Performance Portability in Albany

m
— |
o
0
<

N D cr Al
DR Sk |
rnNEoLCiIv |

Jerry Watkins

Albany User Group Meeting
Albuquerque, New Mexico

Sandia
National

Laboratories

7 ENERGY /IS4

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
SAND Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

Motivation @

* “The top priority today is the continued progress to exascale” — DOE Office of Science HPC Initiative

* Next Generation Architecture: a new computing architecture that requires a very different
programming model to fully utilize

* GPUs in open science are here —and they’re not going anywhere

%) ENERGY | mll | (&ji* |l 1=1A
0 i ————

AMDZ

ORNL Summit (200 PF) — 2 IBM ANL Aurora (2021, >1 EF) — ORNL Frontier (2021, >1.5 EF) —
POWER9 CPU + 6 NVIDIA V100 Intel Xeon CPU + Intel Xe GPU AMD EPYC CPU + 4 AMD Radeon
GPUs Instinct GPUs

ol | NERSC Cori (30 PF) — 2 Intel Xeon “Haswell”, 1 Intel Xeon Phi “KNL”
'% 5 | \ iu
2 _Lihe NERSC Perlmutter (2021) — AMD EPYC CPU-only, CPU + NVIDIA GPUs

|

What i1s it and how do we achieve it?

+ | Performance Portability — a response to heterogeneity @

Definition: For an application, a reasonable level of performance is achieved across a
wide variety of computing architectures with the same source code.

Let’s be more clear:

* Performance quantified by application execution time under different work loads.

* Portability includes conventional CPU, Intel KNL, NVIDIA GPU.

Approach: MPI+X Programming Model

* MPI: distributed memory parallelism — Trilinos/Tpetra

* X: shared memory parallelism — Trilinos/Kokkos
* Examples: OpenMP, CUDA

1. Minimize data movement (efficient programming) I
2. Increase arithmetic intensity (improve compute to memory transfer ratio) ‘

3. Saturate memory bandwidth (expose more parallelism)

; | Kokkos — Performance Portability

* Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures

* Examples: Multicore CPU, NVIDIA GPU, Intel KNL and
much more...

* Abstract data layouts and hardware features for
optimal performance on current and future
architectures

* Allows researchers to focus on application
development instead of architecture specific
programming

With Kokkos, you write an algorithm once for multiple hardware architectures.
Template parameters are used to get hardware specific features.

https://github.com/kokkos/kokkos/

Albany optimizations

Albany is portable but is it performant?

, | Albany Finite Element Assembly (FEA) @
Albany Land Ice performance is split between Trilinos Packages
the linear solve (50%) and FEA (50%)
* Piro manages the nonlinear solve
* Tpetra manages distributed memory
linear algebra (MPI+X)

* Phalanx manages shared memory Gather MM—» Seatter
computations (X)

* @Gather fills element local solution

FEA Overview

* Interpolate solution/gradient to quad. Points
* Evaluate residual/Jacobian
* Scatter fills global residual/Jacobian

Memory Model

* First step towards performance portability
. Distributed Shared
IS the FEA Memory (DM) Memory (SM)

https://github.com/SNLComputation/Albany

‘ Phalanx — directed acyclic graph (DAG)-based assembly

DAG Example

(1) Minimize
data movement

Interpolate Gather
Parameter Parameter

Basis
Functions

Advantages:

DAG Example (memoization)

* Increased flexibility, extensibility, usability

* Arbitrary data type support
* Potential for task parallelism

Disadvantage:

* Performance loss through fragmentation

Extension:

* Performance gain through memoization

Gather Gather
Solution Coordinates

Bl SMAssembly
1 DMAssembly

a

Haswell Haswell KNL P100
16MPI 16(MPI+20MP) 68(MPI+40OMP) 1(MPI+GPU)

Single CPU socket or GPU

e

[mprovements

a: Base
b: Memoization

Scatter

-
=
-

<

—

Stored
Field

Stored
Field

1 L e OB "

» | Phalanx Evaluator — templated Phalanx node

A Phalanx node (evaluator) is constructed
as a C++ class

Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

The evaluation type is used to
determine the data type (e.g. double,
Sacado data types)

Kokkos RangePolicy is used to
parallelize over cells over an ExeSpace
(e.g. Serial, OpenMP, CUDA)

Inline functors are used as kernels

MDField data layouts
* Serial/OpenMP - LayoutRight (row-major)
* CUDA - LayoutLeft (col-major)

=

Residual

template<typename EvalT, typename Traits>
void StokesFOResid<EvalT, Traits>::
evaluateFields (typename Traits::EvalData workset) {
Kokkos::parallel for(
Kokkos: :RangePolicy<ExeSpace>(0,workset.numCells),
*this) ;

[

template<typename EvalT,
KOKKOS INLINE FUNCTION
volid StokesFOResid<EvalT, Traits>::
operator() (const inté& cell) const{
for (int node=0; node<numNodes; ++node) {
Residual (cell,node,0)=0.;
}
for (int node=0; node < numNodes; ++node) {
for (int gp=0; gp < numQPs; ++gp) {

Residual (cell,node,0) +=
Ugrad(cell,qp,0,0)*wGradBF (cell,node,qp,0) +
Ugrad(cell,qp,0,1)*wGradBF (cell,node,qp,1l) +
force(cell,gp,0) *wBF(cell,node,gp) ;

typename Traits>

}
}
}

(1) Minimize data movement - without a kokkos

policy, evaluator will run on the host

o | Sacado — Automatic Differentiation (AD)

E)

Sacado data types are used for derivative components (ND = number of components)

* DFad (most flexible) — ND is set at run-time

* SLFad (flexible/efficient) — maximum ND set at compile-time

* SFad (most efficient) — ND set at compile-time

(1) Minimize data movement - compile-time allocation allows for more optimization in memory hierarchy

Fad Type Comparison for StokesFO<Jacobian> (Serial, OpenMP (12 threads), CUDA)

D RN

Speedup over DFad

10° 10* 10°
Problem Size (Number of Cells)

serial-sfad
serial-slfad

serial-dfad

Speedup over DFad

10 1

N\

10° 10 10°
Problem Size (Number of Cells)

= openmp-sfad
openmp-slfad

= openmp-dfad

dup over DFad

Spe

)

100 A

103 104
Problem Size (Number of Cells)

ND Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

e 11 70-sfad
cuda70-slfad

e 11 70-dfad

" ‘ Hierarchical Parallelism

(3) Saturate memory bandwidth

Hierarchical parallelism is used to expose more parallelism when strong scaling
KOkkOS TeamPOIicy, TeamThreadRange is template<typename EvalT, typename Traits>

volid StokesFOResid<EvalT, Traits>::

used tO pa ra”enze Over Ce"S and nOdes evaluateFields (typename Traits::EvalData workset) ({

Speedup over original kernel

Kokkos scratch space is used to store
node/quadrature values in shared memory

—

Kokkos::parallel for(
Kokkos::TeamPolicy<ExeSpace> (workset.numCells,Kokkos::AUTO()),
*this) ;

template<typename EvalT, typename Traits>

~2X s(feedup for small problem sizes on GPU xoxxos e soverzon

(need padding for large problem sizes)

Slowdown for all problem sizes on CPU
(need different layout)
CUDA70

204~ —— Residual
Jacobian

T T

102 108 10* 100 10°
Problem Size (Number of Cells) }

void StokesFOResid<EvalT, Traits>::
operator () (const Member& teamMember) const({

const Index cell = teamMember.league rank();

// Allocate shared memory

ScratchView gpVals (teamMember.team shmem(), numQPs, fadSize);

ScratchView nodeVals (teamMember.team shmem(), numNodes, fadSize);

// Zero nodeVals

Kokkos::parallel for(

Kokkos: :TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {
nodeVals(node) = 0; });

// Fill Ugrad00

Kokkos::parallel for(

Kokkos::TeamThreadRange (teamMember, numQPs), [&] (const Index& gp) {
gpVals(gp) = Ugrad(cell,gp,0,0); });

// Calc Ugrad00 contribution

for (Index gp=0; gp < numQPs; ++qgp) {
Kokkos::parallel for(
Kokkos::TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {

nodeVals (node) += gpVals(gp) * wGradBF(cell,node,qp,0); }); }

// Copy to ResidualOl

Kokkos::parallel for(

Kokkos::TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {
Residual (cell,node, () = nodeVals(node); }):;

)

(=

|

A performance study of
Albany Land Ice

Where are we now and what’s next?

Architectures:

* Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

* Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

* Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

* Ride (SNL): 12 nodes [2 POWERS (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

* Waterman (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)
Compilers: gcc/icpe/xIC

Models:

* 3 models: MPl-only, MP1+OpenMP, MPI+CUDA

* MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads

* MPI+GPU: MPI ranks assigned a single core per GPU
* CUDA UVM used for host to device communication

T Ol B 00000 |

Elements

GIS4k-20k 4km-20km 1.51 million
GIS1k-7k 1km-7km 14.4 million

* Unstructured tetrahedral element meshes

* Wall-clock time averaged over 100 global
assembly evaluations (residual + Jacobian)

* Performance analysis focuses on finite element
assembly

* Notation for performance results:

r(MPI + jX), X € {OMP, GPU}

r = # MPI ranks
J = # OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism

s | Performance Results — Node Utilization ®
Node: Single dual-socket CPU or quad-GPU

2.0 :
O B SMAssembly (NOg;\clj;}lﬁgummmW /_«2.0 B SMAssembly (N()jg\([}(jlllﬁguration\
@ 1.5 ‘ - o2 = ' a: 48]
< 1.59 3 DMAssembly b: 32(MPI+20MP) | & 1.51 1 DMAssembly b, 43(MP1+20MP)
= c: 68MPI = c: 56MPI
?‘5 1.0 d: 68(MPI+40MP) | < 1.0 d: 56(MPI+40MP)
B e: 16MPI G c 2 0x | | € 40MPI
= 0.5 f: 4(MPI4+GPU) = 0.5 | f: 4MPI+GPU)
= _ Y, ; a \l/ \ y,

0.0 Cori Cori Ride 0.0 Blake Mayer Waterman

(Haswell) (KNL) (P8,P100) (SKX) (TX2) (P9,V100)
Clusters Clusters

Speedup achieved across most execution spaces

* Kokkos Serial vs. OpenMP or CUDA (Doesn’t include refactoring improvements)
* 12.6x speedup on POWER8+P100, 2.0x speedup on POWER9+V100

* Very little improvement on Skylake

Tpetra Export poor on V100 (WIP within Tpetra and CUDA9 GPUDirect issue on POWER systems)

Blue (SMAssembly): shared memory local/global assembly (assembly/computation)
Yellow (DMAssembly): distributed memory global assembly handled by Tpetra (mostly communication)

T Ol B 00000 |

« | Performance Results — Strong Scalability

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

2
2
w0
N
'

p—
=
o
—_
=
p—

Wall-clock time (s)
Wall-clock time (s)

10" ! - 10" !
Devices Devices

Reasonable scaling across all devices without machine-specific optimization in Albany
* Poor GPU scaling (Export WIP within Tpetra and CUDA9 GPUDirect issue)
* Best case: Skylake at 32 devices (768 cores)

|

+ | Single CPU/GPU shared memory profile

SKX: 24-core vV100: 1 GPU

Other Other
Gather /Scatter

Gather/Scatter

Evaluation

Evaluation
Interpolation

Interpolati

* Residual/Jacobian Evaluation most expensive
* Gather/Scatter becoming increasingly important...

* Other: some auxiliary routines are still expensive on the GPU (~10%)

s | Single GPU — Kokkos and non-Kokkos

KokkosProfileV100 nonKokkosProfileV100
Other

Celllnterp

Gather /Scatter
Evaluation

BC

Interpola

* Gather/Scatter: Minimize by combining w/ Tpetra routines?
* Interpolation: Utilize Intrepid2/KokkosKernels (batch gemv, small “A” matrix)? Need Sacado?

* Evaluation: Nonlinear function within a gemm (Two types: double/Sacado)

» | Summary

* Performance portability in Albany is achieved by relying/utilizing
Trilinos/Kokkos (maintain single codebase/hide complexity)
1. Minimize data movement (efficient programming)
2. Increase arithmetic intensity (improve compute to memory transfer ratio)
3. Saturate memory bandwidth (expose more parallelism)

* Performance can be improved on all architectures
* Trade-off between flexibility/extensibility/usability and performance

* Performance portability of the finite element assembly is shown
across a variety of HPC architectures
* Multicore and manycore processors (Haswell, Skylake, KNL, TX2)
+ NVIDIA GPUs (P100, V100)

* More work needed!

I S 00 [e

. | Future Work

* Performance portability of finite element assembly
* Refactor boundary conditions (improve performance)
* Implement FECrsMatrix assembly (get rid of export)

* Code optimizations for finite element assembly:
* More work on hierarchical parallelism (Intrepid2, KokkosKernels)
* SIMD refactor for explicit vectorization on CPUs
* More detailed profiling

* Performance portability of solvers
* Test next generation preconditioners (Multithreaded Gauss-Seidel, FastILU)
* Test MuelLu on GPU for Albany Land Ice
* More detailed profiling

2 ‘ Funding/Acknowledgements

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC) projects funded
by the U.S. Department of Energy, Office of Science (0S), Advanced Scientific Computing Research (ASCR) and

Biological and Environmental Research (BER).

] Scientific Discovery
through
Advanced Computing

Office of Science
U.S. Department of Energy

) Sandia
gy National

—ASTMATH Laboratories

Computing resources provided by the National Energy Research Scientific

Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

OAK
RIDGE

National Laboratory

» | Appendix: Performance Results —Weak Scalability

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

4 x 10°
_3x 100 =—e— HSW
S 2% 100 - RAL
£ —-= P100
- =@
T —
i { O e - ———— -____-‘..-—ll-lr—-—.
T—é . P'—‘— pm——
= 6 x 10~

-1 . —

Reasonable scaling across all devices without machine-specific optimization in Albany

Devices

Wall-clock time (s)

* Poor GPU scaling (Export WIP within Tpetra)

* Best case: Skylake at 10 devices (280 cores)

)

4 x 109
3 x 10°{ == SKX
2 x 1091 T IR
—d-= V100
10V -
u w—
| S
, —1] —
6 x 10 -
—11 —_
4 x 10 100 0

Devices

. | Appendix: Single GPU — Full profile

KokkosProfileOverview V100 ProfileOverviewV100
Other

non-Kokkos

Gather/Scatter

Evaluation

Interpolatio

