
Performance Portability in Albany

January 27th, 2020

PRESENTED BY

Jerry Watkins

Albany User Group Meeting
Albuquerque, New Mexico

—

fi
Sandia
National
Laboratories

SAND

, kiikkey 1VeS44

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2020-0965PE

2 1 Motivation

"The top priority today is the continued progress to exascale" — DOE Office of Science HPC Initiative

Next Generation Architecture: a new computing architecture that requires a very different
programming model to fully utilize

GPUs in open science are here — and they're not going anywhere

ORNL Summit (200 PF) — 2 IBM

POWER9 CPU + 6 NVIDIA V100

GPUs

ANL Aurora (2021, >1 EF) —

Intel Xeon CPU + Intel Xe GPU

1111 o TDORP%R LL u

ORNL Frontier (2021, >1.5 EF) — 1

AMD EPYC CPU + 4 AMD Radeon

Instinct GPUs

NERSC Cori (30 PF) — 2 Intel Xeon "Haswell", 1 Intel Xeon Phi "KNL"

NERSC Perlmutter (2021) — AMD EPYC CPU-only, CPU + NVIDIA GPUs

Performance portability

What is it and how do we achieve it?

4 Performance Portability a response to heterogeneity

Definition: For an application, a reasonable level of performance is achieved across a
wide variety of computing architectures with the same source code.

Let's be more clear:

Performance quantified by application execution time under different work loads.

Portability includes conventional CPU, Intel KNL, NVIDIA GPU.

Approach: MPI+X Programming Model

M PI: distributed memory parallelism — Trilinos/Tpetra

X: shared memory parallelism — Trilinos/Kokkos
Examples: OpenMP, CUDA

Minimize data movement (efficient programming)

Increase arithmetic intensity (improve compute to memory transfer ratio)

Saturate memory bandwidth (expose more parallelism)

5 Kokkos Performance Portability

Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures

Examples: Multicore CPU, NVIDIA GPU, Intel KNL and
much more...

Abstract data layouts and hardware features for
optimal performance on current and future
architectures

Allows researchers to focus on application
development instead of architecture specific
programming

With Kokkos, you write an algorithm once for multiple hardware architectures.
Template parameters are used to get hardware specific features.

https://github.com/kokkos/kokkos/

Albany optimizations

Albany is portable but is it performant?

7 Albany Finite Element Assembly (FEA)

Albany Land Ice performance is split between
the linear solve (50%) and FEA (50%)

Piro manages the nonlinear solve

Tpetra manages distributed memory
linear algebra (MPI+X)

Phalanx manages shared memory
computations (X)

Gather fills element local solution

Interpolate solution/gradient to quad. Points

Evaluate residual/Jacobian

Scatter fills global residual/Jacobian

First step towards performance portability
is the FEA

Gather ill

Trilinos Packages

L Phalanx

FEA Overview

terpolate

Solution

100,.. Evaluate

Residual

• Scatter

Memory Model

Distributed
Memory (DM)

Jacobian

Shared
Memory (SM)

https://github.com/SNLComputation/Albany

8 Phalanx — directed acyclic graph (DAG)-based assembly

Scatter

Residual

41Interpolate
Solutio

Gather
Solution

DAG Example

(1) Minimize
data movement

Interpolate
Parameter

Basis
Functions

Gather
Coordinates

Mr
Gather

Parameter

Advantages:

Increased flexibility, extensibility, usability

Arbitrary data type support

Potential for task parallelism

Disadvantage:

Performance loss through fragmentation

Extension:

Performance gain through memoization

Haswell
16MPI

SMAssembly

DMAssembly a

3.9x

by

Haswell KNL P100
16(MPI+2OMP) 68(MPI+4OMP) 1(MPI+GPU)

Single CPU socket or GPU

t'Improvements

a: Base
b: Memoization

DAG Example (memoization)

catter

Residual
4 Stored

Field

StoredInterpolate
Solution

4

Field

Gather
.1 Solution

9 1 Phalanx Evaluator templated Phalanx node

A Phalanx node (evaluator) is constructed
as a C++ class

Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

The evaluation type is used to
determine the data type (e.g. double,
Sacado data types)

Kokkos RangePolicy is used to
parallelize over cells over an ExeSpace
(e.g. Serial, OpenMP, CUDA)

lnline functors are used as kernels

MDField data layouts
Serial/OpenMP — LayoutRight (row-major)

CUDA — LayoutLeft (col-major)

Residual

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset)

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(,workset.numCells)

*this);

}

template<typename EvalT, typename Traits>

KOKKOS INLINE FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,)=

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp)

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*woradBF(cell,node,qp,

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,

force(cell,qp,0)*WBF(cell,node,qp);

}
}

}

{

(1) Minimize data movement - without a kokkos
policy, evaluator will run on the host

10 Sacado Automatic Differentiation (AD)

Sacado data types are used for derivative components (ND = number of components)

DFad (most flexible) — ND is set at run-time

SLFad (flexible/efficient) — maximum ND set at compile-time

SFad (most efficient) — ND set at compile-time

(1) Minimize data movement - compile-time allocation allows for more optimization in memory hierarchy

1

Fad Type Comparison for StokesFO<Jacobian> (Serial, OpenMP (12 threads), CUDA)

103 104 105
Problem Size (Number of Cells)

serial-sfad

serial-slfad 74
1-. 1

serial-dfad
t>o
a.

1
cn

163 104 105

Problem Size (Number of Cells)

openmp-sfad

openmp-slfad 2 200 -
openmp-dfad 1=1

at
o>

1

cs.
100 -

c/9"

103 104
Problem Size (Number of Cells)

cuda70-sfad

cuda70-slfad

cuda70-dfad

ND Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

1 1 Hierarchical Parallelism (3) Saturate memory bandwidth

Hierarchical parallelism is used to expose more parallelism when strong scaling
Kokkos TeamPolicy, TeamThreadRange is
used to parallelize over cells and nodes

Kokkos scratch space is used to store
node/quadrature values in shared memory

-2x speedup for small problem sizes on GPU
(need padding for large problem sizes)

Slowdown for all problem sizes on CPU
(need different layout)

E 2.0 —

1.5 —
.5D
O

ts 1.0 —
o
a.
0

"C
.5

8

102 103 104 105
Problem Size (Number of Cells)

io"

CUDA70

Residual
Jacobian

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::TeamPolicy<ExeSpace>(workset.numCells,Kokkos::AUT0()),

*this);

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const Member& teamMember) const{

const Index cell = teamMember.league_rank();

// Allocate shared memory

ScratchView qpVals(teamMember.team_shmem(), numQPs, fadSize);

ScratchView nodevals(teamMember.team_shmem(), numNodes, fadSize);

// Zero nodeVals

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

nodeVals(node) = 0; });

// Fill Ugrad00

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numQPs), [&] (const Index& qp) {

qpVals(qp) = Ugrad(cell,qp,0,0); });

// Calc Ugrad00 contribution

for (Index qp=0; qp < numQPs; ++qp) {

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node)

nodeVals(node) += qpVals(qp) * wGradBF(cell,node,qp,0); }); 1

// Copy to Residual0

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

Residual(cell,node,0) = nodeVals(node); });

A performance study of
Albany Land Ice

Where are we now and what's next?

1

13 Performance Study —Architectures

Architectures:

Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

Waterman (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)

Compilers: gcc/icpc/xIC

Models:

3 models: MPI-only, MPI+OpenMP, MPI+CUDA

MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads

MPI+GPU: MPI ranks assigned a single core per GPU
CUDA UVM used for host to device communication

14 1 Performance Study — Greenland Ice Sheet (GIS)

GIS4k-20k

GIS1k-7k

4km-20km 1.51 million

1 km-7km 14.4 million

Unstructured tetrahedral element meshes

Wall-clock time averaged over 100 global
assembly evaluations (residual + Jacobian)

Performance analysis focuses on finite element
assembly

Notation for performance results:

r(MPI + jX), X E fOMP, GPU}

r = # MPI ranks

j = # OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism

15 Performance Results — Node Utilization
Node: Single dual-socket CPU or quad-GPU

2.0

E
1.5 -

1.0 -
o

'71:d 0.5

0.0

SMAssembly

DMAssemblv

12.6x

Node Configuration

a: 32MPI
b: 32(MPI+20MP)
c: 68MPI
d: 68(MPI+40MP)
e: 16MPI
f : 4(MPI+GPU)

MIL

0
Cori Cori Ride

0.
Blake Mayer Waterman

(Haswell) (KNL) (P8,P100) (SKX) (TX2) (P9,V100)
Clusters Clusters

Speedup achieved across most execution spaces

Kokkos Serial vs. OpenMP or CUDA (Doesn't include refactoring improvements)

12.6x speedup on POWER8+P100, 2.0x speedup on POWER9+V100

Very little improvement on Skylake

Tpetra Export poor on V100 (WIP within Tpetra and CUDA9 GPUDirect issue on POWER systems)

SMAssembly

DMAssembly

2.0x

Node Configuration

a: 48MPI
b: 48(MPI+20MP)
c: 56MPI
d: 56(MPI+40MP)
e: 40MPI
f : 4(MPI+GPU)

Blue (SMAssembly): shared memory local/global assembly (assembly/computation)
Yellow (DMAssembly): distributed memory global assembly handled by Tpetra (mostly communication)

1

16 1 Performance Results — Strong Scalability
Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

O

10

I)((.(\H I)(i (.(‘H

Reasonable scaling across all devices without machine-specific optimization in Albany

Poor GPU scaling (Export WIP within Tpetra and CUDA9 GPUDirect issue)

Best case: Skylake at 32 devices (768 cores)

Single CPU/GPU shared memory profile
SKX: 24-core V100: 1 GPU

Other Other
Gather/Scatter

Gather/Scatter

28.5

Evaluation
52.8

28.9 Evaluation
Interpolatioli

Interpolatio

30.4

Residual/Jacobian Evaluation most expensive

Gather/Scatter becoming increasingly important...

Other: some auxiliary routines are still expensive on the GPU (''10%)

18 1 Single GPU Kokkos and non-Kokkos

Gather/Scatter

KokkosProfileV100
Other

Interpola

Gather/Scatter: Minimize by combining w/ Tpetra routines?

Interpolation: Utilize lntrepid2/KokkosKernels (batch gemv, small "All matrix)? Need Sacado?

Evaluation: Nonlinear function within a gemm (Two types: double/Sacado)

Evaluation

nonKokkosProfileV100

Celllriterp

DOFlnterp

GatherCoor

LoadSta

•

u

Summary

Performance portability in Albany is achieved by relying/utilizing
Trilinos/Kokkos (maintain single codebase/hide complexity)

Minimize data movement (efficient programming)

Increase arithmetic intensity (improve compute to memory transfer ratio)

Saturate memory bandwidth (expose more parallelism)

Performance can be improved on all architectures
Trade-off between flexibility/extensibility/usability and performance

Performance portability of the finite element assembly is shown
across a variety of H PC architectures

Multicore and manycore processors (Haswell, Skylake, KNL, TX2)

NVIDIA GPUs (P100, V100)

More work needed!

21 Future Work

Performance portability of finite element assembly
Refactor boundary conditions (improve performance)

Implement FECrsMatrix assembly (get rid of export)

Code optimizations for finite element assembly:
More work on hierarchical parallelism (Intrepid2, KokkosKernels)

SIMD refactor for explicit vectorization on CPUs

More detailed profiling

Performance portability of solvers
Test next generation preconditioners (Multithreaded Gauss-Seidel, FastILU)

Test MueLu on GPU for Albany Land Ice

More detailed profiling

22 Funding/Acknowledgements

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC) projects funded
by the U.S. Department of Energy, Office of Science (OS), Advanced Scientific Computing Research (ASCR) and

Biological and Environmental Research (BER).

,,
Scientific Discovery
through
Advanced Computing

- I "A: u h . . .w km • k
FASTMATH

11
Office of Science
U.S. Department of Energy

Sandia
National
laboratories

Computing resources provided by the National Energy Research Scientific
Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

4 i(DAK
RIDGE
National Laboratory

23 1 Appendix: Performance Results —Weak Scalability
Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=Thunderx2; P100,V100=GPU

4 x 10° 4 x 10°

,3 x 10°- —1.— HSW
'

3 x 10° -
,,

—•- - KNL
En-

2 x 10°-
---- P100

• p-I • r-I

-4

v-- r--

C) C)

C

47)
1 0 " -

7)4
1 0 0 7

,_ii I

Arnal"

x 10-1 -
10°

• Nown

•
• 0010•11

allorw •
.0001 •

Devices

1 01

Reasonable scaling across all devices without machine-specific optimization in Albany

Poor GPU scaling (Export WIP within Tpetra)

Best case: Skylake at 10 devices (280 cores)

24 1 Appendix: Single GPU Full profile

KokkosProfileOverviewV100 ProfileOverviewV100

non-Kokkos

Gather/Scatter

/

Other

11111111

28.5

Interpolatio

ir,Lu:11

-1°1114
31.6 Evnlililti()11

30.4

