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Abstract—Emerging classical and quantum applications re-
quire computational electromagnetics methods that can efficiently
analyze complex structures over wide bandwidths, including
down to very low frequencies. This work begins to address
these needs by presenting a type of charge and current integral
equation that has been formulated in the time domain and is
applicable to dielectric regions. This system introduces charge
densities as unknowns in addition to the current densities,
resulting in a system that does not exhibit a low frequency
breakdown. An appropriate marching-on-in-time discretization
scheme is discussed so that stable and accurate results can be
achieved down to very low frequencies. Numerical results are
shown to verify the accuracy and stability of this formulation.

I. INTRODUCTION

A growing number of classical and quantum physics ap-
plications require the analysis of complex structures over
wide bandwidths, such as performing signal integrity studies
and analyzing atom-photon interactions in circuit quantum
electrodynamics [1]. To address these needs, it is desirable
to have CEM methods that use simple discretizations and do
not exhibit low frequency breakdown effects. Methods oper-
ating in the time domain are of interest to analyze nonlinear
components and cover wide bandwidths in a few simulations.
One formulation that can potentially meet these needs is

the current and charge integral equation (CCIE) of [2]. This
work develops for the first time a type of CCIE in the
time domain for dielectric regions. The resulting time domain
integral equation (TDIE) is found to be accurate down to very
low frequencies. We provide guidelines on basis functions
to be used in a marching-on-in-time (MOT) discretization of
the presented equations to achieve a system with improved
stability in practice. The stability and accuracy of the system
is demonstrated through numerical results.

II. FORMULATION

The dominant source of low frequency instability in EM
integral equations is the hypersingular integral operator found
in many formulations [2]. The simplest way to alleviate these
effects is to introduce the charge densities as unknowns to
decompose the hypersingular operator into two components
that can be stably discretized. This allows for a simple
discretization, in contrast to other methods that use loop-tree
decompositions of the current density [3].

For dielectric regions, introducing the charge densities
results in four unknown surface sources to be solved for.
Following the general approach of the CCIE, we consider a
single equation related to each of the boundary conditions on
EM fields and fluxes at an interface [2]. Integral equations
for the exterior and interior regions are combined following a
Miieller-type approach, giving an overall system of

nx [E,{J, d, M}(r, t)] x — x [E,{J, d, M}(r, t)] x

= n x [Einc(r, t)] x n, r E S, (1)

• De {J, d, M}(r, t) — It • Di{J, d, M}(r, t)

= • Dine (r, t), r E S, (2)

nx [1-1,{J, M, b}(r, t)] x — x [1-1,{J, M, b}(r, t)] x

= x [Hinc(r, t)] x n, r E S, (3)

ft • 13,0, M, b}(r, t) — ft • Bi{J,M,b}(r, t)

= —ft • Binc (r, t), r E S, (4)

where J = x H, M = E x d = • D, b = —ft' • B, and
the notation on the left hand side of each equation emphasizes
that these are functionals evaluated at position r and time t
produced by the surface sources in the brackets. Additionally,
the subscripts e and i denote that material properties should
be selected from the exterior or interior region, respectively.

The exact form of the functionals given in (1) to (4) are

x [E3{J,d,1\4}(r, t)] x n= µ3T {OtJ}(r , t)

— C1V'T {d}(r t) ± x M(r, t) — 1C 3 {M}(r , t),
3 2 (5)

fi • Di{J, = ti,icift • Ti{atJ}(r,t)

± 2 d(r, {d} (r, • V x Ti{M}(r, t), (6)

fix [Hj{J, M, b}(r, t)] xn = —eiT{atM}(r,t)

617Ti{b}(r, x J(r,t) — ICJ {J}(r, t), (7)
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ft, • Bi {J, M, b}(r, t) = — itjejli • 7; fatMl(r ,t)

± 
2 
—
1 
b(r, t) — N.3 {b}(r, t) + itjft • '7 x T;{J}(r, t), (8)

which make use of the following integral operators:

7; {p}(r, t) = f 
47/=1 

7-3) dS', (9)
s 

IC 3 {CI} (r t) = f i?‘ X [Cl(r1, T.3) atcl(r'' , (10)
s 47R2 47rRc3

Ao fpyr, t) 
47R 2 

f 1•41.13(e ,rj) atP(ri, rj)1 ds/. (11)
47RciL 

Note that when there is a choice of sign in (5) to (8), the top
choice is selected for the exterior region.

III. DISCRETIZATION & NUMERICAL RESULTS

Selecting a temporal basis function from an appropriate
Sobolev space is essential to achieving a stable MOT dis-
cretization of systems combining vector and scalar TDIEs [4].
For the TDIEs introduced in this work, an appropriate temporal
basis function is a triangle function. Methods for determining
this can be found in [4].
The spatial functions used in the discretization of (1) to

(4) are selected to conform to the spatial Sobolev spaces of
these TDIEs. These functions are defined on the primal mesh,
and a dual mesh formed by the barycentric refinement of
the primal mesh. In particular, J is discretized with RWG
functions, M with Buffa-Christiansen (BC) functions [5], d
with a piecewise constant function defined over triangles, and
b with piecewise constant functions supported on all dual mesh
triangles attached to a primal mesh node. RWG functions are
used to test (1) and BC functions to test (3). To have a square
matrix system that conforms to the Sobolev spaces of these
TDIEs, (4) is tested with pyramid functions (i.e., equal to one
at a node and linearly go to zero at surrounding nodes) defined
on the primal mesh. Finally, the scalar function defined in [5]
that is composed of a linear combination of pyramid functions
defined over the dual mesh is used to test (2).
The stability and accuracy of this method down to very

low frequencies are shown with a numerical example. The
incident field is a plane wave, with temporal dependence
given by a modulated Gaussian pulse. The scattering from
a 1 meter radius sphere with a relative permittivity of 2.56 is
calculated for a sequence of incident pulses with progressively
lower frequencies. For each pulse, the bandwidth is half the
center frequency. The relative error compared to the analytical
solution is shown in Fig. 1, where it is seen that a stable
level of accuracy is achieved. For comparison, the results for
traditional methods are also shown, which are seen to exhibit
catastrophic low frequency breakdowns.

Unfortunately, the system formulated in this work has not
been found to be stable at higher frequencies where wave
physics effects become more important. However, for these
situations, standard integral equations such as the PMCHWT
or Miieller integral equations can be used.
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Fig. 1: Relative error in the RCS at low frequencies for the
PMCHWT, EFIE, and the formulation of this work.
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IV. CONCLUSION

This work presented a CCIE in the time domain that
is applicable to dielectric regions. These new equations are
accurate and stable down to very low frequencies, as demon-
strated through numerical results. Future work will focus on
determining the source of instability for this system at middle
frequencies in an effort to achieve a system stable over all
frequency regimes.

ACKNOWLEDGEMENT

This work was supported by AF Sub RRI P00539, NSF
ECCS 169195, and the Distinguished Professorship Grant at
Purdue University.

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-
NA0003525.

REFERENCES

[1] T. E. Roth and W. C. Chew, "Role of classical time domain CEM methods
for quantum electromagnetics," in 2019 IEEE International Symposium
on Antennas and Propagation and USNC-URSI Radio Science Meeting.
IEEE, 2019, pp. 1063-1064.

[2] M. Taskinen and P. Yld-Oijala, "Current and charge integral equation
formulation," IEEE Transactions on Antennas and Propagation, vol. 54,
no. 1, pp. 58-67, 2006.

[3] N.-W. Chen, K. Aygun, and E. Michielssen, "Integral-equation-based
analysis of transient scattering and radiation from conducting bodies
at very low frequencies," IEE Proceedings-Microwaves, Antennas and
Propagation, vol. 148, no. 6, pp. 381-387, 2001.

[4] T. E. Roth and W. C. Chew, "Stability analysis and discretization of A-1.
time domain integral equations for multiscale electromagnetics," Journal
of Computational Physics, p. 109102, 2019.
A. Buffa and S. Christiansen, "A dual finite element complex on the
barycentric refinement," Mathematics of Computation, vol. 76, no. 260,
pp. 1743-1769, 2007.

[5]


