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SD-MD methodology, first successes, and some current 
limitations 

Methodology: 
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First successes: 

OSimulation of magneto-caloric effects
► Ma, P. W., & Dudarev, S. L. (2014). Dynamic magnetocaloric

effect in bcc iron and hcp gadolinium. Physical Review B, 90(2),
024425.

O Influence of defects on the magnetism of bcc iron
► Mudrick, M., et al. Combined molecular and spin dynamics

simulation of bcc iron with lattice vacancies. In Journal of
Physics: Conference Series (Vol. 921, No. 1, p. 012007).

► Wen, H., Ma, P. W., & Woo, C. H. (2013). Spin-lattice dynamics
study of vacancy formation and migration in ferromagnetic BCC
iron. Journal of Nuclear Materials, 440(1-3), 428-434.

Some current limitations: 

X No release in an open-source MD code
- preventing from the development of a large user base

X Insufficient level of parallelization
- does not allow the simulation of large magnetic devices

X Simulation of the spin-orbit coupling
- fundamental importance for the simulation of magnetoelasticity

X Simulation of the long-range dipolar interaction
- Unable to stabilize the domain structure of actual magnets
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L Spin and Lattice potential energy surfaces, and common 
approach in S-L dynamics 

Molecular dynamics • • •
• •
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L In metals, usually an

EAM-like potential. • •
• * • *
• ••

► Parametrization can be • • 0

on ab-initio data, or on
observables (elastic
constants, binding-
energies, ...).
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Spin dynamics

IP- Exchange interaction,
Zeeman, anisotropy, ...

Parametrized from 1st
principles calculations
(spin-spirals, ...), or exp

Observables (Tc, ...).
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Coupled spin-lattice PES 

Usual approach: overlaying the magnetic and
mechanical PES.

1 = 
Ipil2 + E V (rij) — E J(rii) si • sj — µBM E • Hext
2mij=1 i,j=1 i=0

MD Hamiltonian Spin—lattice coupling

- Proved sufficient for a broad range of effects (magnon-
phonon scattering, thermal conductivity, ...).

Limitations: overlays two PES parametrized from
different calculations => in principle incorrect.



1 A framework for generating magneto-elastic PES using ML 
interatomic potentials 

Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES 

Training a ML-
Interatomic potential 

Running SD-MD 
simulations 

Database generation for interatomic potential training 

II. DB for ML-IAP contain atomic configurations.

II.- Each configuration is the result of a self-consistent Density Functional Theory (DFT) calculation (performed
with Quantum Espresso, SeqQuest, or VASP).

One configuration

.1. a

•11111110. _.1
•Energy of the configuration

•Nine virial components

(stress applied on the cell)

•Forces on the atoms,

3*Natoms quantities

N„nf*(7+3*Natoms(COn)) I

► The SNAP potential is trained on those configurations.

The physical relevance of all configurations in the DB is of fundamental importance!



1 A framework for generating magneto-elastic PES using ML 
interatomic potentials 

Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES 

Training a ML-
Interatomic potential 

Running SD-MD 
simulations 

Fitting magnetic interactions on ab-initio results

II. Our objective is to fit an exchange interaction and a magnetic anisotropy on DFT calculations
performed with the same setup as the DB generation.

Pi- Parametrization of a Heisenberg exchange
Hamiltonian:

N N
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II.- Later on, adding the effects of the Spin-orbit coupling
(magnetocrystalline anisotropy here).

IP- For now, we are using the parametrization of a Heinsenberg Hamiltonian formerly published.

Pajda, Marek, et al. "Ab initio calculations of exchange interactions, spin-wave stiffness constants,
and Curie temperatures of Fe, Co, and Ni." Physical Review B 64.17 (2001): 174402.



A framework for generating magneto-elastic PES using ML 
interatomic potentials 

T Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES

L Training a ML-
Interatomic potential 

Running SD-MD 
simulations 

Subtracting the PES corresponding to the magnetic Hamiltonian 

The magnetic Hamiltonian is used as a reference potential.

From each configuration, we subtract the energy and the mechanical forces generated by the
parametrized spin Hamiltonian:

DFT PES
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Fictitious PES
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Generates a fictitious DB, on which we will train a ML-interatomic potential.



1 A framework for generating magneto-elastic PES using ML 
interatomic potentials 

Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES 

Training a ML-
Interatomic potential 

Running SD-MD 
simulations 

Training a machine-learning interatomic potential 

IP- The starting point of the approach expresses the atomic density.

pi(r) = 6(r) +
< c t

fc(rii) wi 6(r rii) With:

IP- This density can be expressed in terms of
bispectrum components. Then, those
bispectrum components can express the
energy and forces on a given atom:
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N 

Olhf 
,

i

FkATAP - 13 • 2_,
i=1 uri

Bispectrum components,

derivatives, references

potentials, ...
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Physical metrics
• Forces,
•Energies,
•Elastic constants, ...

Wi weights defining atomic species
Fc radial switching functions

F itS NAP
•Communicate with LAMMPS; Weighted

regression to obtain SNAP coefficients.

DAKOTA

•Optimization and sensitivity

Thompson, Aidan P., et al. "Spectral neighbor analysis method for automated generation of quantum-accurate
interatomic potentials." Journal of Computational Physics 285 (2015): 316-330.

Database
•Atomic configurations,
forces, and energies.
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Hyper parameters

•Cutoff distance,
•Group weights,
•Number of terms, ...



1 A framework for generating magneto-elastic PES using ML 
interatomic potentials 

T Generating DB 

Fitting a Spin 
Hamiltonian 

r Subtracting 
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[ Training a ML- 
Interatomic potential 

Running SD-MD 
simulations 

Running SD-MD simulations

- Sum-up the contributions of the SNAP and Spin potentials
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Conclusions 
9

QA new framework aiming at improving the accuracy of coupled spin and lattice simulations
was developed.

4We tested the framework on iron, and for simple SD-MD calculations

4 Our next objective is to improve the accuracy of this potential: by adding more
configurations to the DB (defects, free surfaces, ...) and improving the accuracy of the
spin Hamiltonian (spin-orbit coupling, longitudinal spin fluctuations, ...).

4Open to collaborations, feel free to contact us (jtranch@sandia.gov).
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