for the HMM scheme the dominant source of mis-
classification was observed from shots that had a tran-
sitions within the first few observation segments. Since
approximately 500 ns were trimmed from the start of
each shot and state preparation errors were estimated to
be less than 1% [21], the excited state assignment fidelity
is expected to be limited by the starting state population
which is on the order of exp(—0.5/14.46) = 96.6%. This



is consistent with the results presented in Fig. 5(a).
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FIG. 5. a) Classifier fidelity in units of the effective relaxation
time T oy for the excited state. The HMM scheme achieves a
maximum assignment fidelity of 96.5% +0.4%, while the SVM
and MVG methods achieve a fidelity of 95.9% + 0.4%, and
96.1% =+ 0.4%, respectively. Shaded regions indicate errors.
The HMM scheme is robust against qubit relaxation time,
eliminating the need for readout time optimization. b) Total
classification error determined with a simulated dataset in
which the starting state is prepared with 100% preparation
fidelity demonstrates that the HMM scheme has a lower total
classification error.

The single shot classification errors for the starting
state were then extracted from a simulated dataset hav-
ing 100% preparation fidelity. The simulated dataset for
the excited state was created by first generating state se-
quences (i.e. a sequence of ones and zeroes) having an ex-
ponential probability distribution with 17 . = 14.46 pus.
Independent, identically distributed random samples of
1Q values were then drawn from the learned multi-variate
Gaussian distributions according to the randomly gener-
ated state sequences. The ground state shots were sim-
ulated, with no transitions, by random sampling from
a multi-variate Gaussian distribution. A plot of the to-
tal classifier error extracted from the simulated dataset,
1—F, = (P(0|]1)+ P(1]0))/2, is shown in Fig. 5(b). This
measure quantifies the errors in the classification of the
single shot measurements for both the excited and ground
states. It can be seen that overall the HMM classifier
has a misclassification error under 2% with a plateau
of 1.86%, whereas the MVG (SVM) method reaches a
minimum error of 2.75% (2.77%) before increasing as a
function of the readout time.

B. Ideal Fidelity and Single Shot Efficiency

Gaussian distributions from the classified shots can be
obtained by using state path prediction with the HMM
scheme, a feature that is not possible with SVM or MVG
based classifiers. In turn, this feature makes it is pos-
sible to compute the fidelity as defined from the inte-
gration of the overlap regions. This method of comput-
ing fidelity from the overlap differs from the assignment
fidelity in that the former will yield the maximum fi-
delity achievable, whereas the latter will be limited by
the starting state population. We may extract the post-
filtered Gaussian IQ probability distributions as follows.
Using state-path prediction with the forward-backward
algorithm, each shot is demodulated until a transition is
detected. When a transition is detected, the shot is split
at the transition and demodulated in two sections. One
section corresponds to when the qubit was predicted in
the excited state for that shot, and the other corresponds
to when the qubit was predicted in the ground state. In
shots with no predicted transitions the signal is demodu-
lated for the complete integration time T5,,;. Demodulat-
ing in this fashion eliminates averaging over transitions,
and relies on the ability of the HMM scheme to correctly
predict the qubit state at each observation index. If the
HMM scheme provides accurate state discrimination, we
expect the sampled distributions of many shots to result
in Gaussian distributions of equal variance for a given
integration time. Note that in the case when T;,; >> T}
this no longer holds.

The resulting 1Q plot for T;,; = 1.2 us is shown in Fig.
6(a). To compute the fidelity of the HMM filtered data,
the HMM-filtered IQ distributions were projected onto
the axis connecting the two centroids [14]. Each of the
projected distributions were then fitted simultaneously
with equal-variance single Gaussians. In contrast, the
ideal fidelities were extracted by simultaneously fitting
equal-variance double Gaussians to each projected distri-
bution of the unfiltered IQ data [14]. Fidelities for both
methods were then computed using equation (1). Table I
shows the results of the computed fidelities for various in-
tegration times (T},:), and shows that the HMM scheme
reaches the ideal fidelity limit.

Table I. Maximum Fidelity from Gaussian Fits

Tine 0.72us 1.2us 2.16us

Ideal (99.14 4 .04)% (99.92 4 .02)% (99.9987 + .0005)%
HMM (99.12 £ .04)% (99.91 & .06)% (99.998 + .003)%

The above method serves to illustrate the flexibility of
using the HMM scheme by having access to state-path
prediction for each shot. An alternative method to ar-
rive at the same conclusion is by allowing low-probability
shot rejection with the HMM classifier, which increases
the readout fidelity at the expense of reducing the read-
out efficiency. The efficiency is quantified by the ratio of
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FIG. 6. a) IQ scatter plot and equal-variance Gaussian fits
of ground (blue) and excited state (red) shots filtered with
the HMM state discriminator for a 1.2 us demodulation time.
Shots predicted to start in the excited state which transitioned
to the ground state during the readout are shown in yellow
points on the left panel. Colored-matched markers on the
right panel represent the projected distributions, solid lines
represent the corresponding fits. Fitting errors are smaller
than the markers. b) Fidelity may be improved by rejecting
low probability shots via a threshold parameter, but only at
the expense of readout efficiency.

accepted shots versus attempted shots. Fig. 6(b) shows
the efficiency and the excited state assignment fidelity
for both, the HMM and MVG schemes. In this case
we selected the optimal readout time of approximately
5% x T, ¢y for the MVG classifier and a arbitrary time
of 10% x Ty s for the HMM scheme. It can be seen the
HMM scheme achieved a higher assignment fidelity than
the MVG scheme, while maintaining a comparable effi-
ciency. We omit the SVM method since its classification
scheme is based on a geometric approach and, thus, does
not enable low probability shot rejection.

IV. CONCLUSION

We demonstrated that hidden Markov models allow for
a robust state-path readout scheme via transition detec-
tion, thus, allowing for starting state determination with
high fidelity. The HMM scheme also demonstrated con-
sistent classification performance even for readout times
comparable with qubit 77 times, where in contrast, cur-
rent state of the art schemes are hindered by qubit state
decay. Thus, using the HMM readout scheme eliminates
the need for optimizing the integration time, a process
which must be tailored to each superconducting qubit
due to individual variations in their 7; times. Mean-

while, the state-path trajectory HMM scheme is compat-
ible with real time control systems, e.g. quantum or-
chestration platforms, which can lead to measurement
speed up. Furthermore, unsupervised learning with the
Baum Welch algorithm provides a tool for learning about
transitions rates between quantum states and distribu-
tion parameters, thus, giving easy access to information
not accessible with current state-of-the-art qubit readout
schemes. Indeed, owing to the Markovian nature of qubit
relaxation, hidden Markov models are a natural platform
for qubit readout, and which, can handle multi-level qu-
dit systems as well.
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Appendix

1. Bootstrap results

The statistical variations on unsupervised learning of
the HMM parameters were obtained by using a boot-
strap technique. For the bootstrap technique we ran-
domly generated 100 bootstrap data subsets from the full
experimental dataset. The sampling for each data subset
was done with replacement, and each subset consisted of
2000 records in the ground state and 2000 records in the
excited state. Each bootstrapped data subset was then
used to train a hidden markov model (HMM) via the
Baum Welch algorithm and statistics were generated on
the variations on the learned parameters. The variations
for the learned means of the IQ distributions are shown
in Fig. 7 along with standard deviations. Similarly, the
variations for the transition matrix elements are shown
in Fig. 8.

2. HMM with 2D Gaussian distributions

This section is intended to illustrate the notation used
in hidden Markov models (HMM) with an example. Sup-
pose we have observed the following sequence of obser-
vations, Og.r = {Op,01,03,...,0r}, and that there
is a corresponding sequence of hidden states, dg.r =
{do,d1,da,...,dr}, from which these observations were
emitted, probabilistically. Here, d represents the hidden
state explicitly, e.g. d = |0), or d = |1), and the index
simply maintains the order in the sequence. In a HMM
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FIG. 7. Statistical variations extracted by the bootstrap

method on the learned values of the means of the Gaussian
1Q distributions for both the ground and excited state.

Variations on Transition Matrix Elements
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FIG. 8. Statistical variations extracted by the bootstrap tech-
nique on the learn values of the transition matrix (A).

we wish to calculate the probability distributions over the
many possible hidden-state configurations a sequence O
of length T can be observed. This is achieved by comput-
ing the joint probability of a hidden-state sequence do.1
and its corresponding observation sequence Og.r,

P(do.r, Op.r) =

P(do)P(Ooldo) P(d1|do) P(d2|d1) P(O1]d1) P(O2|da) - --
=T

= P(do)P(Ooldo) [] P(dildi—1)P(Oildy). (6)
=1

In this notation P(dy) = mq4, represents the probabil-
ity of starting in state dy. The conditional probability
P(d;|d;—1) represents the probability of transitioning to
state d; given we were in state d;_;, thus, it defines
the transition matrix A. The conditional probability
P(0;|d;), known as the emission distribution in the for-

Extracting T; with HMM
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T1, Hum (US)
[
v N o N
o w o u
L T L T

N
U
T

25 5.0 75

100 125 150
T1,sim. (US)

FIG. 9. Simulated datasets varying 731 from 1 to 16 microsec-
onds were used to trained several HMMs via unsupervised
learning using the Baum Welch algorithm. The y-axis repre-
sents the T} values extracted from HMM and they are plotted
against the actual simulated values.

malism of HMMs, is the probability of observation O;
given state d;. For this example we assume the emis-
sion distributions are represented by 2-dimensional equal-
variance (02) Gaussians, therefore, the emission distribu-
tions (By) are given by

Bd(I, Q) = P(Ol|dl)

_ ! exp <—2Ti2[(l —13.)* +(Q — Qdi)2]> . (1)

T 27102

where Iy, Qq, represent the center of the Gaussian dis-
tribution for state d;, and the observation O; is defined
by the (I,Q) coordinate that results from a single shot
measurement. For a strong-projective single-shot qubit
readout measurement the IQ coordinate is the result of
the demodulated heterodyne signal, where I represents
the in-phase component and ) the out-of-phase compo-
nent. In general the emission distributions need not be
Gaussian, and can in principle be modeled by various
probability distributions.

3. Verifying 71 accuracy with HMM

To extract the accuracy in estimating the effective
Ty value with HMM, we generated several simulated
datasets with 77 times varying linearly from 1lus to
16us.  Unsupervised learning using the Baum Welch
algorithm was used to learn the parameters, and the
T, was estimated from the transition matrix element
an = exp(—At/Th ymm),

80
11’1(6011)

ns, (8)

Tivumm =

where we set At = 80 ns, which corresponds to 80 ns x
2 GHz = 160 samples for our 2 GHz ADC. The results



are shown in Fig. 9. The standard deviation of the dif-
ferences (normalized) was 1.25%. The mean deviation
between the actual and learned values was 0.0576 ns with
a standard deviation of 0.175 ns. This indicates that we
can estimate 77 to within 1.25%. Fitting a linear function
y = max gives m = 0.994 4+ .003, which is a difference of
Megp — Miheo = 1 — 0.994 = .006, showing good stability
over the entire sampled range.

4. Confirming T .yy via starting state probabilities

Due to measurement induced dephasing from the
strong readout pulse, the 77 extracted during a readout
measurement is expected to be reduced from the typical
measured 77 value, i.e. not during the readout pulse. As
an alternative to using the transition matrix to calculate
the effective T7, i.e. during the readout measurement,
we confirmed the value by using unsupervised learning
with HMMs to extract the starting state distributions
7 = (moy, 1)), i.e. the priors. This was accomplished
by varying the demodulation start time (i.e. starting
point of integration) for the experimental dataset while
extracting the starting state distributions with HMM.
This is time consuming, but uses the HMM’s optimiza-

tion to calculate the best fit for the model parameters
(A,B,7,N) and learn the starting state distributions.
Fig. 10shows the results along with the fitted exponen-
tial.
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FIG. 10. The effective T:1 time extracted from the unsuper-
vised learning of the starting state distributions by sweeping
the start time of the integration during the demodulation.
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