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2 Residual Stress —A Self-Equilibrating Stress Field

LENS 304L Build, T. Palmer (PSLI) and D. Adams (SNL)

L. Chang and A.C. To, Computer-Aided gesign21:119

• High thermal gradients lead to high residual stresses, which can lead to failure during or after printing
• Can exacerbate environmental effects (corrosion, fatigue, etc.)
• Rarely accounted for in qualification modeling



3 Quantifying Residual Stress Remains a Challenge

• Cannot directly measure stress - always measuring a surrogate (strain, displacement, etc.)
• Two main groups of methods:

• Relaxation-based: measure displacements caused by material removal
• Hole-drilling
• Slitting
• Contour method

• Diffraction-based: Measure lattice spacing between
atoms
• Neutron diffraction
• X-ray diffraction
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4 Outline for Characterization Examples

• Laser Engineered Net Shape (LENS) thin wall hole drilling

• Laser Powder Bed Fusion (LPBF) Neutron Diffraction

• Generalized Residual Stress Inversion

• Nonlinear Ultrasound



LENS Thin Wall Study: Quantifying Residual Stress Reduction from
5 Baseplate Preheating

- - -

• Thin wall LENS build
• 0.95 mm laser diameter
• 400 W
• 7.5mm/s laser speed
• Serpentine path, 2 passes per layer

• 2 Cases: Baseplate at 20C and 450C
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A.B. Kustas, Additive illamifecturiag2019

• Hole drilling performed using StressTech Electronic Speckle Pattern Interferometry (ESPI) System
• Not shown - EDM cut down centerline of wall for stress relaxation with Digital Image Correlation (DIE) to measure distortion before and after cut



6 I StressTech ESPI Hole Drilling System Validated Using 4-Point Bend
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7 Process Models Simulate Different Thermal Histories

Room Temperature Baseplate 
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• Thermal models performed in Sierra/Aria
• Elements are activated upon reaching melt temperature
• Conduction, convection, and radiation are considered.

451:IC Baseplate 



8 Baseplate Preheating Reduces Residual Stress

Room Temperature Baseplate 
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• Solid Mechanics models performed in Sierra/Solid Mechanics (Sierra/SM)
• Elements are activated when melted
• Temperature-dependent viscoplastic material model captures residual stress due to thermal contraction
• See K.L. Johnson et al. Conputstiallahlischsflics21118, 61, 559-574 for additional model details
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9 1 LENS 304L Thin Wall Hole Drilling Results and Model Comparison

Room Temperature Baseplate 
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10 Neutron Diffraction (ND) Measurements on LBPF Part

• 316L stainless steel part built on 3DSystems ProX200
• Serpentine laser path (91:1 degree rotation)
• >101:10 layers
• Neutron Diffraction results from Don Brown, Bjorn Clausen at LANSCE

B. Clausen et al. Additive Akaufacturifig, 21:1211 (Linder Review)



Neutron Diffraction Stress Results Before and After Base Plate is Cut
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12 I Contour Method Process

1. A part with an existing residual stress is securely fixtured and
cut in a planar fashion, causing displacements on the cut surface
due to released residual stresses.

2. The surface displacements are measured.

3. A finite element mesh of the deformed part is created.

4. The deformed, cut surface is displaced to return to a flat
configuration, inducing stresses in the part that correspond to
the released residual stress.

1.00
0.79
0.57
0.36
0.14
-0.07
-0.29
-0.50

A: Original Stress

= B: Part cut in two

6 fully relaxed (= 0) on surface

+ C: Forced back flat
starting from stress free)

6 on surface = original

M.B. Prime and A.T. Meld, Practical Residual Stress Methods, B.S. Schajer (ed.), 2D13



Contour Method Stress Results Agree with Neutron Diffraction Results
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• Contour method was performed along plane corresponding to blue, red, and green lines
• Contour Method results from Mike Hill, Chris ITElia, and Mike Prime

B. Clausen et al. Additive Aleaufecturifig, 21:121:1 (Linder Review)



14 I Inherent Strain Method for Rapid Stress Prediction

• Part size is challenging for full solution
• Inherent strain method developed for weld stress prediction

• (Ueda, Fukuda, Tanigawa 1979; Ueda, Kim, Yuan 1980, Hill and
Nelson 1995)

• Strain tensor is applied in layers over time
• Buick approximation for distortion and stress

• Does not capture local variations due to different thermal
gradients

• Fast: —30 mins on GO cpus
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1 5 I Inherent Strain Method Stress Contours
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• Axial stress values show expected trends
• — 31:11:1 MPa exterior, — -21:111 MPa interior

• Wall time —30 min on 60 opus (-12X faster than real-time 6 hr build)
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16 Lumped Laser Method
Thermal Solid Mechanics 
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• Approach similar to N.E. Hodge et al. 2 014 and 2016,  M. Stender et al. 2018,  R.K. Ganeriwala et al. 2 019
• —3 mm laser diameter, 0.84 mm layer height
• Laser radius to layer height ratio and total inter-layer cooling time held constant from actual conditions
• Laser speed unchanged — 140 mm/s
• 41:1 layers
• Wall time —6 hours on 10 0 cpus
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17 Reduced Order Model Comparison to Neutron Diffraction
Ax
ia
l 
St
re
ss
 (
M
P
a
)
 

600

0

Predicted Axial Residual Stress

— Model South

— Model Center

— Model North

-i- Exp. South

-i- Exp. Center

-i- Exp. North

5 10 15 20 25 30
Distance From West Edge (mm)

Mechanical Inherent Strain
61:1 cpus

31:1 minutes

35

Ax
ia
l 
St
re
ss
 (
M
P
a
)
 

600

Predicted Axial Residual Stress

— Model South

— Model Center

— Model North

- i- Exp. South

- i- Exp. Center

- i- Exp. North

5 10
Distance

25 30
From West Edge (mm)

Enlarged Heat Source and Layer Thickness
11:10 cpus

6 hrs (—real time)

35



18 1 Generalized Residual Stress Inversion Method

Benefits of Generalized Inversion Method:

1. Experimental simplicity

2. All traction components recovered

a2 - a2,residual

Initial Configuration

•

Fe

Treleased

al,remain

U al,traction

a2 - 0-2,rernain

U a2,traction

Cut Configuration

Invert for released stress by finding the (released) traction that causes the

measured deformation:
Deformation (um) 

Given um on SZm c (Q1 U Q2), find Tc := Treleased such that linear elasticity holds.

min J(re)
T,EX

1 2
:= [Q]u 11,742+ 

2 
IIre II2 subject to [K]u — f(rc) = 0

Mark Chen, Wilkins Aquino, Tim Walsh, Joe Bishop



19 Validation Using Force-sensing Bolts

Verified model and force-sensing

bolts by inverting for the loads on the

bolts using DIC data:

Case

I 
Left

(lbs)

Right

(lbs)

Top 441.18 447.394

Side

Displacement data

502.93

• Inversion method was validated by inverting for a measured load at two bolt locations using only DIE data
• DIE data measured on top and side surfaces while force-sensing bolts were loaded to 45D lbs

486.05

Rel. L2

Error (%)

El

1.45%

10.06%

I
1
I



20 I Inverse Methodology Results for LPBF Bridge

Traction Vector on Cut Plane
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• Inversion method is able to invert for 3D traction vector on cut surface using measured DIE data
• Use of DIE allows for more general shapes and cut locations
• Multiple cuts could be used to increase information about original stress state



21 Probing Material State With Nonlinear Ultrasound (Georgia Tech)

MEASUREMENT PRINCIPLE: 
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22 Conclusions

• Residual stress is an important consequence of laser-based AM processes that is sometimes ignored.
• Residual stress is often difficult to quantify.
• Multiple measurement methods may be needed to fully understand stress state.
• Neutron diffraction, hole drilling, and contour method are viable methods for stress measurement.
• Existing models can accurately predict residual stresses.
• Generalized inversion technique offers flexible option for residual stress quantification.
• Nonlinear ultrasound can detect material changes in AM Parts

• See Brett Clark talk tomorrow (9:20) on Optimization-based Design For Manufacturing



23 I Extra Slides



24 Thermal Modeling Methodology

Pre-meshed part is initialized with
"inactive" elements. Baseplate elements
are active. g

Laser heat source is scanned according to
input path ri

Elements are activated by a thermal
conductivity increase once they reach melt
temperature iMr

Conduction, convection, and radiation are
considered.
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25 Solid Mechanics Modeling Methodology

Pre-meshed part is initialized with
"inactive" elements. Baseplate elements
are active.

Thermal output file is read at every time
step to provide temperatures

Elements are activated once they reach
melt temperature

1-7
Residual stress builds as elements
contract upon cooling and build thermal
strain
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26 Bammann-Chiesa-Johnson (BCJ) Material Model

• Temperature and history-dependent viscoplastic internal state variable model

• Stress is dependent on damage 0 and evolves according to

=
E 1 —
  + E (1 — $0,W — rp)

• Flow rule includes yield stress and internal state variables for hardening and damage

ae  K

= f sinhn (1 (ti 1)

• Statistically stored dislocations are represented by isotropic hardening variable K
k2

K = CEssdsbli(0)VPssds Pssds = —LL 
Rd(9)Pssds

s g

• Geometrically necessary dislocations are represented by a misorientation variable
1

= µ(e) de 
0 + hot(0)

p.(
1
0)

r

k131
dpt

• The hardening variable K evolves in a hardening minus recovery form.

= 
µ(e) de 

0 +[1-1 (0) (1 + — Rd(0)K1
K .

(Bammann eta/1993, Brown and Bammann 2012)



27 I Full Process Models Provide Resolution at Each Laser Pass
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28 Residual stresses are greatly reduced by preheated baseplate

Room Temperature Baseplate 450C Baseplate 
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