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:Stabilizer states

- given a state |\W>, the stabilizer group is the set of tensor

products of Pauli operators that stabilizes |\W>
e.g. I[|0> = |0> and Z|0> = |0>.

- stabilizer states {|d;>}; on n d-dimensional qudits are the set of
states stabilized by dxn commuting stabilizer group elements

- we define the Clifford gateset to be closed for stabilizer states
- gateset is not universal

- projection onto Paulis also takes stabilizer states to themselves:
Clifford subtheory = Pauli measurement + Clifford gateset
+ (convex combos of) stabilizer states

Gottesman-Knill theorem!: there is a polynomial-time classical
algorithm to simulate the Clifford subtheory [1].

- stabilizer states {|;>}; form an overcomplete basis.
- therefore, any state |\W> can be expressed as |W> = L%, ¢; [o>

- the stabilizer rank x(¥) of a pure state |V> is the minimal

number x of states required in a stabilizer state decomposition
of [W>.

Trivial tensor bound property: Let x(n) be the stabilizer rank
of |[W>" . Since the tensor product of two stabilizer states is a
stabilizer state, it follows that x(m+n) < x(m)x(n).
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:T-Gate Magic State

T> = 22(]0> + e™* |1>).

The T-gate magic state extends the Clifford subtheory to
universality in the limit of t->inty, where t denotes the power

of tensoring the |T>"

- T-gate magic state equivalent to a T-gate by teleportation protocol
- imperfect T-gates can be "distilled" to increase purity by magic
state distillation [2]

It is postulated that x(t) grows slowest with increasing

number of qubits.

=Stabilizer Rank as a Computational Cost
Metric for Pauli-Based Computation
- the inner product of two stabilizer states <¢;|¢;> is

governed by Gaussian elimination and therefore scales
as O(n°).

in a Pauli-based computation, given a projector
I[T%_,(I+0; P,)/2 where P, is a Pauli operator, it

ollows that E;"=cx¢; <[ TT|d>
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- since the number of terms is x(t)?, we want to use the
lowest x(t) that we can to simulate this classically

- therefore, stabilizer state decompositions are a good
way to measure the cost of strong simulation (i.e.
lassical computation of the probability outcome of a
easurement)
- the stabilizer rank of states (like the T-gate magic
state) that extend the Clifford subtheory to a
universal set necessarily grow exponentially with
tensoring
- the exponential factor of this scaling determines
how large of a universal quantum computer can be
simulated by today’s classical computers
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Current Technique for Finding Stabilizer
Rank Not Adequate

The fastest method for finding the stabilizer
rank of the T-gate magic state is numerical and based
on Monte Carlo (Glauber dynamics) sampling of the
full stabilizer state space [3]
- for greater than t>7, such an approach ceases to
converge
To find a better asymptotic tensor scaling requires
reaching larger t, which therefore requires relying on
a new method.
- a non-numerical method would be especially
attractive

Alternative Method: Odd Prime-
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- for t =1 qubit T gate magic state, x(1) =

- for t = 2 qubit T gate magic states, x(2) =2
- for t = 3 qubit T gate magic states, x(3) =

- for t = 6 qubit T gate magic states, x(6) <7

It is conjectured that this bound is tight [3].

Using the tensor bound property, we can obtain upper bounds on
the T-gate stabilizer rank as t—oo (see Figure 1):

- x(1)' =

- x(2)¥* = 2%t where t is even.

- X(3)7 = 3% =~ 2" where t is a multiple of 3.
- x(6)7° = 7% = 2%t where t is a multiple of 6.

The last bound provides the most favorable asymptotic scaling, and
so the outcome of this procedure is often reported as a scaling of
O(2°%%) for the qubit T gate magic state.

Dimensional Wigner-Weyl-Moyal
(WWM) Formalism
Instead of considering our magic state in terms of
z vectors in Hilbert space, we can use a kernel (or
quasiprobability) representation instead.

Given a set of operators R(x) indexed by x, that are
Hilbert-Schmidt orthogonal, any operator A can be
represented:

A=Ay | Tr(R(X)A)RK)=TL A (X)R(X).

We choose R(x) to be Hermitian, self-inverse

z and unitary, and so A,(x) are real.

: In particular, we consider the odd-prime-d Wigner
"reflection” operators [4].
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Corresponence between Quadratic
Gauss Sums in WWM and Orthogonal
Clifford-Separable Pointer

Stabilizer Rank (t<3)
This representation of finite odd-dimensional

quantum states is especially simple for the Clitford
subtheory:

- stabilizer states p,(x) are non-negative

- Clifford gates U, (x) are symplectic positive maps.

General quantum states |\W> can be expressed in
: terms of quadratic Gauss sums that correspond to

: orthogonal Cli f ford-separable pointer
stabilizer states [5]:

an equiprobable linear combination of orthogonal
stabilizer states, which can be written after
some Clifford transformation U, as products of
orthogonal single-qudit stabilizer states {|¢;>}; and
single-qudit stabilizer states {[; >}y

UclW> = Ll Ll >T L[>

- this is not a numerical approach!
- to find the minimal number of quadratic Gauss
sums you search for the number of non-quadratic
phase space (x) variables after Clifford (unit
Jacobian) transformations

- for the T-gate magic state with t=1, and t=2, such a
decomposition equals the stabilizer rank
- therefore, the minimal number of quadratic
Gauss sums provably equals the stabilizer rank
- however, for t>3, the T-gate magic state stabilizer
rank is generally non-orthogonal
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Pushing to find Correspondence with
(Non-Orthogonal) Stabilizer Rank (t>3)
: For qutrits (d=3), the minimal number of quadratic
-Gauss sums equals the stabilizer rank for t=1 and t=2
: (see Figure 2)
- qualitatively, the qubit (d=2) and qutrit (d=3)
correspond approximately 2** « 3*
- however, qutrit stabilizer rank for t>3 is not
known (search space too large for Monte Carlo)
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- despite the T-gate magic state’s optimal stabilizer
decompositions not being orthogonal for t>3, the
number of quadratic Gauss sums continues to

: qualitatively correspond to the stabilizer rank for t=3
zand t=6 (see Figure 2).
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New Optimal Exponential Coefficient
Found for the Asymptotic Stabilizer Rank
of the T-Gate Magic State?

Can this correspondence be used to push the search
for the T-gate magic state stabilizer rank beyond six

qudits and find a better asymptotic scaling?
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Figure 1: Qubit (d=2) stabilizer rank upper bound w.r.t t from the trivial
tensor bound property using the stabilizer rank found for 1, 2, 3, and 6
tensored T-

L
Figure 2: Qutrit (d=3) quadratic Gauss sum upper bound w.r.t t from the trivial
tensor bound property using the minimal quadratic Gauss sum found for 1, 2,
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