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ABSTRACT 
 

The US Department of Energy (DOE) National Energy Technology Laboratory’s (NETL) 50 kWth chemical 

looping reactor was determined to have an underperforming cyclone, which was designed primarily using 

empirical correlations. To improve the performance of this cyclone using computational fluid dynamics (CFD) 

based modeling simulations, four critical design parameters including the vortex tube radius and length, 

barrel radius, and the inlet width and height were optimized. For this work, NETL’s open source Multiphase 

Flow with Interphase eXchange (MFiX) CFD code has been used to model a series of cyclones by 
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systematically varying the geometric design parameters. To perform the optimization process, the 

surrogate modeling and analysis toolset inside Nodeworks was used. The basic methodology for the 

process is to use a design of experiments method (optimal Latin Hypercube) to generate samples that fill 

the design space. CFD models are then created, executed, and post-processed. A response surface 

(Gaussian process model) is created to characterize the relationship between input parameters and the 

Quantities of interest (QoI). Finally, the CFD-surrogate is used by an optimization method (differential 

evolution) to find the optimal design condition. The resulting optimal cyclone has a larger diameter and 

longer vortex tube, a larger diameter barrel, and a taller and narrower solids inlet. The improved design 

has a predicted pressure drop 11-times lower than the original design while reducing the mass loss by a 

factor of 2.3. Keywords: optimization, computational fluid dynamics, MFiX-PIC, Nodeworks, response 

surface methods, design of experiments, Latin Hypercube sampling. 

 

INTRODUCTION 
Experience of the design engineer and availability of adequate experimental 

testing capability used to play crucial role in successful engineering designs and shorter 

time-to-market deployments. However, in the last several decades, modeling and 

simulation (M&S) has become one of the key enablers of robust and rapid design of 

engineering products, especially with the tremendous growth and ubiquitous availability 

of high performance computing (HPC). These developments have enabled compute 

resource intensive analysis like uncertainty quantification and/or optimization through 

simulation models to become more mainstream. The ensembles of sampling simulations 

capturing complex physics for such analysis could now be performed routinely through 

simulation campaigns that involve hundreds of sampling simulations on a HPC to 

characterize system response under a diverse range of design parameter conditions to 

achieve optimization more quantitatively. This has opened the door to optimization of 
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complex and dynamic multiphase flow reactors and their components, including 

cyclones. 

Cyclones are widely encountered in industrial processes involving gas & solid 

phases such as for separating dust particles from gas. One of the design objectives when 

selecting or constructing a cyclone is to maximize separation efficiency while 

simultaneously minimizing pressure drop, which in turn enables the maximization of the 

overall process efficiency. Cyclones are often designed based on experience and 

empirical correlations. If the correlation is based on experimental data that is 

reasonably close to the targeted application process parameters, then the correlation 

generally performs well. However, if the range of targeted application process 

parameters differ from the range of experimental process parameters, the likelihood of 

a poorly designed cyclone increases significantly. 

One such underperforming cyclone has been identified as part of the US 

Department of Energy (DOE) National Energy Technology Laboratory’s (NETL) 50 kWth 

chemical looping reactor (CLR) [1]. The CLR circulates approximately 0.08 kg/s of oxygen 

carrier between two reactors in a process that facilitates the reaction of fossil fuels 

while simultaneously capturing carbon dioxide. In such processes, it is imperative that 

the primary cyclone be as efficient as possible while keeping the pressure drop to a 

minimum, to achieve high oxygen carrier recycle rates and maintain a delicate pressure 

balance. High oxygen carrier recycle rates are critical to keep the oxygen carrier in the 

system to minimize the amount of new oxygen carrier that needs to be added to 

maintain system inventory. Reduction in the oxygen carrier make-up helps to improve 
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the overall system economics. The current cyclone was determined to achieve only an 

efficiency of 95-98% over the entire particle size distribution, which is well under the 

typical cyclone efficiencies of > 99%. The CLR typically operates with a solid circulation 

rate of 288 kg/hr and an inventory of 50 kg. With a 95% efficient cyclone, the entire 

inventory will be lost out the cyclone exit in 3.5 hrs. Increasing the efficiency by only 4.9 

percentage points to 99.9% drastically increases this time to 174 hrs; from less than a 

day to over a week. 

To improve the performance of this cyclone, a CFD based modeling & simulation 

campaign was performed to assist the optimization procedure because previous 

attempts using experimentally derived correlations were not successful in improving 

cyclone performance significantly. The basic methodology for the process is to use 

statistical design of experiments principles to generate simulation samples that cover 

the parameter design space through the use of a space filling sampling method like Latin 

Hypercube sampling. Ensembles of CFD models are then created, executed, and post-

processed. A response surface (surrogate model) is created to characterize the 

relationship between input parameters and the Quantities of interest (QoI) to avoid the 

necessity to perform costly simulations during optimization phase. Finally, the CFD-

surrogate is used for objective function evaluations by the optimization method 

selected (differential evolution for this problem) to find the optimal design condition.  

The optimization process was demonstrated to achieve a cyclone design that is more 

efficient than the original design with a lower pressure drop. The rest of the paper is 

organized to as follows, after a brief overview of the computational model employed, 
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we present the details of the simulation campaign and the open-source toolkit, 

Nodeworks employed to generate and manage the sampling simulations. The problem 

configuration and the baseline results presented for comparison with the respect to 

optimized results. Next the process to generate the surrogate model is described, which 

replaces the actual CFD model to reduce computational cost. Prior the optimization 

results, the results of the sensitivity study are presented to demonstrate how such study 

can guide the optimization process by identifying the most influential parameters. 

Finally, the results of the optimization are presented by comparing against the baseline 

results to document the improvements.  

 

METHODS 
 
MFiX: Particle-in-Cell model 

MFiX is an open source computational fluid dynamics code specifically developed 

for modeling gas-solid flows often found in the energy and chemical processing 

industries [2]. MFiX has been used to model fluidized beds, circulating fluidized beds, 

cyclones, and hoppers—all of which are commonly found in chemical processes such as 

coal gasification, fluid catalytic cracking, waste treatment, and chemical production. 

MFiX has three solids models including the two-fluid model (TFM), particle-in-cell (PIC) 

model, and the discrete element method (DEM). This work utilized the recently released 

MFiX version 19.1 which includes a rigorous re-write of the PIC model. 

PIC is a Eulerian-Lagrangian multiphase flow modeling approach that represents 

the fluid as a continuum while using parcels, or clouds, to represent groups of real 

particles with similar physical characteristics. Solids volume fraction is used to calculate 



Journal of Fluids Engineering 

6 

 

a solids pressure gradient on the Eulerian grid which in turn is used to approximate 

collisional stresses acting on parcels and prevent overpacking. This method avoids the 

high computational costs associated with CFD-DEM, specifically collision detection and 

small collision time scales, allowing PIC to be significantly faster. The current PIC 

implementation in MFIX closely follows the method of Snider [3]. 

 
Nodeworks: Surrogate Modeling and Analysis toolset 
 

Nodeworks is an open source graphical programing interface library and 

application where users can add, delete, and connect nodes to create customized visual 

workflows [4]. Nodes perform prescribed operations on data that are passed between 

nodes using connections. The library has been specifically developed in the Python 

programming language to be very flexible, portable and support a wide variety of 

applications with several collections of default nodes to assist deployment of commonly 

used workflows very quickly, even for novice users. Users can also create and add 

custom nodes for specific applications such as machine learning. 

This work leverages a collection of nodes known as the Surrogate Modeling and 

Analysis toolset, which has been developed for implementation of workflows to 

construct and use data-fitted surrogate models, or response surfaces. The surrogate 

modeling and analysis toolset provides access to specialized nodes like optimization, 

sensitivity analysis, forward propagation of uncertainty, and Bayesian calibration. 

Nodeworks is directly embedded into the MFiX’s graphical user interface (GUI), allowing 

Nodeworks to create input decks involving parametrically varying inputs and run the 

simulation campaigns with ease, Fig. 1. Nodeworks version 19.1 was used in this work. 
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Nodeworks can be also employed by other modeling tools to create similar workflows 

with ease. 

 
 
RESULTS 
 
Problem Definition and Baseline Simulation Setup 
 

The cyclone constructed and installed in NETL's chemical looping reactor was 

modeled and used as the baseline case for the simulation campaigns. Fig. 2 shows an 

illustration of the cyclone modeled for this study. The problem configuration and the 

model itself is already provided as a tutorial case within the MFiX distribution due to 

illustrative nature of the problem for typical multiphase flow applications. However, 

several changes were made to the tutorial to facilitate this optimization study, mainly 

the addition of more parametric geometry parameters. 

The Particle-in-Cell (PIC) method was used to model the solids phase, which 

consists of monodisperse, high density polyethylene (HDPE) particles with a diameter of 

871µm and a density of 860 kg/m3. The inlet boundary conditions for the cyclone was a 

gas mass flow rate of 0.02 kg/s and solids flow rate of 0.08 kg/s. Two pressure outlets 

are used, one for the vortex tube outlet at the top of the cyclone and a second for the 

cyclone outlet at the bottom. A constant pressure of 101.32 kPa is set for both pressure 

outlets. Since the cyclone is part of a larger unit, there is a standpipe located at the 

cyclone (bottom) outlet which prevents gas from leaving the bottom of the cyclone. To 

represent this in the cyclone model, a semi-impermeable surface is placed at the 

bottom outlet. The large resistance of the semi-impermeable surface prevents gas flow 
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through the cyclone outlet while allowing the solids to leave, i.e., the solid parcels are 

not affected by the semi-impermeable surface. All wall sections of the cyclone are 

treated as no-slip boundaries for the gas-phase. The wall geometry is defined by a 

stereolithography (STL) file, generated for each case from the parametrized geometry 

variables. A uniform CFD grid was applied of 5 mm in each direction or 5.7 times the 

particle diameter in the x-, y-, and z- directions. For the base geometry, the CFD grid 

resolves the geometry with four cells across the inlet and 16 cells along the length of the 

cyclone. A statistical weight of W = 1.0 was applied in the PIC model, i.e., each parcel 

represents a single particle. No turbulence model was used. 

A point monitor was placed at the inlet of the cyclone to measure the absolute 

pressure and write the transient data as a comma separated value (CSV) formatted ASCII 

file at a frequency of 100 Hz. The resulting time-averaged pressure drop of the cyclone 

can then be calculated by subtracting the vortex tube outlet pressure (101.32 kPa) from 

this point monitor pressure data.  The amount of solids leaving the cyclone through the 

vortex tube is captured and recorded by a User Defined Function (UDF) subroutine that 

was compiled into the MFiX code prior to the runs. This value was also saved to a CSV 

file at a frequency of 100 Hz. Due to the transient nature of the flow in the cyclone, the 

time-dependent solution of the flow field was simulated for a total time duration of 30 

seconds, which required an execution time of 2.5 wall-clock hours on 8 cores for the 

base case. The transient data is time averaged from 5 to 30 s to produce scalar 

quantities of interest.  

 
Design of Experiments (DOE) 



Journal of Fluids Engineering 

9 

 

 
Optimization typically involves many evaluations of the objective function. In the 

context of the current problem, this implies the need for performing many CFD 

simulation corresponding to each updated evaluation of the optimizer.  Considering the 

wall-clock time and computational resources required to perform many hundreds or 

even thousands of evaluations, performing direct simulations as part of optimization 

process is (potentially) computationally intractable. Instead, a surrogate model can be 

constructed to characterize the relationship between input parameters and quantities 

of interest using fewer samples of CFD simulations. The surrogate model is then used in 

lieu of the CFD simulations for optimization because it is significantly computationally 

cheaper to evaluate. The surrogate model (response surface) can be constructed 

through carefully designed simulation campaign using the principles of statistical design 

of experiments [5]. 

For the purposes of this study, a space-filling sampling method is utilized to 

cover the five-input parameter phase-space as much as possible with 100 samples.  

Here, a genetically optimized Latin hypercube design was used, which was already 

implemented in Nodeworks. We note that 20 samples per parameter exceeds the 

commonly used guideline for space-filling designs [6], which recommends at least 10 

samples per parameter. The primary reason was the anticipated likelihood of high 

failure rate of the simulation without convergence due to the statistically generated 

variations in the geometry and accompanying automated mesh generation for each 

case. Hence, the employed sampling size enabled a margin that affords nearly 50% 

failure rate to still satisfy the guideline [6]. The systematically varied input parameters 
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were the five geometric dimensions of the cyclone, i.e., cyclone barrel radius (rbarrel), the 

vortex tube radius (rvortex), and vortex tube height (hvortex), as well as the inlet height 

(hinlet) and inlet width (winlet), which were all varied continuously within the lower and 

upper bounds presented in Error! Reference source not found.. 

Using 100 sampling simulations resulted in a balanced space-filling design with 

no noticeable correlation between the samples, as shown in Fig. 3. The quality of the 

space filling design property can be assessed through various statistical measures. For 

this simulation campaign a wrap-around L2-discrepency measure, calculated as 

described by Eq. 5 from [7], of 0.00295 was computed and considered adequate for the 

constructed samples. The smaller the wrap-around L2-discrepency measure, the better 

the samples are at filling the space. 

 
Model Creation and Dispatch 

As the variable input parameters are geometrical, each sample design point 

requires a unique set of code input files, e.g., mfix.dat and geometry.stl files. Hence, the 

input decks for all 100 unique simulations were generated automatically using 

Nodeworks’ design of experiments feature through the MFiX GUI. The MFiX executable 

was compiled using GCC 8.2 and OpenMPI 3.1.3. Finally, the DOE node was also used to 

launch all simulations to a queueing system on Joule 2. After launching the jobs, an 

MFiX-Nodeworks monitoring panel becomes active, from which the progress of the 

simulation campaign was monitored.  

All simulations were carried out on NETL’s high-performance computing cluster, 

Joule 2.  Each sampling simulation was executed in distributed parallel mode using 8 
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MPI processes per simulation on 20 core Intel Xeon Gold 6148 series processors clocked 

at 2.4 GHz. Since the cell size was fixed at 5mm, the resulting grid resolutions varied 

from 40,320 to 169,764 cells, depending on the diameter of the barrel, rbarrel. All 

simulations were executed for a total simulated time duration of 30 seconds. 

Consequently, the wall-clock time required for completion of the simulations ranged 

from 21 minutes to 7 hours depending mainly on the number of grid cells.  Fig. 4 shows 

an agglomerate snapshot of the simulation campaign at 30 seconds.  

 
Response Surface 
 

The quantity of interest was calculated by temporal averaging of the results from 

sampling simulation output files (i.e., pressure and mass logs), discarding the first 5 

seconds to allow the startup transient to pass and a steady operational state to be 

achieved. These averages were then normalized between 0 and 1 based on the 

observed minimum and maximum values. A single quantity of interest (QoI) was 

determined by adding these two values together to calculate a composite scalar value, 

so that the pressure drop and mass loss were equally weighted. Three simulations (run 

numbers 50, 51, and 74) were removed from the analysis because the QoI for these 

three outlier cases was significantly different than the remaining 97 simulation’s QoI. 

For the three removed cases, the gap between the vortex tube and the barrel was on 

the order of one cell, resulting in a poor-quality fluid mesh, which caused solver 

convergence problems. A combined failure and outlier removal rate of just 6% was 

surprisingly good and much lower than the allowable 50% loss threshold built in to the 

samples by oversampling. 
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A strong correlation between the pressure drop and the radius of the vortex 

tube, rvortex, can be observed from the scatter matrix plots, as shown in Fig. 5, which 

visually illustrates the relationships between input parameters and quantity of interest. 

The strong correlation observed is expected since the mass flow rate of gas is held 

constant and the radius of the vortex tube effects the area for that gas to leave. It is 

hard to distinguish other clear trends in terms of correlations. 

The GaussianProcessRegressor (GPR) in the scikit-learn toolkit was used to 

construct a data-fitted surrogate model based on Gaussian Process Models (GPM)  [8]. 

This method was selected over other surrogate model methods due to favorable unique 

features of GPM based surrogate models such as inherent uncertainty estimation. The 

default radial basis function (RBF) kernel was used for the GPM based surrogate. The 

GPR automatically fits a variety of hyper parameters by using the default fmin_l_bfgs_b 

optimizer with 9 restarts. A non-negligible dependence on alpha, the value added to the 

diagonal of the kernel matrix during fitting, was observed. The alpha parameter controls 

the noise level or smoothing of the data. Larger values of alpha correspond to increased 

noise level in the observations and is similar to adding white noise to the kernel. 

To pick an alpha that does not result in an over-fitted surrogate model, but still 

represents the variability of response well, the GPM was fit over a range of alphas. At 

each alpha, 10% of the samples were removed from the training set and used to 

calculate a mean squared error (MSE) of the fitted model. Since the MSE depends on 

which samples are withheld, the cross-validation procedure is repeated 100 times, each 

time randomizing the 10% holdout samples. The resulting distributions of MSE for each 
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alpha is shown in Fig. 6. An alpha of 5x10-9 displayed the best trade-off between 

overfitting and underfitting the data. 

The GPM was than refitted with all of the samples (0% hold-out) and an alpha of 

5x10-9 for use in the optimization routine. Although the scatter is significant, the GPM 

represents the surface reasonably well. Fig. 7 displays the fitness of the surrogate as a 

parity plot between predicted by the surrogate model (i.e., GPM) and true response 

(i.e., results from MFiX simulation) QoIs. It is observed that the GPM was determined to 

have difficulty in fitting the samples with high QoI values, most likely due to the extreme 

geometry configurations at the boundary of the input parameter ranges. Since the 

optimization routine will be minimizing the QoI, it is more import to have a better fit 

closer to a QoI of 0. 

Using the GPM based surrogate model, the relationships between the variables 

and the quantity of interest can be better visualized by evaluating the model over the 

ranges of the variables, while keeping the unvaried variables at their nominal setting 

(i.e. midpoint of their range), as shown in Fig. 8. A strong relationship is observed 

between the QoI and the radius of the vortex tube, rvortex. The other four variables do 

not exhibit strong relationships, especially the inlet width, winlet, and height, hinlet, having 

an almost flat response. 

 
Sensitivity Analysis 
 

Prior to the optimization of the geometry, a sensitivity analysis was performed 

using the Sensitivity Analysis node in Nodeworks to better understand which input 

parameters have the most influence on the quantities of interest. Using the surrogate 
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model constructed in the previous section and the Python library SALib, version 1.2 [9], 

variance decomposition based Sobol’ Indices method [10] was employed for the global 

sensitivity analysis. The results of the sensitivity indices are shown in Fig. 9 in terms of 

first order indices (which indicate the main effects such as standalone rbarrel), second 

order indices which aims to illustrate the effect of interactions between main effects 

and finally the total indices that capture all. As seen from Fig. 9, the most influential 

input parameter was determined to be rvortex, which was followed by rbarrel. This also 

agrees with the trends observed in the surrogate model, Fig. 8. Hence, the optimization 

process is expected to be driven primarily by variation in rvortex, and rbarrel, which can be 

also confirmed qualitatively by the final optimized geometric configuration visualization 

in Fig. 10 when compared to the original design. 

 
Optimization 
 

Using the GPM based surrogate model and the differential evolution 

optimization routine in scipy [11], an optimal design was found by minimizing the QoI, a 

normalized sum of cyclone pressure drop and mass loss. The differential evolution 

algorithm is a global optimization routine that does not use gradients [12]. The 

technique works by randomly generating trials and evaluating the model at those 

locations. The best1bin strategy is then used to mutate the best member, creating a 

new set of trials. Considering the fit GPR shows smooth continuous functionality with no 

local minima or maxima and re-running the optimization routine multiple times with 

random initial seeds, the authors are confident that a global minimum has been found.  
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Error! Reference source not found. compares the optimized design to the original 

design parameters.  

The optimal design has a larger diameter vortex tube and barrel with a narrower 

and taller inlet, Fig. 10. According to Fig. 8, the QoI has a strong functionality with the 

vortex tube radius, mainly due to the pressure drop. It makes sense that the optimal 

design has a larger vortex tube, reducing the pressure drop from the original design by 

11 times (596 Pa for the original compared to 55 Pa for the optimal design). 

It is more difficult to elucidate the most influential factor affecting the mass loss, 

although it appears to be related to the inlet geometry. Having a narrower, taller inlet 

keeps the solids entering the cyclone barrel closer to the wall. The optimal cyclone does 

reduce the average amount of mass loss by a factor of 2.3 compared to the original 

cyclone design.  

Unfortunately, two of the parameters optimal points are at the edge of the 

design space. The height of the inlet, hinlet, has an optimal value of 0.12, which is the 

maximum of the tested range. Similarly, the inlet width, winlet, has an optimal value of 

0.015, which is the minimum of the tested range. Future work should include re-

sampling with additional points extending beyond these two extrema to determine if 

the identified optimal is global. However, the optimal width of the inlet may converge to 

the particle diameter such that all the particles are forced to enter the barrel against the 

wall, reducing mass loss, with a corresponding increase in inlet height, to preserve the 

cross-sectional area, preventing an increase in the pressure drop.  
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CONCLUSIONS 
 

MFiX, in combination with the Surrogate Modeling and Analysis toolset of 

Nodeworks, was employed to optimize the cyclone in the 50 kWth Chemical Looping 

Reactor at NETL. A simulation campaign with 100 sampling simulations utilizing MFiX-

PIC for cyclone modeling was carried out by systematically varying the five critical design 

parameters; vortex tube radius and vortex tube length, barrel radius, inlet width, and 

inlet height. Out of the 100 simulations, only 3 were removed from the analysis due to 

poor mesh generation resulting in extraneous QoI values (which were adversely 

affecting the quality of the data fitted surrogate before being rejected from the 

analysis). It is important to construct the best surrogate model for the given dataset as 

the surrogate model replaces the actual CFD simulations required for function 

evaluations during the optimization procedure. A Gaussian Process Model based data-

fitted surrogate model was determined to give the best fit. Considering the 

computational resource requirements for 100 sampling simulation for a complex fluid 

flow, future study will aim to find the minimum number of samples that will facilitate 

the construction of an adequate surrogate model and yield to same analysis results for 

optimization. 

Prior to the optimization procedure, it is beneficial to perform a global sensitivity 

analysis once an adequate quality surrogate model is constructed. Sensitivity analysis 

will provide valuable insight on which input parameters have the most influence on the 

quantities of interest. Hence, for situations where there are more than a couple input 

parameters, the optimization process can be driven by the insight gained from 
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sensitivity analysis through varying only the most influential input parameters identified 

and setting the remaining ones at nominal values, to reduce the burden during the 

optimization. Nodework’s Sensitivity Analysis node was utilized to effortlessly calculate 

Sobol’ Total Indices based global sensitivity analysis, which showed that rvortex, and rbarrel 

are the most influential parameters affect the quantity of interest. 

A differential evolution optimization routine, in the Nodework’s general 

optimizer node, was used to find the minimum of the surrogate model or the optimal 

cyclone design. The optimal design has a larger diameter and longer vortex tube, a 

larger diameter barrel, and a taller and narrower solids inlet. The design is predicted to 

have a 11 times lower pressure drop and 2.3 times lower mass loss than the original 

cyclone. 

The next phase of the study will be confirmation of the optimal design by 

implementing the optimal design in the chemical looping reactor to quantify if the new 

design configuration can demonstrate an improved performance (I.e., a lower pressure 

drop and higher separating efficiency) to the same extent observed in simulation 

results. 
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NOMENCLATURE 
 

hinlet height of the cyclone inlet, m 

hvortex height of the vortex finder, m 

rbarrel radius of the cyclone barrel, m 

rvortex radius of the vortex finder, m 

winlet width of the cyclone inlet, m 
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Figure Captions List 
 

Fig. 1 Screenshot of the Nodeworks workflow used in this work 

Fig. 2 Cyclone schematic, all units in meters 

Fig. 3 Scatterplot matrix of all five input parameters considered for the cyclone 

optimization study 

Fig. 4 A snapshot of the simulations from 96 of the 100 cyclones 

Fig. 5 Variation of the mass loss, pressure drop, and resulting quantity of interest 

(QoI) with parameter 

Fig. 6 Mean Square Error distributions of 100 cross-validation runs for each 

alpha 

Fig. 7 Parity plot comparing the simulation value, denoted as “True” in x-axis to 

the model prediction in y-axis 

Fig. 8 Gaussian process model prediction evaluated at the center of the ranges 

(dashed line) compared to the QoI (circles), and QoI values within +/- 30% 

of the center (triangles) 

Fig. 9 Sobol’ Total Indices based global sensitivity analysis results for the 

quantity of interest showing the most influential parameters in terms of 

main effects (first order indices) and their interactions (second order 

indices) from left to the right 

Fig. 10 Original cyclone (left) compared to the optimal cyclone (right) 
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Table Caption List 
 

Table 1 Input parameters and lower/upper bounds used in designing the sampling 

simulation 

Table 2 The original design compared to the optimal design 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 

 
  



Journal of Fluids Engineering 

28 

 

Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Table 1 
Variable min (m) max (m) 

rbarrel 0.04 0.1 
rvortex 0.01 0.03 
hvortex  0.1 0.5 
hinlet 0.02 0.12 
winlet 0.015 0.04 
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Table 2 
Variable Original (m) Optimal (m) 

rbarrel 0.06 0.096 
rvortex 0.015 0.026 
hvortex 0.4 0.373 
hinlet 0.08 0.12 
winlet 0.02 0.015 

 


