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10° m, 10°%s 104~102 m, 106103 s 0.1~10m, 10~107s Bio-Qil

Biomass

The molecular structures of different componentsin biomass directly influence the kinetics of biomass pyrolysis.

The particle porosity, internal structures, shapes, and sizes influence the momentum, heat, and mass transfers between biomass
particles and fluidization gas.

The operating conditions of the reactor will influence the mixing and residence time of biomass.
All these multi-scale influences will lead to different yields and quality of the products, such as bio-oil.
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Building the Capability: Hybrid gas-sands-biomassinteraction model capturesthe mixing of sands & biomass |[N= |- 2%y
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Building the Capability: a detailed biomass pyrolysis kinetics

Scheme based on 32 reactions, 30 solid species, 29 gas species implemented in MFIX

BioTass

=P

L

“Metaplastic”
(10 reactions, 10 species)

TL

CELL CoH100s cellulose - C2H3CHO acrolein
CELLA CeH1 00 active cellulose C2H5CHO propionaldehyde
GMSW/XYHW/XYGR | C.Hz0, hemicellulose C2H5OH ethanol
HCE1 CH:0, intermediate hemicellulose C5HBOA4 xylofuranose
| HCE2 C-H;0, intermediate hemicellulose C6H1005 Iev:ﬂglucosan
C6H50CH3 anisole
LIG C,,H,,0, intermediate lignin C6H50H phenol
LIGC C,cH,.0, carbonrich lignin C6H603 5-(hydroxymethyl)-furfural
LIGCC | CysH1404 intermediate lignin from LIG-C C24H2804 lumped tar
LIGH | C,,H,504 hydrogen rich lignin -» CH2OHCH2C | propienic acid
LGO | C,oH,,04p oxygen rich lignin HO
LIGOH | C;qH,,0; intermediate lignin from LIG-H and LIG-0 CH20HCHO [ acetic acid
CH3CHO acetaldehyde
TGL CeoHy 0004 triglycerides as hydrophobic extractives CH3CO2H acetic acid
TANN | C,cH4,0, phenolics as hydrophilic extractives | CH3OH methanol
ITANN | C.H.O, intermediate phenolics CHOCHO glyoxal
CRESOL cresol
G{COH2}loose | CH,O | metaplastic loose formaldehyde FURFURAL furan-2-carboxaldehyde
G{CO2} CO, metaplastic trapped carbon dioxide H20 water
G{CO} CO metaplastic trapped carbon monoxide HCOOH formic a_C'd
G{CH30H]} CH,O | metaplastic trapped methanol MLINO methy! linoleate
G{CH4} CH, metaplastic trapped methane Y2MET2 Ilna!y! propionate
G{C2H4} C,H. | metaplastic trapped ethylene VANILLIN vanillin
G{C6H50H} C-H-O | metaplastic trapped phenol CH20 formaldehyde
G{COH2}stiff | CH,O | metaplastic stiff formaldehyde czh4 ethylene
G{H2} H, metaplastic trapped hydrogen Bio-gas C2H6 ethane
G{C2H6} C,He metaplastic trapped ethane CH4 methane
(6 species) | cO carbon monoxide
ACQUA [ H,0 _ water within biomass f=> co2 carbon dioxide
H2 hydrogen
Ash | _ ash within biomass |—>I - if;ﬁr IC:(:tr]gﬂannic

*P. Debiagi et al., Journal of Analytical and Applied Pyrolysis 134 (2018) 326-335.

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY



Building the Capability: Validation of the kinetics using experiment data from NREL & literature
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Mass fractions (%)

C-H-0 mass fractions in Char (%)
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Cco2 H2 CH4

Good match of products for different types of biomass
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Yields of light gas (%)

C2H6 C2H4
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Extending the Capability: MFiX-GluedSphere simulations resolve biomass shapes N= ?ﬁg{%’;’,“"
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Description
Validate capability using cold flow experiment,

apply to biomass pyrolysis simulation with
irregular shapes.

* Biomass particles are irregular shaped
* The shape effects were only partially captured through drag models
* This tool direct resolveirregular biomass shapes
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Extending the Capability: 3D intra-particle heat transfer N = [NTIONAL
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using sphere layers is more efficient. This 3D
approachis general to different shapes.
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Cylinder biomass, 0.02m X 0.1m




Extending the Capability: Hundredfold Speedup of MFiX-DEM using GPU Computation

GPU Solver & MFiX coupled solver

X Start Allocate memory, generate/read particles
storeTOverlapToUnsortedArray Store tangential overlap based on unsorted particle ID
calcHash Map particles into searching cells
B 200.0
5 | sortParticles Sort particles based on 1D of cells.
= 180.0
.20
z . 1) Rearranging particle data into sorted arrays. 160.0
g reorderDataAndFindCellStart 2) Mark the first and last particles in each cell
s 5 1400
S o
o 1) For each particle, calcBinPos, loop over particles in g. 120.0
generateNeighborList each neighbor bin, store neighbor particles 2) copy g
tangential overlaps < 100.0
2 800
collide 1) coII!s_lon w_lth nenghbot: particles E
2) collision with boundaries 60.0
40.0
updatePosVelOmg Update pos/vel/fomega
20.0
X End Release memory
0.0
MFiX CFD Solver DEM Solver on
on CPU . GPU
Pipel
Read (ParticlePosVel ) write 90.00
ParticlePosVel ParticlePosVel to <= 80.00
from DEM Solver CFD Solver
i ) 7000
CFD calculation m— DEM idle =
Ipe — 60.00
(MPI Parallel) P Read u
(InterPhaseForce) £ co00
Write InterPhaseForce g™
InterPhaseForce from CFD Solver & 40.00
)
to DEM Solver DEM Calculate S 30,00
Q
A (GPU Threads Parallel) O
CFD idle 20.00
Algorithm of GPU-MFiX data exchange through pipes. 10.00
Multiple small arrow lines on CPU side indicate MPI parallel 0.00

processes.
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Speedup in Simulations of particle packing

(up) & Fluidized bed (bottom)

[ Particle Parallel (PP) =iCollision Pair Parallel (CPP) ——CPP/PP
r 16.00%
177.1 176.8 178.0 177.9
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Heat transfer & chemical
reactions (biomass drying)

—e&— MFiX-CPUDEM 2 0.10
7009 MFiX-GPUDEM
-0.08
c 600 g
Qo
v - 0.06
E E
5 500 - °
o 8
g - 0.04 5
s E
400 @
. - 0.02 ®
o S =
—e— MFiX-CPUDEM °
300 4 —%- MFiX-GPUDEM ot |- 0.00
T T T T
0 10 20 30
Time (s)

» DEM solveris ported to GPU

» 170 fold speedup with double
precision, 243 fold with single
precision

» Re-use CFD, interphase coupling,
and chemical reaction modules in
MFiX




Deliveringthe knowledge: Global sensitivity analysis investigating the influence of biomass compositions
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Parity Plot (scaled rmse= 1.15e-04, R2= 1.00e+00)
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Build a surrogate model

The explicit equation form of the fitted surrogate model could be used for a quick estimate of the yields without solving stiff
chemical reaction equations. Another application area for the adequately constructed surrogate models can be optimized such as
finding the optimal species composition for a given y2:Bio-Gas yield by employing gradient descent-based optimization methods
where the linear regression based surrogate model is used for cheap evaluationsinstead of running the MFiX simulation.
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Deliveringthe knowledge: Global sensitivity analysis investigating the influence of biomass compositions

Global sensitivity analysis using Sobols’ Total Indices methodology

Sobol Total Order Indices

Sobol Indices
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Sobol Total Order Indices

X4LIGO x5.LIGC x3:LIGH x6:TANN x2:HCELL x1:CELL

y3:Bio-Oil

As a conclusion of the sensitivity study, for the given 52 sample simulations, x4:LIGO and x5:LIGC appear to have the most
influence on the guantities of interest. Hence, any effort to reduce the uncertainty associated with these parameters or the

reaction rates associated with these species would improve the accuracy of the modeling results.
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For these small sized particles, the gas-solids convective heat transfer is the dominating mechanism. The hydrodynamics also
indicate a good mix of sands and biomass particles in the bottom dense region of the fluidized bed. In all the tested cases, the
temperatures are uniformly distributed with most of the biomass particles are in the range of 740 to 760 K.
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Deliveringthe knowledge: Size Effects Investigated by CFD

70 1 0.130 mm  In the simulated bubbling fluidized bed pyrolysis
50 - E=1 0.248 mm reactor, the density of the biomass particles will
7 0.400 mm decrease to 10% to 20% of its original value due to the

50 -

thermal decomposition.

 These converted biomass particles are then elutriated
from the top of the bubbling fluidized bed by the up
flowing gas.

* The large-sized particles have a larger terminal velocity

40 ~

Yields(%)

30 ~

J’////////////’//////////////’/4

20 - than small-sized particles. Thus, their residence time is
larger and will be elutriated from the top when their

107 %§ density is reduced to a smaller value.
,  The larger residence time of biomass leads to larger

Bio-Char Bio-oil Bio-gas conversion and more yield of bio-oil.
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Deliveringthe knowledge: Constructing Operation Diagrams of Fluidized Bed NATIONAL
eliveringthe knowledge: Constructin eration biagrams o uidize e f—
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e Forthe smallest flow rate (bottomrow), the biomass particles cannot be elutriated from

. the fluidized bed if the particle size equals or is larger than 1.4 mm.
5 2 : %=« The non-smooth distributions of particles from 0.8 mm to 1.2 mm indicate the fluidized
g o0 bed under these conditions were operated under plug flow conditions which have larger
S5 58 . . . . . . .
® s6 fluctuations of both bio-oil and bio-char in the outflow. These fluctuations will cause
©. 54 - . . .
T 5 critical influences on the followed processes such as gas-solids separation and hydrogen

treatments due to the sudden change of loadings.

* Forthe highest flow rate (top row), all the fluidized with different tested biomass particles
were operating smoothly. However, the short residence time may reduce the yield of bio-
oil.

% U.S. DEPARTMENT OF

18/ENERGY



o NATIONAL
Conclusion ¥L TECHNOLOGY
LABORATORY

A multi-scale biomass pyrolysis simulation framework is established.
* Experimental validated hybrid drag model
* Experimental validated kinetics with detailed products

Particle shaped resolved DEM simulations

Speedup simulation with GPU & coarse grained DEM

3D intra-particle heat transfer

This framework is used to investigate the biomass fast pyrolysis with:
» different sizes, shapes
e operating conditions
* inorganic compositions
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