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Aim of the project

Combustion of CPO ? What are the elementary reactions?
o How fast are they?

/ Initiation reactions Chain propagation reactions f f \

using ab initio calculations and RMG simulations

identify reaction pathways of cyclopentanone oxidation intermediates




RMG simulations

Rate-based Model Enlarging Algorithm
(flux-based algorithm)

o Reaction Mechanism Generator

Initial set of (RMG)
Species j
P 4 List of reactions

Large set of

J>i )
1 Elementary reactions + Rate constants
Reactor simulations
Database l Reaction
Mechanism
R = ddi/dt
Reactor If Ri > eRchar
Conditions | ,
Iteration
(7,P,c0) Add species /' mm— - Fuel properties
0.001 < £<0.1

Rchar = reaction system’s characteristic rate 3



Outline of the talk

Combustion of CPO ?
+ =0 —— o=0=0 + A,

1. Ab initio calculations
QOO: H-migration vs HO, elimination
QOOH: Ring opening vs cyclic ether formation

2. RMG simulations
Evolution of the system with time
Sensitivity analysis



Computational methods

Electronic structure
calculations

ThermoKinetic
Calculations

Gaussian

Transition States characterized
by one imaginary frequency

Intrinsic Reaction Coordinate (IRC)
calculations

CO/00/0H
scans

CBS-QB3 high-level
calculations

Arkane ‘

rigid rotor- harmonic oscillator
approximation

hindered internal rotors

[

Thermochemical properties
A¢HP 298k, S° 298k, CP(T)

A

Kinetic parameters

HPL k(T)

TST
+ tunneling correction



RMG simulations

Rate-based Model Enlarging Algorithm
(flux-based algorithm)

o Reaction Mechanism Generator
Initial set of (RMG)

Species j

List of reactions

Large set of

Ji ,
1 Elementary reactions + rate constants
Reactor simulations
1 Reaction
Mechanism
R = ddi/dt
Reactor If Ri > eRchar
Conditions | ,
Iteration
(7,P,c0) Add species /' mm— - Fuel properties
0.001 < £<0.1

Rchar = reaction system’s characteristic rate



Oxidation of 2-oxo-cyclopentyl
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Oxidation of 3-oxo-cyclopentyl
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Oxidation of 2-o0xo0- & 3-oxo-cyclopentyl
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Oxidation of 2-o0xo0- & 3-oxo-cyclopentyl

AHgk in kcal mol-!
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AHgk in kcal mol-!

Oxidation of 2-o0xo0- & 3-oxo-cyclopentyl
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Oxidation of 2-oxo-

& 3-oxo-cyclopentyl

AHgk in kcal mol-!
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Oxidation of 2-oxo-

& 3-oxo-cyclopentyl

AHgk in kcal mol-!
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Oxidation of 2-oxo-

& 3-oxo-cyclopentyl

AHgk in kcal mol-!
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Oxidation of 2-oxo- & 3-oxo-cyclopentyl

AHgk in kcal mol-!
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Oxidation of 2-oxo- & 3-oxo-cyclopentyl

AHgk in kcal mol-!
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HO, elimination vs H-abstraction

AHgk in kcal mol-!
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HO, elimination vs H-abstraction

AHgk in kcal mol-!
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HO, elimination vs H-abstraction

AHgk in kcal mol-
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Kinetics, k.. (T)
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Kinetics, k.. (T)
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Oxidation of 2-oxo-cyclopentyl 10
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Oxidation of 3-oxo-cyclopentyl

AHqx in keal mol- 1. H-transfer
N 2. Ring opening
25 - 3. Cycler ether formation
20 - 138 (4-membered ring)
“ﬁ“‘ 4. HO,-elimination
15 1 ;T-?'-?-‘!--i (120) ;-T-S—Z?--i 5. Cycler ether formation
# — #f (3-membered ring)

— [
[
~
| o 0 7
~
1 Sso ]
1 S~
1
[
S

scissrada/’BHO,

L (1) \RL.@
Y scissradf’BHO;

\\\ \N‘\N

S (135)

+ o

P

-
-_--_-

4 o =3
i Pt DO © S I NG )
N ! | L \\
a ! j&w o
a i N,
. BRO, | pooony T 222 ff (-32.\5‘)\ﬁ + o
'30 - ('30.4)| 2 EQOOH(X BQOOH(X’ e

(-34.8)%
Reaction coordinate




Thermodynamics

Acyclic radicals
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Outline of the talk

Combustion of CPO ?
+ =0 —— o=0=0 + A,

1. Ab initio calculations
QOO: H-migration vs HO, elimination
QOOH: Ring opening vs cycler ether formation

2. RMG simulations
Evolution of the system with time
Sensitivity analysis



Oxidation of CPO

batch reactor
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T=700K
P =10 bar

Sensitivity Analysis
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Conclusions and Perspectives

7. Ab initio calculations

O PES for aRe + O, and BRe + O, @ CBS-QB3 level of theory
QOO species: Competition between HO, elimination (termination) and a’-Habs (propagation)
QOOH species: enol formation for tQOOHa’, cyclic ether formation (3-membered rings)
Mechanism of 20 species, 21 rate constants and 15 thermodynamic data

2. RMG simulations

d Mechanism of 450 species and 18800 reactions
Olefin obtained from HO, elimination

» Compute thermo and kinetics for the species/reactions of the sensitivity analysis
> lgnition delay = f(T)
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