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Time-resolved measurements of key
Intermediate products during cyclopentanone
pyrolysis in a shock tube
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The pyrolysis of cyclopentanone, a promising biofuel candidate identified by the Department
of Energy’s Co-Optima program, is investigated in this work. Time resolved measurements of
carbon monoxide, ethylene, and cyclopentanone are provided to gain a detailed understanding
of the unimolecular decomposition pathway of the fuel. Experiments were conducted between
1156-1312 K near 9 atm with 0.1% fuel loading balanced in argon. A strategy to report species
concentration with interference is presented and the measurements obtained are crucial
validation targets for the development of detailed chemical kinetic mechanisms used to predict
fuel chemistry.
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I1. Introduction

The world’s energy demands continue to rise as the population grows, creating a need for sustainable, scalable,
and energy rich fuels. In 2017, the United States consumed approximately 97.7 quadrillion BTU of energy, with 29%
by the transportation sector alone [1]. The burning of petroleum and natural gas fuels by the transportation and other
sectors is causing global temperatures to rise through the production of greenhouse gases [2]. Due to the rapidly
increasing global temperatures and energy demands, the Department of Energy, in sponsorship with university
partners, created the Co-Optimization of Fuels and Engines (Co-Optima) initiative aimed at finding renewable fuels
that simultaneously increase engine performance and efficiency, and decrease greenhouse gas emissions. One such
fuel identified by the Co-Optima program is the cyclic ketone cyclopentanone. This candidate fuel can be produced
through the endophytic fungus, Gliocladium roseum [3] and is contained in oils produced through the pyrolysis of
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biomass [4]. Cyclopentanone is also an extremely attractive fuel for spark-ignition internal combustion engines, as it
has the lowest autoignition reactivity of many biofuels. This autoignition resistance combined with its large lower
heating value (LHV) of 31.99 MJ/kg, make cyclopentanone a very attractive blending agent in boosted internal spark
ignition engines.

Previous investigation into cylcopentanone have been both theoretical and experimental in nature. Zaras et al. [5]
used the G3B3 method to understand the unimolecular decomposition of cyclopentanone and used RRKM theory to
calculate relevant rate constants over the temperature span of 800-2000 K. Thion et al. [6] used a jet-stirred reactor
and sampled the product stream to determine major products of cyclopentanone oxidation at 1 and 10 atm. H-
abstraction reactions on the fuel by H, OH, and CH3; were also investigated; a mechanism detailing cyclopentanone
oxidation was established. In a large collaborative effort, Zhang et al. [7] investigated the olefin + HO; elimination
reactions, a crucial pathway for cyclopentanone oxidation. This study was supported with experimental validation of
ignition delay times and carbon monoxide time histories over a range of equivalence ratios, temperature, and pressures.

The radical involved oxidation of cyclopentanone can have many similarities in pyrolysis. Thus, it is paramount
that the pyrolysis pathway be fully understood so that parallels can be drawn to the oxidation of the fuel. Investigations
into the pyrolysis of cyclopentanone are scarce [5] and no experimental validations have been provided. Therefore, in
this work carbon monoxide, ethylene, and cyclopentanone time-histories are measured, and used as key validation
targets for mechanism development.

I11. Experimental Procedure

Shock Tube Facility

Carbon monoxide, ethylene, and cyclopentanone (CPN) time-histories were collected in a double-diaphragm,
heated, shock tube facility at UCF with an internal diameter of 0.1417 m, specific details of which can be found in [8-
10]. The velocity of the incident shock wave was measured through five piezoelectric pressure transducers (wired to
four time interval counters). The temperature (Ts) and pressure (Ps) behind the reflected shock were calculated through
quasi one-dimensional normal shock relations using the measured incident shock velocity. Eight equally spaced ports
around the circumference of the tube, 2.00 cm away from the end-wall, were used for pressure and spectroscopic
measurements.

Laser Measurements

CHEMKIN-Pro simulations were conducted using a preliminary pyrolysis mechanism for cyclopentanone
from MIT, the concentrations of the top intermediates formed during the pyrolysis of 0.1% CPN/99.9% Ar were found
and fed into the Beer-Lambert law, eq. (1), to calculate the absorbance of each molecule at three different wavelengths,
displayed in Fig. 1. Measurements of carbon monoxide were made with a continuous wave, distributed feedback
quantum cascade laser centered at 2046.30 cm™* from Alpes Lasers (TO3-L-50). Due to the negligible interference of
other molecules, the measured absorbance is directly converted into concentration of CO through eq. (1).
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_Ethylene absorbance was measured with a tunable CO, gas laser (Access Laser L4AGS) centered at 949.49
cmt. As seen in Figure 1c, CPN also has an absorption feature at the measuring wavelength for ethylene; therefore,
the contribution from CPN to the measured absorbance at this wavelength must be quantified. In order to do so, a DFB
QCL centered at 1749.84cm* from MIRSense was used for CPN quantification, interference free as shown in Figure
1h. The time-history of CPN can thus be calculated from eq. 1 during each experiment. To obtain the time-histories
of C2H4, the contribution of C2H4 and CPN have to be taken into consideration as in eq. (2). If eq. (1) is substituted
into eq. (2) for each compound, eq. (3) is obtained which subtracts out the contribution of CPN from the measured
absorbance. In eq. (3) 0¢244,0401S the cross-section of ethylene at its measuring wavelength (949. 49cm™), a¢py 949 iS
the cross-section of CPN at the ethylene measuring wavelength, Xcpn is the mole fraction of CPN determine through
eq. (1) at 1749.84cm, and ag4qis the sum of the ethylene and CPN absorbance at ethylene’s measuring wavelength.
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Figure 1. Absorbance of top intermediates at (a) wavelength for measuring CPN (1749.84cmt), (b) wavelength for measuring CO
(2046.30cm™), and (c) wavelength for measuring C2H4 (949.49cm™?). Cross-section (CS) for CO obtained through eq.2; CS for
C2H4 obtained from [11]; CS of C2H2, H20, and CH4 obtained through the HITRAN 2012 database [12]; CS of CH2CO (18) not
found; CS of C3H4(166), C3H4 (1359), and C4H6(174) obtained from PNNL 2008 database at STP conditions
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IV. Results and Discussion

The thermal decomposition of CsHgO in Ar was investigated behind reflected shockwaves between 1156-1312 K
at pressures near 9 atm. Figure 2 shows one example of the time histories of cyclopentanone, ethylene, and carbon
monoxide. Figure 2 shows an induction time of cyclopentanone at theses conditions of 0.127ms, denoted by the
constant fuel concentration over this time and the zero concentration of CO and C,Ha. After the induction period the
fuel depletes at nearly a constant rate, with the small deviations toward the end of the test time being caused by beam
steering at these elevated pressures. Conversely, the concentrations of CO and C,H4 grow with a constant rate with
the ratio of C2H, to CO growth about 1.7
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Figure 2. CO, CzHa, and CsHsO time-histories during pyrolysis of cyclopentanone

V.  Summary

The unimolecular decomposition of cyclopentanone into the formation of important products, carbon monoxide
and ethylene was investigated in this work. The induction time of the fuel, the time-dependent growth of the products,
and the ratio of the products were measured and are extremely important quantities that can be used to extend the
knowledge of this promising biofuel candidate through the development of detailed chemical kinetic mechanisms.
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