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Figure 1. PFLOTRAN simulation of 1291 plumes in a crystalline rock
nuclear waste repository containing 3360 waste packages.

Testing three source term surrogate models:
• Polynomial regression
• Artificial neural network regression
• k-nearest neighbors regression (kNNr)
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Fuel Matrix Degradation (FMD)
• Radiolysis, oxidation of H 2 via noble metal

particle (NMP) catalyst, growth of the
alteration layer, 1-D reactive transport and
diffusion through the alteration layer

PROTRAN
• Thermal-hydrological flow and transport

through geologic media
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• Uncertainty sampling multiple realizations
• Parametric surrogate model development

• Polynomial and neural network

python
• kNNr surrogate model development
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Table 1. Performed thousands of process model simulations to
define the 6-D response surface.
Parameter

Temperature (C)

Burnup (Gwd/MTU)

Environmental CO 2- (mol/m3)

Environmental 02 (mol/m3)

Environmental Fe2+(mol/m3)

Environmental H (mol/m3)

10
-1

104

10

1.0

Distribution Minimum Maximum

Uniform

Uniform

Log-uniform

Log-uniform

Log-uniform

Log-uniform

298

20

10-6

10-6

10-6

10-6

373

90

10°

10-1

10-5

10-1

il!curate & Fast
Neural Network Predictions on the Test Set
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Figure 2. Neural
network and kNNr
surrogate results
compared to test
data from the
FMD process
model.
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Table 2. Surrogate accuracy comparison (as of 2019).

Surrogate

Polynomial (order 5

Neural Network

Terms

Coeffs.

Train

Si ns)

462 l 1908

801 1908

NA 15169

0.952

0.978

NA

Train Mean

RPWAE

0.858

0.40

NA

0.942

0.972

NA

Test Mean

RPWAE

0.898

0.635

1 10-5

Benefits of urrogate o• el
• Can calculate a custom UO2 dissolution rate for each waste

package in a probabilistic repository performance assessment
(PA) as a function of local conditions at each time step

• Highly accurate vs. process model (e.g., kNNr above)
• Tremendous speed up (e.g., 200x faster than process model)

• Also avoids potential process model convergence
issues in PA calculations

• Surrogate model development helps vet the process model
Capturing source term heterogeneity improves repository
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