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ABSTRACT

The US Department of Energy (DOE) National Energy Technology Laboratory’s (NETL) 50 kW:» chemical
looping reactor was determined to have an underperforming cyclone, which was designed primarily using
empirical correlations. To improve the performance of this cyclone using computational fluid dynamics (CFD)
based modeling simulations, four critical design parameters including the vortex tube radius and length,
barrel radius, and the inlet width and height were optimized. For this work, NETL’s open source Multiphase

Flow with Interphase eXchange (MFiX) CFD code has been used to model a series of cyclones by
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systematically varying the geometric design parameters. To perform the optimization process, the
surrogate modeling and analysis toolset inside Nodeworks was used. The basic methodology for the
process is to use a design of experiments method (optimal Latin Hypercube) to generate samples that fill
the design space. CFD models are then created, executed, and post-processed. A response surface
(Gaussian process model) is created to characterize the relationship between input parameters and the
Quantities of interest (Qol). Finally, the CFD-surrogate is used by an optimization method (differential
evolution) to find the optimal design condition. The resulting optimal cyclone has a larger diameter and
longer vortex tube, a larger diameter barrel, and a taller and narrower solids inlet. The improved design
has a predicted pressure drop 11-times lower than the original design while reducing the mass loss by a
factor of 2.3. Keywords: optimization, computational fluid dynamics, MFiX-PIC, Nodeworks, response

surface methods, design of experiments, Latin Hypercube sampling.

INTRODUCTION
Experience of the design engineer and availability of adequate experimental

testing capability used to play crucial role in successful engineering designs and shorter
time-to-market deployments. However, in the last several decades, modeling and
simulation (M&S) has become one of the key enablers of robust and rapid design of
engineering products, especially with the tremendous growth and ubiquitous availability
of high performance computing (HPC). These developments have enabled compute
resource intensive analysis like uncertainty quantification and/or optimization through
simulation models to become more mainstream. The ensembles of sampling simulations
capturing complex physics for such analysis could now be performed routinely through
simulation campaigns that involve hundreds of sampling simulations on a HPC to
characterize system response under a diverse range of design parameter conditions to

achieve optimization more quantitatively. This has opened the door to optimization of
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complex and dynamic multiphase flow reactors and their components, including
cyclones.

Cyclones are widely encountered in industrial processes involving gas & solid
phases such as for separating dust particles from gas. One of the design objectives when
selecting or constructing a cyclone is to maximize separation efficiency while
simultaneously minimizing pressure drop, which in turn enables the maximization of the
overall process efficiency. Cyclones are often designed based on experience and
empirical correlations. If the correlation is based on experimental data that is
reasonably close to the targeted application process parameters, then the correlation
generally performs well. However, if the range of targeted application process
parameters differ from the range of experimental process parameters, the likelihood of
a poorly designed cyclone increases significantly.

One such underperforming cyclone has been identified as part of the US
Department of Energy (DOE) National Energy Technology Laboratory’s (NETL) 50 kW1h
chemical looping reactor (CLR) [1]. The CLR circulates approximately 0.08 kg/s of oxygen
carrier between two reactors in a process that facilitates the reaction of fossil fuels
while simultaneously capturing carbon dioxide. In such processes, it is imperative that
the primary cyclone be as efficient as possible while keeping the pressure drop to a
minimum, to achieve high oxygen carrier recycle rates and maintain a delicate pressure
balance. High oxygen carrier recycle rates are critical to keep the oxygen carrier in the
system to minimize the amount of new oxygen carrier that needs to be added to

maintain system inventory. Reduction in the oxygen carrier make-up helps to improve
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the overall system economics. The current cyclone was determined to achieve only an
efficiency of 95-98% over the entire particle size distribution, which is well under the
typical cyclone efficiencies of > 99%. The CLR typically operates with a solid circulation
rate of 288 kg/hr and an inventory of 50 kg. With a 95% efficient cyclone, the entire
inventory will be lost out the cyclone exit in 3.5 hrs. Increasing the efficiency by only 4.9
percentage points to 99.9% drastically increases this time to 174 hrs; from less than a
day to over a week.

To improve the performance of this cyclone, a CFD based modeling & simulation
campaign was performed to assist the optimization procedure because previous
attempts using experimentally derived correlations were not successful in improving
cyclone performance significantly. The basic methodology for the process is to use
statistical design of experiments principles to generate simulation samples that cover
the parameter design space through the use of a space filling sampling method like Latin
Hypercube sampling. Ensembles of CFD models are then created, executed, and post-
processed. A response surface (surrogate model) is created to characterize the
relationship between input parameters and the Quantities of interest (Qol) to avoid the
necessity to perform costly simulations during optimization phase. Finally, the CFD-
surrogate is used for objective function evaluations by the optimization method
selected (differential evolution for this problem) to find the optimal design condition.
The optimization process was demonstrated to achieve a cyclone design that is more
efficient than the original design with a lower pressure drop. The rest of the paper is

organized to as follows, after a brief overview of the computational model employed,
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we present the details of the simulation campaign and the open-source toolkit,
Nodeworks employed to generate and manage the sampling simulations. The problem
configuration and the baseline results presented for comparison with the respect to
optimized results. Next the process to generate the surrogate model is described, which
replaces the actual CFD model to reduce computational cost. Prior the optimization
results, the results of the sensitivity study are presented to demonstrate how such study
can guide the optimization process by identifying the most influential parameters.
Finally, the results of the optimization are presented by comparing against the baseline

results to document the improvements.

METHODS

MFiX: Particle-in-Cell model
MFiX is an open source computational fluid dynamics code specifically developed

for modeling gas-solid flows often found in the energy and chemical processing
industries [2]. MFiX has been used to model fluidized beds, circulating fluidized beds,
cyclones, and hoppers—all of which are commonly found in chemical processes such as
coal gasification, fluid catalytic cracking, waste treatment, and chemical production.
MFiX has three solids models including the two-fluid model (TFM), particle-in-cell (PIC)
model, and the discrete element method (DEM). This work utilized the recently released
MFiX version 19.1 which includes a rigorous re-write of the PIC model.

PIC is a Eulerian-Lagrangian multiphase flow modeling approach that represents
the fluid as a continuum while using parcels, or clouds, to represent groups of real

particles with similar physical characteristics. Solids volume fraction is used to calculate
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a solids pressure gradient on the Eulerian grid which in turn is used to approximate
collisional stresses acting on parcels and prevent overpacking. This method avoids the
high computational costs associated with CFD-DEM, specifically collision detection and
small collision time scales, allowing PIC to be significantly faster. The current PIC

implementation in MFIX closely follows the method of Snider [3].

Nodeworks: Surrogate Modeling and Analysis toolset

Nodeworks is an open source graphical programing interface library and
application where users can add, delete, and connect nodes to create customized visual
workflows [4]. Nodes perform prescribed operations on data that are passed between
nodes using connections. The library has been specifically developed in the Python
programming language to be very flexible, portable and support a wide variety of
applications with several collections of default nodes to assist deployment of commonly
used workflows very quickly, even for novice users. Users can also create and add
custom nodes for specific applications such as machine learning.

This work leverages a collection of nodes known as the Surrogate Modeling and
Analysis toolset, which has been developed for implementation of workflows to
construct and use data-fitted surrogate models, or response surfaces. The surrogate
modeling and analysis toolset provides access to specialized nodes like optimization,
sensitivity analysis, forward propagation of uncertainty, and Bayesian calibration.
Nodeworks is directly embedded into the MFiX’s graphical user interface (GUI), allowing
Nodeworks to create input decks involving parametrically varying inputs and run the

simulation campaigns with ease, Fig. 1. Nodeworks version 19.1 was used in this work.
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Nodeworks can be also employed by other modeling tools to create similar workflows

with ease.

RESULTS
Problem Definition and Baseline Simulation Setup

The cyclone constructed and installed in NETL's chemical looping reactor was
modeled and used as the baseline case for the simulation campaigns. Fig. 2 shows an
illustration of the cyclone modeled for this study. The problem configuration and the
model itself is already provided as a tutorial case within the MFiX distribution due to
illustrative nature of the problem for typical multiphase flow applications. However,
several changes were made to the tutorial to facilitate this optimization study, mainly
the addition of more parametric geometry parameters.

The Particle-in-Cell (PIC) method was used to model the solids phase, which
consists of monodisperse, high density polyethylene (HDPE) particles with a diameter of
871um and a density of 860 kg/m?3. The inlet boundary conditions for the cyclone was a
gas mass flow rate of 0.02 kg/s and solids flow rate of 0.08 kg/s. Two pressure outlets
are used, one for the vortex tube outlet at the top of the cyclone and a second for the
cyclone outlet at the bottom. A constant pressure of 101.32 kPa is set for both pressure
outlets. Since the cyclone is part of a larger unit, there is a standpipe located at the
cyclone (bottom) outlet which prevents gas from leaving the bottom of the cyclone. To
represent this in the cyclone model, a semi-impermeable surface is placed at the

bottom outlet. The large resistance of the semi-impermeable surface prevents gas flow
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through the cyclone outlet while allowing the solids to leave, i.e., the solid parcels are
not affected by the semi-impermeable surface. All wall sections of the cyclone are
treated as no-slip boundaries for the gas-phase. The wall geometry is defined by a
stereolithography (STL) file, generated for each case from the parametrized geometry
variables. A uniform CFD grid was applied of 5 mm in each direction or 5.7 times the
particle diameter in the x-, y-, and z- directions. For the base geometry, the CFD grid
resolves the geometry with four cells across the inlet and 16 cells along the length of the
cyclone. A statistical weight of W = 1.0 was applied in the PIC model, i.e., each parcel
represents a single particle. No turbulence model was used.

A point monitor was placed at the inlet of the cyclone to measure the absolute
pressure and write the transient data as a comma separated value (CSV) formatted ASCII
file at a frequency of 100 Hz. The resulting time-averaged pressure drop of the cyclone
can then be calculated by subtracting the vortex tube outlet pressure (101.32 kPa) from
this point monitor pressure data. The amount of solids leaving the cyclone through the
vortex tube is captured and recorded by a User Defined Function (UDF) subroutine that
was compiled into the MFiX code prior to the runs. This value was also saved to a CSV
file at a frequency of 100 Hz. Due to the transient nature of the flow in the cyclone, the
time-dependent solution of the flow field was simulated for a total time duration of 30
seconds, which required an execution time of 2.5 wall-clock hours on 8 cores for the
base case. The transient data is time averaged from 5 to 30 s to produce scalar

guantities of interest.

Design of Experiments (DOE)
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Optimization typically involves many evaluations of the objective function. In the
context of the current problem, this implies the need for performing many CFD
simulation corresponding to each updated evaluation of the optimizer. Considering the
wall-clock time and computational resources required to perform many hundreds or
even thousands of evaluations, performing direct simulations as part of optimization
process is (potentially) computationally intractable. Instead, a surrogate model can be
constructed to characterize the relationship between input parameters and quantities
of interest using fewer samples of CFD simulations. The surrogate model is then used in
lieu of the CFD simulations for optimization because it is significantly computationally
cheaper to evaluate. The surrogate model (response surface) can be constructed
through carefully designed simulation campaign using the principles of statistical design
of experiments [5].

For the purposes of this study, a space-filling sampling method is utilized to
cover the five-input parameter phase-space as much as possible with 100 samples.
Here, a genetically optimized Latin hypercube design was used, which was already
implemented in Nodeworks. We note that 20 samples per parameter exceeds the
commonly used guideline for space-filling designs [6], which recommends at least 10
samples per parameter. The primary reason was the anticipated likelihood of high
failure rate of the simulation without convergence due to the statistically generated
variations in the geometry and accompanying automated mesh generation for each
case. Hence, the employed sampling size enabled a margin that affords nearly 50%

failure rate to still satisfy the guideline [6]. The systematically varied input parameters
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were the five geometric dimensions of the cyclone, i.e., cyclone barrel radius (rparrel), the
vortex tube radius (rvortex), and vortex tube height (hvortex), as well as the inlet height
(hinlet) and inlet width (winlet), which were all varied continuously within the lower and
upper bounds presented in Error! Reference source not found..

Using 100 sampling simulations resulted in a balanced space-filling design with
no noticeable correlation between the samples, as shown in Fig. 3. The quality of the
space filling design property can be assessed through various statistical measures. For
this simulation campaign a wrap-around L2-discrepency measure, calculated as
described by Eq. 5 from [7], of 0.00295 was computed and considered adequate for the
constructed samples. The smaller the wrap-around L2-discrepency measure, the better
the samples are at filling the space.

Model Creation and Dispatch

As the variable input parameters are geometrical, each sample design point
requires a unique set of code input files, e.g., mfix.dat and geometry.stl files. Hence, the
input decks for all 100 unique simulations were generated automatically using
Nodeworks’ design of experiments feature through the MFiX GUI. The MFiX executable
was compiled using GCC 8.2 and OpenMPI 3.1.3. Finally, the DOE node was also used to
launch all simulations to a queueing system on Joule 2. After launching the jobs, an
MPFiX-Nodeworks monitoring panel becomes active, from which the progress of the
simulation campaign was monitored.

All simulations were carried out on NETL’s high-performance computing cluster,

Joule 2. Each sampling simulation was executed in distributed parallel mode using 8
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MPI processes per simulation on 20 core Intel Xeon Gold 6148 series processors clocked
at 2.4 GHz. Since the cell size was fixed at 5mm, the resulting grid resolutions varied
from 40,320 to 169,764 cells, depending on the diameter of the barrel, rparrel. All
simulations were executed for a total simulated time duration of 30 seconds.
Consequently, the wall-clock time required for completion of the simulations ranged
from 21 minutes to 7 hours depending mainly on the number of grid cells. Fig. 4 shows

an agglomerate snapshot of the simulation campaign at 30 seconds.

Response Surface

The quantity of interest was calculated by temporal averaging of the results from
sampling simulation output files (i.e., pressure and mass logs), discarding the first 5
seconds to allow the startup transient to pass and a steady operational state to be
achieved. These averages were then normalized between 0 and 1 based on the
observed minimum and maximum values. A single quantity of interest (Qol) was
determined by adding these two values together to calculate a composite scalar value,
so that the pressure drop and mass loss were equally weighted. Three simulations (run
numbers 50, 51, and 74) were removed from the analysis because the Qol for these
three outlier cases was significantly different than the remaining 97 simulation’s Qol.
For the three removed cases, the gap between the vortex tube and the barrel was on
the order of one cell, resulting in a poor-quality fluid mesh, which caused solver
convergence problems. A combined failure and outlier removal rate of just 6% was
surprisingly good and much lower than the allowable 50% loss threshold built in to the

samples by oversampling.
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A strong correlation between the pressure drop and the radius of the vortex
tube, rvortex, can be observed from the scatter matrix plots, as shown in Fig. 5, which
visually illustrates the relationships between input parameters and quantity of interest.
The strong correlation observed is expected since the mass flow rate of gas is held
constant and the radius of the vortex tube effects the area for that gas to leave. It is
hard to distinguish other clear trends in terms of correlations.

The GaussianProcessRegressor (GPR) in the scikit-learn toolkit was used to
construct a data-fitted surrogate model based on Gaussian Process Models (GPM) [8].
This method was selected over other surrogate model methods due to favorable unique
features of GPM based surrogate models such as inherent uncertainty estimation. The
default radial basis function (RBF) kernel was used for the GPM based surrogate. The
GPR automatically fits a variety of hyper parameters by using the default fmin_|_bfgs b
optimizer with 9 restarts. A non-negligible dependence on alpha, the value added to the
diagonal of the kernel matrix during fitting, was observed. The alpha parameter controls
the noise level or smoothing of the data. Larger values of alpha correspond to increased
noise level in the observations and is similar to adding white noise to the kernel.

To pick an alpha that does not result in an over-fitted surrogate model, but still
represents the variability of response well, the GPM was fit over a range of alphas. At
each alpha, 10% of the samples were removed from the training set and used to
calculate a mean squared error (MSE) of the fitted model. Since the MSE depends on
which samples are withheld, the cross-validation procedure is repeated 100 times, each

time randomizing the 10% holdout samples. The resulting distributions of MSE for each
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alpha is shown in Fig. 6. An alpha of 5x107° displayed the best trade-off between
overfitting and underfitting the data.

The GPM was than refitted with all of the samples (0% hold-out) and an alpha of
5x10-9 for use in the optimization routine. Although the scatter is significant, the GPM
represents the surface reasonably well. Fig. 7 displays the fitness of the surrogate as a
parity plot between predicted by the surrogate model (i.e., GPM) and true response
(i.e., results from MFiX simulation) Qols. It is observed that the GPM was determined to
have difficulty in fitting the samples with high Qol values, most likely due to the extreme
geometry configurations at the boundary of the input parameter ranges. Since the
optimization routine will be minimizing the Qol, it is more import to have a better fit
closer to a Qol of 0.

Using the GPM based surrogate model, the relationships between the variables
and the quantity of interest can be better visualized by evaluating the model over the
ranges of the variables, while keeping the unvaried variables at their nominal setting
(i.e. midpoint of their range), as shown in Fig. 8. A strong relationship is observed
between the Qol and the radius of the vortex tube, rvortex. The other four variables do
not exhibit strong relationships, especially the inlet width, winlet, and height, hinjet, having

an almost flat response.

Sensitivity Analysis
Prior to the optimization of the geometry, a sensitivity analysis was performed
using the Sensitivity Analysis node in Nodeworks to better understand which input

parameters have the most influence on the quantities of interest. Using the surrogate
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model constructed in the previous section and the Python library SALib, version 1.2 [9],
variance decomposition based Sobol’ Indices method [10] was employed for the global
sensitivity analysis. The results of the sensitivity indices are shown in Fig. 9 in terms of
first order indices (which indicate the main effects such as standalone rbarrel), second
order indices which aims to illustrate the effect of interactions between main effects
and finally the total indices that capture all. As seen from Fig. 9, the most influential
input parameter was determined to be rvortex, Which was followed by rparrel. This also
agrees with the trends observed in the surrogate model, Fig. 8. Hence, the optimization
process is expected to be driven primarily by variation in ryortex, and rparrel, Which can be
also confirmed qualitatively by the final optimized geometric configuration visualization

in Fig. 10 when compared to the original design.

Optimization

Using the GPM based surrogate model and the differential evolution
optimization routine in scipy [11], an optimal design was found by minimizing the Qol, a
normalized sum of cyclone pressure drop and mass loss. The differential evolution
algorithm is a global optimization routine that does not use gradients [12]. The
technique works by randomly generating trials and evaluating the model at those
locations. The best1bin strategy is then used to mutate the best member, creating a
new set of trials. Considering the fit GPR shows smooth continuous functionality with no
local minima or maxima and re-running the optimization routine multiple times with

random initial seeds, the authors are confident that a global minimum has been found.
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Error! Reference source not found. compares the optimized design to the original
design parameters.

The optimal design has a larger diameter vortex tube and barrel with a narrower
and taller inlet, Fig. 10. According to Fig. 8, the Qol has a strong functionality with the
vortex tube radius, mainly due to the pressure drop. It makes sense that the optimal
design has a larger vortex tube, reducing the pressure drop from the original design by
11 times (596 Pa for the original compared to 55 Pa for the optimal design).

It is more difficult to elucidate the most influential factor affecting the mass loss,
although it appears to be related to the inlet geometry. Having a narrower, taller inlet
keeps the solids entering the cyclone barrel closer to the wall. The optimal cyclone does
reduce the average amount of mass loss by a factor of 2.3 compared to the original
cyclone design.

Unfortunately, two of the parameters optimal points are at the edge of the
design space. The height of the inlet, hinlet, has an optimal value of 0.12, which is the
maximum of the tested range. Similarly, the inlet width, winlet, has an optimal value of
0.015, which is the minimum of the tested range. Future work should include re-
sampling with additional points extending beyond these two extrema to determine if
the identified optimal is global. However, the optimal width of the inlet may converge to
the particle diameter such that all the particles are forced to enter the barrel against the
wall, reducing mass loss, with a corresponding increase in inlet height, to preserve the

cross-sectional area, preventing an increase in the pressure drop.
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CONCLUSIONS

MFiX, in combination with the Surrogate Modeling and Analysis toolset of
Nodeworks, was employed to optimize the cyclone in the 50 kW Chemical Looping
Reactor at NETL. A simulation campaign with 100 sampling simulations utilizing MFiX-
PIC for cyclone modeling was carried out by systematically varying the five critical design
parameters; vortex tube radius and vortex tube length, barrel radius, inlet width, and
inlet height. Out of the 100 simulations, only 3 were removed from the analysis due to
poor mesh generation resulting in extraneous Qol values (which were adversely
affecting the quality of the data fitted surrogate before being rejected from the
analysis). It is important to construct the best surrogate model for the given dataset as
the surrogate model replaces the actual CFD simulations required for function
evaluations during the optimization procedure. A Gaussian Process Model based data-
fitted surrogate model was determined to give the best fit. Considering the
computational resource requirements for 100 sampling simulation for a complex fluid
flow, future study will aim to find the minimum number of samples that will facilitate
the construction of an adequate surrogate model and yield to same analysis results for
optimization.

Prior to the optimization procedure, it is beneficial to perform a global sensitivity
analysis once an adequate quality surrogate model is constructed. Sensitivity analysis
will provide valuable insight on which input parameters have the most influence on the
guantities of interest. Hence, for situations where there are more than a couple input

parameters, the optimization process can be driven by the insight gained from
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sensitivity analysis through varying only the most influential input parameters identified
and setting the remaining ones at nominal values, to reduce the burden during the
optimization. Nodework’s Sensitivity Analysis node was utilized to effortlessly calculate
Sobol’ Total Indices based global sensitivity analysis, which showed that ryortex, and rparrel
are the most influential parameters affect the quantity of interest.

A differential evolution optimization routine, in the Nodework’s general
optimizer node, was used to find the minimum of the surrogate model or the optimal
cyclone design. The optimal design has a larger diameter and longer vortex tube, a
larger diameter barrel, and a taller and narrower solids inlet. The design is predicted to
have a 11 times lower pressure drop and 2.3 times lower mass loss than the original
cyclone.

The next phase of the study will be confirmation of the optimal design by
implementing the optimal design in the chemical looping reactor to quantify if the new
design configuration can demonstrate an improved performance (l.e., a lower pressure
drop and higher separating efficiency) to the same extent observed in simulation

results.
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NOMENCLATURE

Rintet height of the cyclone inlet, m

hvortex height of the vortex finder, m

I'barrel radius of the cyclone barrel, m

lvortex radius of the vortex finder, m

Winlet width of the cyclone inlet, m

REFERENCES

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]

S. Bayham, D. Straub and J. Weber, "Operation of the NETL Chemical Looping
Reactor with Natural Gas and a Novel Copper-Iron Material," National Energy
Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV, 2017.

US Department of Energy National Energy technology Laboratory, "MFiX,"
[Online]. Available: mfix.netl.doe.gov/mfix. [Accessed 2019].

D. M. Snider, "An Incompressible Three-Dimensional Multiphase Particle-in-Cell
Model for Dense Particle Flows," Journal of Computational Physics, vol. 170, pp.
523-549, 2001.

US Department of Energy National Energy Technology Laboratory, "Nodeworks,"
[Online]. Available: mfix.netl.doe.gov/nodeworks. [Accessed 2019].

R. H. Myers and D. C. Montgomery, Response surface methodology: process and
product optimization using designed experiments, vol. 4, New York: Wiley, 1995.

J. L. Loeppky, J. Sacks and W. J. Welch, "Choosing the sample size of a computer
experiment: A practical guide,” Technometrics, vol. 51, no. 4, pp. 366-376, 2009.

K. T. Fang and C. X. Ma, "Wrap-Around L2-Discrepancy of Random Sampling,
Latin Hypercube, and Uniform Designs," Journal of Complexity, vol. 17, pp. 608-
624, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, "Scikit-learn: Machine
Learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-
2830, 2011.

W. Usher, J. Herman, T. Iwanaga, N. Cellier, C. Whealton, D. Hadka, Xantares, F.
Rios, Bernardoct, C. Mutel, J. van Engelen, H. Kranas and Antlord, "SALib/SALIib:
SALIib v1.2," November 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.1509666.

18



Journal of Fluids Engineering

[10] A. Saltelli, M. Ratto, A. Terry, F. Campolongo, J. Cariboni and D. Gatelli, Global
Sensitivity Analysis: The Primer, John Wiley & Sons, 2008.

[11] E. Jones, T. Oliphant , P. Peterson and others, "SciPy: Open source scientific tools
for Python," 2001. [Online]. Available: http://www.scipy.org/. [Accessed 22
January 2019].

[12] R. Storn and K. Price, " Differential Evolution - a Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces,” Journal of Global Optimization,
vol. 11, pp. 341-359, 1997.

[13] T. Oliphant, A guide to NumPy, USA: Trelgol Publishing, 2006.

19



Journal of Fluids Engineering

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

Figure Captions List
Screenshot of the Nodeworks workflow used in this work
Cyclone schematic, all units in meters
Scatterplot matrix of all five input parameters considered for the cyclone
optimization study
A snapshot of the simulations from 96 of the 100 cyclones
Variation of the mass loss, pressure drop, and resulting quantity of interest
(Qol) with parameter
Mean Square Error distributions of 100 cross-validation runs for each
alpha
Parity plot comparing the simulation value, denoted as “True” in x-axis to
the model prediction in y-axis

Gaussian process model prediction evaluated at the center of the ranges
(dashed line) compared to the Qol (circles), and Qol values within +/- 30%

of the center (triangles)

Sobol’ Total Indices based global sensitivity analysis results for the
guantity of interest showing the most influential parameters in terms of
main effects (first order indices) and their interactions (second order

indices) from left to the right

Original cyclone (left) compared to the optimal cyclone (right)
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Table Caption List

Table 1 Input parameters and lower/upper bounds used in designing the sampling
simulation
Table 2 The original design compared to the optimal design
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Fig. 9
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Fig. 10
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Table 1

Variable min (m) max (m)
Ibarrel 0.04 0.1
Fvortex 0.01 0.03
hvortex 0-1 0.5
hinlet 0.02 0.12
Winlet 0.015 0.04
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Table 2

Variable  Original (m) Optimal (m)
Fbarrel 0.06 0.096
Fvortex 0.015 0.026
hvortex 0.4 0.373
hinlet 0.08 0.12
Winlet 0.02 0.015
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