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Introduction
An open question in the metal hydride community is whether there are simple,
physics-based design rules that dictate the thermodynamic properties of these
materials across the variety of structures and chemistry they can exhibit.

While black box machine learning (ML)-based algorithms can predict these
properties with some success, they do not directly provide the basis on which

these predictions are made, therefore complicating the a priori design of novel
materials exhibiting a desired property value. In this work we demonstrate
how feature importance, as identified by a gradient boosting tree regressor,

uncovers the strong dependence of the metal hydride equilibrium H2 pressure
on a volume-based descriptor that can be computed from just the elemental

composition of the intermetallic alloy. Elucidation of this simple structure-
property relationship is valid across a range of compositions, metal

substitutions, and structural classes exhibited by intermetallic hydrides. This
permits rational targeting of novel intermetallics for high-pressure hydrogen
storage (low-stability hydrides) by their descriptor values, and we predict a
known intermetallic to form a low-stability hydride (as confirmed by density
functional theory calculations) that has not yet been experimentally
investigated [1].

Data cleaning

HydPARK is Sandia's historical dataset on metal hydride properties:

Class Composition H wt % All (kJ/mo1H2) T (K) Peg (atm)

A2B Ce0.5Th1.5A11 0.4 133 650 0.0003

AB5 La0.75Ce0.25Ti0.1Cu0.9Ni4 1.4 38.4 22 1.1

Target property: Compute equilibrium pressure at room temperature,

ln = -AIIIRT° + ASIR

to gauge a material's thermodynamic utility in a given storage application

Initial: - 2500 HydPARK compositions

1. Remove duplicate compositions

2. Remove entries with missing data, i.e.
ln PA can't be computed

Final: - 400 "ML ready" compositions
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1. Magpie presents a useful way to featurize inorganic materials in terms
of elemental properties when exact crystal structures are not known [2]

_r Magpie - EE145
XLaNi5 lipa ,Tmelt • • • J

_Magpie
Vpa fi composition fraction of element i

Vi ground state volume per atom of solid element i

2. Materials Project (MP) provides electronic structure data if crystal
structure known (only -70 HydPARK compositions found in MP)

iyMP
vpa Vcelllnatoms Vcell = DFT optimized cell volume

3. Gradient Boosting Regressors are "interpretable" : they reveal the
relative importance of each feature in the model's prediction [3]
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1. Reveals log-linear
relationship with vpa

2. Unifies previous
experimental results
with a single structure-
property relationship

3. Provides an empirical
design rule to target
low, moderate, or high
stability hydrides

Novel Hydride with Targeted Thermodynamics

Utilize DFT to (1) gain insight into the vpa, structure-property relationship
and (2) validate the hypothesis that a known intermetallic (UNi5 whose
hydriding properties have not yet been tested) would form an ultra low-
stability (high-pressure) hydride:
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For ANi5 ANi5H7 (A=U, Ce, La)

formation energy of ANi5H7

deformation energy to accommodate H absorption

binding energy of H

volume expansion upon H absorption

Vpa AH AEf Edef A EH
U- i5 13.17 -0.60 -285 65.2 -65.8
CeNi5 13.76 -20.5 -353 49.3 -69.8
LaNi5 14.38 -36.1 -224 44.3 -80.5

V/V0
1.278
1.266
1.256

Conclusions

1. -VIL models and experimental data provide a
powerful tool to explore phenomena too
expensive for computational approaches

2. Equilibrium pressure in intermetallic hydrides
can be predicted just from the alloy
composition, despite noisy/incomplete data

3. Explainable insights from the ML model
permit the rational design of novel materials
with targeted thermodynamic properties
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