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Abstract. We analyze the well-posedness of an anisotropic, nonlocal diffusion equation.
Establishing an equivalence between weighted and unweighted anisotropic nonlocal dif-
fusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to
a class of fractional-order operators and present rigorous estimates for the solution of the
corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our
analysis to the anisotropic diffusion-advection equation and prove well-posedness for
fractional orders s ∈ [0.5,1). We also present an application of the advection-diffusion
equation to anomalous transport of solutes.
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1. Introduction

Nonlocal models have become a preferred modeling choice for scientific and engineer-
ing applications featuring global behavior that is affected by small scales. In particular,
nonlocal models can capture effects that classical partial differential equations (PDEs) fail
to describe; these effects include multiscale behavior and anomalous transport such as su-
perdiffusion and subdiffusion. A nonlocal equation is characterized by integral operators
acting on a lengthscale or “horizon”, describing long-range forces and reducing the regular-
ity requirements on the solutions. Engineering applications include surface or subsurface
transport [3,4,21,30,31,47,48], fracture mechanics [29,34,52], turbulence [32,41], image
processing [1,11,27,35] and stochastic processes [6,13,37,39,40].

In this work we focus mainly on nonlocal operators of fractional type, of the form

Lω;A = Dω (A(x )Gω) , with ω∝ |x − y |−n−s (1.1)

and their use in models for solute transport. As reviewed carefully in Section 2, A(x ) de-
notes a diffusion tensor and Dω and Gω denote weighted nonlocal divergence and gradient
∗Corresponding author. Email addresses: mdelia@sandia.gov (M. D’Elia), mgulian@sandia.gov (M. Gu-
lian)
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operators, respectively, with weight function ω. Modeling and simulation of surface and
subsurface transport is challenging due to the inevitable heterogeneities of the media which
generate, at the continuum scale, diffusion processes that exhibit transport rates which may
be faster or slower than those described by the classical integer-order diffusion equation.
While at the smaller scales a local PDE model may be able to accurately describe diffusion
processes by explicitly embedding the heterogeneities in the model parameters, at the con-
tinuum scale, such models may fail to do so. In contrast, a fractional-order model using
an diffusion operator of the form (1.1) may act as a homogenized model that encodes the
heterogeneities of the medium in the integral operator itself. Several fractional models
have been proposed in the literature for such applications; we refer to [54] for an extensive
review. The problems we study in the present work serve as a novel models for anisotropic,
anomalous transport.

Though significant progress has been made in the analysis and simulation of nonlo-
cal equations, many modeling and computational challenges still remain. Among those,
we mention the expensive computational cost [2, 9, 12, 19, 44, 53, 55], the identification
of optimal model parameters or kernel functions [7, 17, 18, 28, 42, 43, 56–58], and gaps
and open questions within the nonlocal and fractional calculus theories [14, 49–51]. One
focus of this work is on such theoretical gaps in the analysis of the so-called weighted non-
local operators, their connection to fractional operators and on the well-posedness of the
corresponding diffusion problem. The connection between nonlocal and fractional opera-
tors, investigated for the first time in [10] and [16], was studied extensively in the recent
work [15]. There, the authors introduce the notion of a unified nonlocal vector calculus

for scalar functions and introduce a universal nonlocal Laplace operator that includes, as a
special cases, the well-known fractional Laplace operators and other variants of the latter.
Variational results of the unified calculus allow the extension of the well-established the-
ory of unweighted operators [23] to weighted nonlocal operators and, more specifically,
operators of fractional-order vector calculus.

We continue this effort by providing conditions for well-posedness for problems involv-
ing anisotropic nonlocal weighted operators, with a special focus on fractional operators of
the form (1.1) for which we establish well-posedness.

Our major contributions are:
1. The extension of results presented in [15] to the parabolic case.
2. The well-posedness analysis of the elliptic and parabolic anisotropic nonlocal diffu-

sion problem and, for the fractional case, the well-posedness of such problems for
fractional orders s ∈ (0,1).

3. The well-posedness analysis of an anisotropic nonlocal transport (advection-diffusion)
equations and, for the fractional case, the well-posedness of such problem for frac-
tional orders s ∈ [0.5,1).

4. The application of (3) to surface and subsurface solute transport.

Outline of the article In Section 2 we recall important results of the unified nonlocal
calculus and we extend the well-posedness analysis presented in [15] to the time-dependent
case. In Section 3 we introduce the anisotropic Poisson equation involving the operator
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(1.1), introduce an equivalent unweighted diffusion operator by proving the existence of
a symmetric equivalence kernel, and extend variational results of [15] to the anisotropic
case. In the same section we also rigorously prove the well-posedness of the corresponding
fractional-order problem. In Section 4 we introduce the anisotropic parabolic problem
for (1.1) and analyze its well-posedness; we also provide an a priori estimate for the its
solution and specialize it for the fractional case. Section 5 deals with anomalous transport
of solutes in the surface or subsurface. Here, we prove the well-posedness of the anisotropic,
anomalous advection-diffusion problem for both the general and fractional case. In Section
6 we summarize our results and contributions.

2. Notation and previous results

In this section we recall the definition of weighted and unweighted nonlocal operators
with special emphasis on the case of fractional kernels. This review is based on Section 2
of [15]; as we recall those results, we also extend them to the time-dependent, parabolic
case.

2.1. Unweighted operators and corresponding volume-constrained problems

Let α : Rn ×Rn → Rn, for n = 1,2,3, be an anti-symmetric two-point vector function.
For v : Rn ×Rn→ Rn, the nonlocal unweighted divergence Dv : Rn→ R is defined as

Dv(x ) :=

∫

Rn

(v(x , y) + v(y , x )) ·α(x , y)d y . (2.1)

For u : Rn→ R the nonlocal unweighted gradient, Gu : Rn ×Rn→ Rn, the negative adjoint
of (2.1) [24], is defined as

Gu(x , y) = (u(y)− u(x ))α(x , y). (2.2)

The nonlocal unweighted Laplacian is defined as the composition of unweighted nonlocal
divergence and gradient, i.e.

L u(x ) = DGu(x ) = 2

∫

Rn

(u(y)− u(x ))γ(x , y)d y , (2.3)

where the nonnegative kernel† γ is given by γ = α·α.
In order to define a diffusion problem in a bounded domain Ω ⊂ Rn, by definition of

L u(x ), it is necessary to evaluate u(x ) for x ∈ Rn \ Ω. We refer to conditions on u in
the exterior of the domain as exterior conditions or volume constraints. With this in mind,
the strong form of an unweighted nonlocal diffusion problem is given by: for f : Ω→ R,

†For a discussion on sign-changing kernels and nonsymmetric kernels, see [38] and [13], respectively.
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u0 : Ω→ R and g : Rn \Ω→ R, find u such that






∂tu(x , t) =L u(x , t) + f (x , t), (x , t) ∈ Ω× (0, T )

u(x , t) = g(x , t), (x , t) ∈ Rn \Ω

u(x , 0) = u0(x ), x ∈ Ω

(2.4)

where the second condition in (2.4) is the nonlocal counterpart of a Dirichlet boundary con-
dition for PDEs and it is referred to as Dirichlet volume constraint‡ or an exterior value condi-

tion. The work [13] shows that such condition is required to guarantee the well-posedness
of (2.4). For simplicity and without loss of generality we analyze the homogeneous case
g = 0; all the results below can be extended to the non-homogeneous case using “lifting”
arguments (see, e.g., [17]).

To obtain the variational form of equation (2.4), we apply the following nonlocal form
of the first Green’s identity, introduced in [24]§:
∫

Ω

−L u(x ) v(x ) dx =

∫

Rn

∫

Rn

Gu(x , y) · G v(x , y) d y dx +

∫

Rn\Ω

D(Gu)(x ) v(y) dx . (2.5)

Multiplying (2.4) by a test function v such that v = 0 on Rn \Ω and integrating over the
domain Ω yields, for all t ≥ 0,

0=

∫

Ω

(∂tu(x , t)−L u(x , t)− f (x , t)) v(x ) dx (2.6)

=

∫

Ω

∂tu(x , t) v(x ) dx +

∫

Rn

∫

Rn

Gu(x , y , t) · G v(x , y) d y dx

+

∫

Rn\Ω

D(Gu)(x , t) v(x ) dx −

∫

Ω

f (x , t) v(x ) dx ,

(2.7)

where the integral over Rn \ Ω on the right-hand side is zero due to the properties of v.
Given a function space S with norm ‖ · ‖, we define the space L2(0, T ; S) as follows

L2(0, T ; S) = {w : Rn ×R→ R such that w(·, t) ∈ S ∀ t ≥ 0, and ‖w(·, t)‖S ∈ L2(0, T )}.

Then, the weak form of the nonlocal diffusion problem reads as follows. For f ∈ L2(0, T ; V ′
Ω
(Rn)),

find u ∈ L2(0, T ; VΩ(R
n)) such that

(∂tu, v) +B(u, v) =F (v), ∀ v ∈ VΩ(R
n), (2.8)

‡For definition and analysis of Neumann volume constraints we refer to [23] and for their numerical treatment
we refer to, e.g., [20].
§Note that [24] introduces the first Green’s identity for operators whose kernels have support Bδ(x ), for δ > 0.
Equation (2.5) corresponds to the case δ =∞, of interest in this work. The same result, solely for fractional
operators, was also proved in [22].



Analysis of anisotropic fractional diffusion 5

where (·, ·) indicates the L2 inner product over Ω, and

B(u, v) =

∫

Rn

∫

Rn

Gu(x , y) · G v(x , y) d y dx ,

F (v) =

∫

Ω

f (x ) v(x ) dx ,

VΩ(R
n) = {v ∈ L2(Rn) : |||v|||<∞ and v|Rn\Ω = 0}.

(2.9)

Here, the energy norm |||·||| is defined as

|||v|||2 =

∫

Rn

∫

Rn

|G v(x , y)|2 d y dx , (2.10)

and the space V ′
Ω

is the dual space of VΩ. Note that the bilinear form B(·, ·) defines an
inner product on VΩ(R

n) and that |||u|||2 =B(u,u). This fact implies that the bilinear form
is coercive and, hence, weakly coercive. Together with the continuity of B and F , this
yields the well-posedness of the weak form (2.8) [13].

2.2. Weighted operators and corresponding volume-constrained problems

We let ω : Rn × Rn → R be a nonnegative, symmetric scalar function known as the
weight function. For v : Rn → Rn, the nonlocal ω-weighted divergence Dωv : Rn → R is
defined as

Dωv(x ) := D(ω(x , y)v(x ))

=

∫

Rn

(ω(x , y)v(x ) +ω(y , x )v(y)) ·α(x , y)d y .
(2.11)

For u : Rn→ R, the nonlocal ω-weighted gradient, negative adjoint of the divergence [24],
Gωu : Rn→ Rn is defined as

Gωu(x ) :=

∫

Rn

ω(x , y)Gu(x , y)d y

=

∫

Rn

ω(x , y)(u(y)− u(x ))α(x , y)d y .

(2.12)

As in the unweighted case, we define the nonlocalω-weighted Laplacian as the composition
of (2.11) and (2.12), i.e.,

Lωu(x ) = DωGωu(x )

=

∫

Rn

�
ω(x , y)

∫

Rn

ω(x , z)(u(z)− u(x ))α(x , z)dz

+ω(y , x )

∫

Rn

ω(y , z)(u(z)− u(y))α(y , z)dz

�
·α(x , y)d y .

(2.13)
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Using the symmetry of ω, we can further write

Lωu(x ) =

∫

Rn

ω(x , y)

�∫

Rn

ω(x , z)(u(z) − u(x ))α(x , z)dz

+

∫

Rn

ω(y , z)(u(z)− u(y))α(y , z)dz

�
·α(x , y)d y . (2.14)

Remark 2.1. We have reviewed the definitions (2.11), (2.12), and (2.13) assuming that

ω is a symmetric, scalar valued function. In Section 3, we consider the case when ω is a

nonsymmetric tensor. Definitions (2.11), (2.12), and (2.13), but not the simplification (2.14),

may be utilized for this case with products of ω and vectors being interpreted as matrix-vector

multiplication.

As for the unweighted case, problems defined on bounded domains involving these
operators require a volume constraint on the exterior of Ω. We introduce the strong form
of a weighted, nonlocal diffusion problem with homogeneous volume constraints. For f :
Ω→ R and u0 : Ω→ R, find u such that





∂tu(x , t) =Lωu(x , t) + f (x , t), (x , t) ∈ Ω× (0, T ]

u(x , t) = 0, (x , t) ∈ Rn \Ω× (0, T ]

u(x , 0) = u0(x ), x ∈ Ω

(2.15)

where the second condition in (2.15) is still referred to as Dirichlet volume constraint. Next,
by multiplying (2.15) by a test function v : Rn→ R such that

v = 0 in Rn \Ω, (2.16)

and integrating over the domain Ω, we have the following weak form:
∫

Ω

(∂tu(x , t)−Lωu(x , t)− f (x , t)) v(x ) dx = 0, for all t > 0. (2.17)

The work [15, Theorem 5.1] introduced the following weighted nonlocal Green’s first iden-
tity
∫

Ω

−Lωu(x )v(x ) dx =

∫

Rn

Gωu(x )·Gωu(x )dx +

∫

Rn\Ω

DωGωu(x )v(x ) dx . (2.18)

By substituting the latter in (2.17), we obtain

∫

Ω

∂tu(x , t) v(x ) dx +

∫

Rn

Gωu(x , t)·Gωu(x , t)dx

+

∫

Rn\Ω

DωGωu(x , t)v(x ) dx −

∫

Ω

f (x , t) v(x ) dx = 0. (2.19)
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By (2.16), the integral over Rn \Ω on the left-hand side is zero. Thus, the weak form of the
nonlocal diffusion problem reads as follows. For f ∈ L2(0, T ; (Vω

Ω
)′(Rn)), and u0 ∈ Vω

Ω
(Rn),

find u ∈ L2(0, T ; Vω
Ω
(Rn) such that

(∂tu, v) +Bω(u, v) =F (v), ∀ v ∈ Vω
Ω
(Rn), (2.20)

where

Bω(u, v) =

∫

Rn

Gωu(x )·Gωv(x )dx ,

Vω
Ω
(Rn) = {v ∈ L2(Rn) : |||v|||ω <∞ and v|Rn\Ω = 0},

(2.21)

and where the weighted energy is defined as

|||v|||2ω =

∫

Rn

|Gωv(x )|2 dx . (2.22)

The well-posedness of problem (2.20) follows when an equivalence relationship can be
established between weighted and unweighted operators, as we summarize in the next
section.

2.3. The equivalence kernel

The equivalence theorem between weighted and unweighted operators proved in [15]
provides an equivalence kernel γeq that, for given α and ω, guarantees that L = Lω. In
what follows, we summarize the main result and its consequences.

Theorem 2.1. [15, Theorem 4.1] Let Dω and Gω be the operators associated with the sym-

metric scalar weight functionω and the anti-symmetric function α. For the equivalence kernel

γeq defined by

2γeq(x , y;ω,α) =

∫

Rn

[ω(x , y)α(x , y) ·ω(x , z)α(x , z)

+ω(z, y)α(z, y) ·ω(x , y)α(x , y)

+ω(z, y)α(z, y) ·ω(x , z)α(x , z)]dz,

(2.23)

the weighted operator Lω = DωGω and the unweighted Laplacian operator L with kernel

γeq are equivalent, i.e. L =Lω.

This result, and the weighted nonlocal Green’s first identity, imply the following impor-
tant variational equivalence.

Theorem 2.2. [15, Theorem 5.2] For γeq(x , y;ω,α) defined as in (2.23), the variational

forms associated with weighted and unweighted nonlocal operators are equivalent. That is, for

all v = 0 in Rn \Ω,

B(u, v) =

∫

Rn

∫

Rn

Gu(x , y)·G v(x , y) d y dx =

∫

Rn

Gωu(x )·Gωv(x ) dx =Bω(u, v).

(2.24)
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An immediate consequence of this theorem is the equivalence of weighted and un-
weighted energies, i.e.

|||v|||2 =B(v, v) =Bω(v, v) = |||v|||2ω. (2.25)

More importantly, the variational equivalence allows us to extend the unweighted well-
posedness results to the weighted case, anytime the equivalence kernel γeq induces an
unweighted coercive bilinear form A(·, ·), see [15] for a discussion.

2.4. The special case of fractional operators

In this work, we are interested in the case of fractional operators. In this section we
recall their definition and specify the choices of α and ω for which the weighted fractional
Laplacian is equivalent to the standard fractional Laplacian.

The (Riesz) fractional Laplacian is defined as [33]

(−∆)su = Cn,s

∫

Rn

u(x )− u(y)

|x − y |n+2s
d y , (2.26)

where

Cn,s =
4s
Γ

�
s+ n

2

�

πn/2|Γ (−s)|
. (2.27)

The weighted fractional gradient and divergence operators are defined as [36,45,49–51]

gradsu(x ) =

∫

Rn

[u(x )− u(y)]
x − y

|x − y |

1

|x − y |n+s
d y ,

divsv(x ) =

∫

Rn

[v(x )− v(y)] ·
x − y

|x − y |

1

|x − y |n+s
d y .

(2.28)

We summarize in the following theorem several results proved in [15].

Theorem 2.3. Let v ∈ Hs(Rd) and u ∈ Hs(Rd). For the weight function and kernel

ω = Cω|x − y |−(n+s), α(x , y) =
y − x

|y − x |
, (2.29)

where Cω is the constant¶ defined as [15]

Cω =
2s sin(πs/2)

Γ (1− s)

∫

|θ |=1,θ1≥0

|θ1|
s+1dθ (2.30)

the fractional divergence and gradient operators can be identified with the weighted nonlocal

operators,

divsv(x ) = Dωv(x )

gradsu(x ) = Gωu(x ).
(2.31)

¶The constant Cω may be expressed as Gs/
p
−Dn,s in the notation of [15].
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Furthermore, α(x , y)ω(x , y) = (y − x )|y − x |−(n+s+1), implies that

γeq(x , y) = γFL(x , y) = −
Cn,s

2

1

|x − y |n+2s
, (2.32)

where FL stands for “fractional Laplacian” and Cn,s is the defined as in (2.27). Then, for

u ∈ H2s(Rn),

L u=Lωu = −(−∆)su. (2.33)

In words, the fractional gradient and divergence are special instances of weighted gra-
dient and divergence operators, for special choices of α and ω, and their composition is
equivalent to the standard fractional Laplacian operator.

Remark 2.2. The corresponding weighted and unweighted diffusion problems are both well-

posed in L2(0, T ; Hs
Ω
(Rn)) where Hs

Ω
(Rn) = {v ∈ Hs(Rn) : v|Rn\Ω = 0}. This follows from

the coercivity of B(·, ·) for γ = γFL [15] and from the variational equivalence in Theorem

2.2. More precisely, on one hand, the fact that the bilinear form B(·, ·) associated with γF L

defines an inner product on Hs
Ω
(Rn) guarantees the well-posedness of the unweighted parabolic

problem. On the other hand, the variational equivalence guarantees that the weighted bilinear

form Bω(·, ·) associated with ω and α defined as in (2.29) is equivalent to B(·, ·). This fact

implies that the weighted parabolic problem is also well-posed in L2(0, T ; Hs
Ω
(Rn)).

3. Well-posedness of anisotropic nonlocal Poisson problem

In this section we focus on the elliptic equation for the more general case in which
the diffusion operator is anisotropic. This case corresponds to the introduction of a space-
dependent diffusion tensor for which the theory reviewed in Section 2 is not sufficient to
guarantee existence and uniqueness of solutions. The analysis conducted in this section
generalizes several results proved in [15] to the anisotropic case; these include existence
of a symmetric equivalence kernel and a generalized Green’s first identity for operators of
the form Dω (A(x )Gω), and a variational inequality that guarantees the well-posedness of
the corresponding anisotropic volume constrained problem under certain conditions. We
utilize this to prove well-posedness for the specific case of fractional operators.

3.1. Equivalence kernels and Green’s identity for anisotropic weighted nonlo-

cal operators

We first introduce the anisotropic diffusion tensor and the corresponding nonlocal op-
erator: let

A : Rn→ Rn ×Rn be bounded, measurable, symmetric and elliptic, (3.1)

i.e. there exist 0< λmin ≤ λmax <∞ such that for all v ∈ Rn and x ∈ Rn,

λmin|v|
2 ≤ v·A(x )v≤ λmax|v|

2. (3.2)
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This implies the existence of a tensor-valued function A
1
2 (x ) such that A

1
2 (x )A

1
2 (x ) = A(x ).

We define the anisotropic nonlocal weighted Laplacian as

Lω;Au(x ) = Dω(A(x )Gωu(x )). (3.3)

The following lemma shows that the tensor A can be included in the weight function ω so

that Lω;A can be equivalently written as L eω for eω = A
1
2ω. It is important to note that,

by construction, the weight function eω is nonsymmetric, i.e. eω(x , y) 6= eω(y , x ), unless
A(x ) = Const., and that eω is also a tensor. In Section 2.2, we assumed that the weight
was symmetric, but the same operators and may be defined for nonsymmetric weight, and
we utilize the same notation, e.g., for the diffusion operator L eω for the diffusion operator
(2.13) with nonsymmetric weight eω.

Lemma 3.1. Let A satisfy (3.1) and α and ω be an anti-symmetric vector function and a

symmetric scalar function respectively. Then, for eω = A
1
2ω,

Lω;Au(x ) = Dω(A(x )Gωu(x )) =L eωu(x ). (3.4)

Proof. We explicitly compute the composition of weighted divergence and gradient.

Dω(A(x )Gωu(x )) = D(ω(x , y)A(x )Gωu(x ))

=

∫

Rn

[ω(x , y)A(x )Gωu(x ) +ω(y , x )A(y)Gωu(y)] ·α(x , y)d y

=

∫

Rn

�
ω(x , y)A(x )

∫

Rn

ω(x , z)Gu(x , z)dz

�
·α(x , y) d y

+

∫

Rn

�
ω(y , x )A(y)

∫

Rn

ω(y , z)Gu(y , z)dz

�
·α(x , y) d y

=

∫

Rn

�
ω(x , y)A

1
2 (x )

∫

Rn

ω(x , z)A
1
2 (x )Gu(x , z)dz

�
·α(x , y) d y

+

∫

Rn

�
ω(y , x )A

1
2 (y)

∫

Rn

ω(y , z)A
1
2 (y)Gu(y , z)dz

�
·α(x , y) d y

=

∫

Rn

�
eω(x , y)

∫

Rn

eω(x , z)Gu(x , z)dz

�
·α(x , y) d y

+

∫

Rn

�
eω(y , x )

∫

Rn

eω(y , z)Gu(y , z)dz

�
·α(x , y) d y

= D eωG eωu(x ), by (2.13).

. �
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Having established that the addition of a space-dependent diffusion tensor corresponds
to having a nonsymmetric weight function in the nonlocal Laplacian operator (2.13), we
show that the corresponding weighted Laplacian still admits a symmetric equivalence ker-
nel. Note that the arguments below hold also when ω is a tensor.

Lemma 3.2. Let the weight function ω be two-point function, not necessarily symmetric, i.e.

ω(x , y) 6=ω(y , x ). Then, there exists a symmetric equivalence kernel γeq such that

Dω(Gωu(x )) = 2

∫

Rn

(u(y)− u(x ))γeq(x , y;ω) dx , (3.5)

where γeq(x , y;ω,α) is a symmetric function of x and y .

Proof. First, we derive the equivalence kernel corresponding to a nonsymmetric weight.

DωGωu(x ) =

∫

Rn

(ω(x , y)Gωu(x ) +ω(y , x )Gωu(y)) ·α(x , y)d y

=

∫

Rn

�
ω(x , y)

∫

Rn

ω(x , z)(u(z)− u(x ))α(x , z)dz

+ω(y , x )

∫

Rn

ω(y , z)(u(z)− u(y))α(y , z)dz

�
·α(x , y)d y

=

∫

Rn

∫

Rn

(u(z)− u(x ))ω(x , y)ω(x , z)α(x , z) ·α(x , y)d ydz (3.6)

+

∫

Rn

∫

Rn

(u(z)− u(y))ω(y , x )ω(y , z)α(y , z) ·α(x , y)d ydz. (3.7)

Let the integral in (3.6) be I and the one in (3.7) be I I . We have, by self-adjointness of
ω(x , y),

I =

∫

Rn

∫

Rn

(u(z)− u(x ))ω(x , z)α(x , z) ·ω(x , y)α(x , y)d ydz

=

∫

Rn

(u(z)− u(x ))ω(x , z)α(x , z) ·

∫

Rn

ω(x , y)α(x , y)d ydz

=

∫

Rn

(u(z)− u(x ))γI (x , y)dz,

where we have defined γI(x , z) = ω(x , z)α(x , z) ·
∫

Rn

ω(x , y)α(x , y)d y . Next, by self-
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adjointness of ω(y, x),

I I =

∫

Rn

∫

Rn

(u(z)− u(y))ω(y , z)α(y , z) ·ω(y , x )α(x , y)d ydz

=

∫

Rn

∫

Rn

(u(z)− u(x ))ω(y , z)α(y , z) ·ω(y , x )α(x , y)d ydz

+

∫

Rn

∫

Rn

(u(x )− u(y))ω(y , z)α(y , z) ·ω(y , x )α(x , y)d ydz.

Switching y and z in the first integral, and employing the anti-symmetry of α, we find

I I =

∫

Rn

∫

Rn

(u(z)− u(x ))ω(y , z)α(y , z) ·ω(y , x )α(x , y)d ydz

+

∫

Rn

∫

Rn

(u(x )− u(z))ω(z, y)α(z, y) ·ω(z, x )α(x , z)dx dz

=

∫

Rn

∫

Rn

(u(z)− u(x ))ω(y , z)α(y , z) ·ω(y , x )α(x , y)d ydz

+

∫

Rn

∫

Rn

(u(z)− u(x ))ω(z, y)α(y , z) ·ω(z, x )α(x , z)dzd y

=

∫

Rn

(u(z)− u(x ))

∫

Rn

[ω(y , z)α(y , z) ·ω(y , x )α(x , y) +ω(z, y)α(y , z) ·ω(z, x )α(x , z)]d ydz

=

∫

Rn

(u(z)− u(x ))γI I (x , z)dz.

Above, we have put

γI I(x , z) =

∫

Rn

[ω(y , z)α(y , z) ·ω(y , x )α(x , y) +ω(z, y)α(y , z) ·ω(z, x )α(x , z)]d y

=

∫

Rn

ω(y , z)α(y , z) ·ω(y , x )α(x , y)d y +ω(z, x )α(x , z) ·

∫

Rn

ω(z, y)α(y , z)d y

= γI IA
(x , z) + γI IB

(x , z).
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We next show that γ∗(x , z) = γI(x , z) + γI I(x , z) is symmetric. Using antisymmetry of α,

γ∗(z, x ) =ω(z, x )α(z, x )·

∫

Rn

ω(z, y)α(z, y)d y +

∫

Rn

ω(y , x )α(y , x )·ω(y , z)α(z, y)d y

+ω(x , z)α(z, x )·

∫

Rn

ω(x , y)α(y , x )d y

=ω(z, x )α(x , z)·

∫

Rn

ω(z, y)α(y , z)d y +

∫

Rn

ω(y , x )α(x , y)·ω(y , z)α(y , z)d y

+ω(x , z)α(x , z)·

∫

Rn

ω(x , y)α(x , y)d y

=ω(z, x )α(x , z)·

∫

Rn

ω(z, y)α(y , z)d y +

∫

Rn

ω(y , z)α(y , z)·ω(y , x )α(x , y)d y

+ω(x , z)α(x , z)·

∫

Rn

ω(x , y)α(x , y)d y

= γI IB
(x , z) + γI IA

(x , z) + γI(x , z)

= γ∗(x , z).

Then, (3.5) follows by setting γeq = 2γ∗. �

We now introduce the anisotropic nonlocal Poisson equation. For f : Ω→ R, we seek
u : Rn→ R such that

�
−Lω;Au(x , t) = f (x , t), x ∈ Ω

u(x ) = 0, x ∈ Rn \Ω.
(3.8)

As usual, a form of Green’s first identity is required to introduce a weak form for the
equation above. The next theorem extends the weighted nonlocal Green’s identity to the
anisotropic case.

Theorem 3.1. Let Lω;A be defined as in (3.3). Then,

−

∫

Ω

Lω;Au(x )v(x ) dx =

∫

Rn

Gωv(x )·A(x )Gωu(x )dx +

∫

Rn\Ω

Dω(A(x )Gωu(x ))v(x ) dx

(3.9)

Proof. We first note that by combining the left-hand side of (3.9) and the second term
on the right-hand side of the same equation, we have:
∫

Ω

Lω;Au(x )v(x ) dx +

∫

Rn\Ω

Dω(A(x )Gωu(x ))v(x ) dx =

∫

Rn

Dω(A(x )Gωu(x ))v(x ) dx .
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We compute explicitly the right-hand side of the equation above, using the definition of
weighted operators,

∫

Rn

Dω(A(x )Gωu(x ))v(x ) dx =

∫

Rn

D (ω(x , y)A(x )Gωu(x )) v(x ) dx

=

∫

Rn

∫

Rn

[ω(x , y)A(x )Gωu(x ) +ω(y , x )A(y)Gωu(y)] ·α(x , y)v(x ) d ydx

=

∫

Rn

∫

Rn

ω(x , y)




∫

Rn

A(x )ω(x , z)Gu(x , z)dz +

∫

Rn

A(y)ω(y , z)Gu(y , z)dz





·α(x , y)v(x ) d ydx

=

∫

Rn

∫

Rn

∫

Rn

ω(x , y)A(x )ω(x , z)Gu(x , z) ·α(x , y)v(x )dzd ydx

+

∫

Rn

∫

Rn

∫

Rn

ω(x , y)A(y)ω(y , z)Gu(y , z) ·α(x , y)v(x )dzd ydx .

Applying the change of variables x 7→ y 7→ z 7→ x ,

∫

Rn

Dω(A(x )Gωu(x ))v(x ) dx =

∫

Rn

∫

Rn

∫

Rn

ω(x , y)A(x )ω(x , z)Gu(x , z)·α(x , y)v(x )dzd ydx

+

∫

Rn

∫

Rn

∫

Rn

ω(y , z)A(z)ω(z, x )Gu(z, x ) ·α(y , z)v(y)dx dzd y . (3.10)



Analysis of anisotropic fractional diffusion 15

By using the definition of the weighted gradient and self-adjointness of ω(x , y), we have

∫

Rn

Dω(A(x )Gωu(x ))v(x ) dx =

∫

Rn

∫

Rn

ω(x , y)A(x )Gωu(x )·α(x , y)v(x )d ydx

+

∫

Rn

∫

Rn

ω(y , z)A(z)Gωu(z)·α(y , z)v(y)dzd y

=

∫

Rn

∫

Rn

ω(x , y)A(x )Gωu(x )·α(x , y)v(x )d ydx

+

∫

Rn

∫

Rn

ω(y , x )A(x )Gωu(x )·α(y , x )v(y)dx d y

=

∫

Rn

∫

Rn

ω(x , y)A(x )Gωu(x )·α(x , y)[v(x )− v(y)]dx d y

= −

∫

Rn

[A(x )Gωu(x )]·

∫

Rn

ω(x , y)α(x , y)[v(y)− v(x )]dx d y

= −

∫

Rn

Gωv(x )·A(x )Gωu(x )dx .

�

3.2. Weak form of anisotropic Poisson problem

Utilizing the results of the previous subsection, we can formulate the weak form of
equation (3.8) and show that the corresponding energy is equivalent to an unweighted
nonlocal energy. We multiply (3.8) by a test function v = 0 in Rn \ Ω and integrate over
the domain Ω; we have

∫

Ω

(−Lω;Au(x )− f (x )) v(x ) dx = 0. (3.11)

The anisotropic weighted nonlocal Green’s first identity (3.9) then implies

∫

Rn

Gωu(x )·A(x )Gωu(x )dx +

∫

Rn\Ω

Dω(A(x )Gωu(x ))v(x ) dx −

∫

Ω

f (x ) v(x ) dx = 0.

Thus, the weak form of the nonlocal Poisson problem reads as follows. For f ∈ V ′
A
(Rn), find

u ∈ V A
Ω
(Rn) such that

Bω;A(u, v) =F (v), ∀ v ∈ VA(Ω∪ΩI), (3.12)
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where

Bω;A(u, v) =

∫

Rn

Gωu(x ) ·A(x )Gωu(x )dx ,

V A
Ω
(Rn) = {v ∈ L2(Rn) : |||v|||A <∞ and v|Rn\Ω = 0},

(3.13)

and where the anisotropic energy is defined as

|||v|||2A =

∫

Rn

Gωv(x ) ·A(x )Gωv(x ) dx . (3.14)

The existence of the equivalence kernel guaranteed by Lemma 3.2, allows us to establish
an equivalence relationship between the anisotropic weighted bilinear form Bω;A defined
above and the unweighted bilinear formB given in (2.8), where the latter is associated to
the equivalence kernel γeq(x , y; A

1
2ω,α), as shown in the following lemma.

Lemma 3.3. Let A be a bounded, measurable and elliptic tensor, ω be a symmetric scalar

function and α an anti-symmetric vector function. Then, the following identity holds:

Bω;A(u, v) =

∫

Rn

Gωv(x )·A(x )Gωu(x ) dx =B(u, v), ∀u, v ∈ V A
Ω
(Rn), (3.15)

where B(·, ·) is the unweighted bilinear form defined in (2.9) associated to the symmetric

equivalence kernel γeq(x , y; A
1
2ω,α).

Proof. The proof follows from Lemmas 3.2 and 3.1. We have

∫

Rn

Gωv(x )·A(x )Gωu(x ) dx = −

∫

Ω

Dω(A(x )Gωu)(x )v(x ) dx (weighted Green’s identity (3.1))

= −

∫

Ω

DGu(x )v(x )dx (Equivalence kernel; Theorem 3.2)

=

∫

Rn

∫

Rn

Gu(x , y) ·G v(x , y) d y dx . (unweighted Green’s identity (2.5))

�

The theorem above is not enough to guarantee the well-posedness of problem (3.12).
One approach to obtaining the existence and uniqueness of solutions involves establishing
certain properties of γeq, as highlighted in [15, Section 5]. However, thanks to the ellip-
ticity property of A, the well-posedness of the anisotropic problem follows from the well-
posedness of the weighted problem associated with the corresponding isotropic weighted
bilinear form Bω. In fact, Bω;A is coercive and continuous with respect to the energy
induced by ofBω, as we show in the following lemma.
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Lemma 3.4. The bilinear formBω;A(u, v) defined as in (3.13) is continuous and coercive in

Vω
Ω
(Rn), i.e.

|Bω;A(u, v)| ≤ λmax |||u|||ω|||v|||ω

Bω;A(u,u) ≥ λmin|||u|||
2
ω,

(3.16)

where λmin and λmax are the smallest and largest eigenvalues of A over Rn, respectively.

Proof. The ellipticity of A allows us to write

|Bω;A(u, v)| =

∫

Rn

(A
1
2Gωu(x ))·(A

1
2Gωv(x )) dx

=

∫

Rn

|A
1
2Gωu(x )| |A

1
2Gωv(x )| dx

≤

�∫

Rn

|A
1
2Gωu(x )|2
∫

Rn

|A
1
2Gωv(x )|2
� 1

2

≤ λmax |||u|||ω|||v|||ω,

which implies, by definition, the continuity of Bω;A with respect to the norm |||·|||ω. The
coercivity with respect to the same norm simply follows from

Bω;A(u,u) =

∫

Rn

Gωu(x )·AGωu(x ) dx > λmin|||u|||
2
ω. (3.17)

�

3.3. Well-posedness of the anisotropic fractional Poisson equation

In this section, we apply the analysis of the nonlocal anisotropic problem to the case
of fractional operators. That is, we consider ω and α defined as in (2.29) and show that
the corresponding anisotropic problem is well-posed in the usual fractional Sobolev space.
In order to do this, we only need to show that the bilinear form Bω;A is coercive and
continuous with respect to the fractional Sobolev norm. In fact, Theorem (2.3) states that
the equivalence kernel associated with the weight and kernel functions in (2.29) is the
fractional Laplacian kernel γFL; the variational equivalence discussed in Remark 2.2 implies
that the corresponding weighted energy space Vω

Ω
is equivalent to Hs

Ω
and that the weighted

energy |||·|||ω is equivalent to the Hs norm. Thus, Lemma 3.4 implies the continuity and
coercivity ofBω;A in Hs

Ω
and the well-posedness of problem (3.12) is immediate, as stated

in the folling lemma.

Lemma 3.5. Let A satisfy (3.1), and let ω and α be defined as in (2.29). Then, the corre-

sponding bilinear form Bω;A defined as in (3.13) is coercive and continuous in Hs
Ω
(Rn) with

coercivity and continuity constants

Ccoer =
Cn,s

2
λmin and Ccont =

Cn,s

2
λmax, (3.18)
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where λmin and λmax are the smallest and largest eigenvalues of A in Rn, respectively. Further-

more, problem (3.12) is well-posed.

Note that for the fractional case and for a class of tensors satisfying (3.1) that we specify
below, we can characterize the equivalence kernel. In particular, the equivalence kernel is
such that the corresponding unweighted bilinear form is a Dirichlet form, as we show in the
following lemma.

Lemma 3.6. Let I be the identity tensor in Rn and let A(x ) = a(x )I satisfy (3.1) for a :
R

n → R, i.e. there exist two positive constants such that 0 < a ≤ a(x ) ≤ a <∞. Then, the

equivalence kernel γeq(x , y; a
1
2ω,α) is such that

aCn,s

2
|x − y |−n−2s ≤ γeq(x , y; a

1
2ω,α) ≤

aCn,s

2
|x − y |−n−2s.

Lemma 3.6 implies that the equivalence kernel is positive; in addition to symmetry,
this property guarantees that the corresponding unweighted bilinear formB is a Dirichlet
form [26]. We point out that the class of tensors in Lemma 3.6 corresponds to a space
dependent isotropic diffusion as the intensity of the diffusion is the same in all directions.

Remark 3.1. It is unclear how to characterize the class of equivalence kernels for a general

anisotropic fractional-order operator. In our terminology of symmetric equivalence kernels,

[50] poses the problem of whether or not the equivalence kernel corresponding to anisotropic

fractional-order operators with a tensor A(x ) satisfying (3.1) must satisfy the following con-

ditions:
λ ≤ γeq(x , y)|x − y |n+2r ≤ Λ |x − y | ≤ 1,

γeq(x , y)|x − y |n+2t ≤ M |x − y | > 1,
(3.19)

for r ∈ (0,1), 0< λ ≤ Λ <∞, M <∞ and t > 0. Lemma 3.6 shows that the conditions in

(3.19) are satisfied in the isotropic case. The question remains of whether those bounds hold

for any tensor satisfying (3.1).

4. Well-posedness of a parabolic equation with anisotropic nonlocal diffusion

The results of Section 3 allow us to analyze the anisotropic parabolic problem. In fact,
the coercivity of the bilinear form Bω;A implies the well-posedness of the corresponding
parabolic problem, for which weak coercivity would be sufficient. We introduce the strong
form of the anisotropic parabolic equation and, by using the Green’s identity (3.9), we
formulate the corresponding weak problem and state a well-posedness result.

For f : Ω→ R and u0 : Ω→ R, we seek u such that






∂tu(x , t) = Dω(A(x )Gωu(x , t)) + f (x , t), (x , t) ∈ Ω× (0, T ]

u(x , t) = 0, (x , t) ∈ Rn \Ω× (0, T ]

u(x , 0) = u0(x ), x ∈ Ω

(4.1)
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By multiplying (4.1) by a test function v = 0 in Rn \Ω, integrating over the domain Ω, and
using the anisotropic Green’s identity (3.9), we have

0=

∫

Ω

(∂tu(x , t)−Lωu(x , t)− f (x , t)) v(x ) dx

=

∫

Ω

∂tu(x , t) v(x ) dx +

∫

Rn

Gωu(x )·A(x )Gωu(x )dx −

∫

Ω

f (x , t) v(x ) dx .

(4.2)

Thus, the weak form of the nonlocal diffusion problem reads as follows. For f ∈ L2(0, T ; (V A
Ω
)′(Rn)),

and uo ∈ V A
Ω
(Rn), find u ∈ L2(0, T ; V A

Ω
(Rn) such that

(∂tu, v) +Bω;A(u, v) =F (v), ∀ v ∈ VΩ(R
n). (4.3)

When the equivalence kernel γeq(x , y; A
1
2ω) associated with A is such that the unweighted

bilinear form B is coercive, problem (4.3) is well-posed, as we state in the following the-
orem.

Theorem 4.1. For f ∈ L2(0, T ; V ′
Ω
(Rn)), u0 ∈ V A

Ω
and Bω;A(·, ·) such that the correspond-

ing γeq(x , y; A
1
2ω,α) induces a weakly coercive and continuous unweighted for B(·, ·), the

problem (4.3) has a unique solution u∗ ∈ L2(0, T ; VΩ(R
n)), where VΩ(R

n) is the energy space

associated with the bilinear formB(·, ·).
Furthermore, if B(·, ·) is coercive and the associated energy norms satisfies a Poincaré

inequality with constant Cp, that solution satisfies the a priori estimate

‖u∗(·, t)‖2
L2(Ω)

+ Ccoer

∫ t

0

|||u∗(·, s)|||2 ds ≤ ‖u0‖
2
L2(Ω)

+
C2

p

2Ccoer

∫ t

0

‖ f (·, s)‖2
V ′
Ω

ds ∀ t > 0,

(4.4)
where ‖·‖V ′

Ω

indicates the standard operator norm in the dual space of VΩ(R
n) and Ccoer is the

coercivity constant of the bilinear formB(·, ·).

Proof. The conditions on f guarantee the continuity of the functional F (·). The weak
coercivity and the continuity of B(·, ·) and the continuity of F (·) imply the existence and
uniqueness of a solution u∗ ∈ L2(0, T ; VΩ(R

n)) [25]. Then, (4.4) follows from arguments
entirely similar to those used in the classical theory of partial differential equations [46].
�

The results of Section 3.3 show that for a tensor A satisfying (3.1), and forω and α as in
(2.29), the equivalence kernel associated withDω(A(x )Gω) induces an unweighted bilinear
form B(·, ·), whose energy norm is equivalent to the Hs-norm. This implies that B(·, ·) is
coercive and continuous on Hs

Ω
(Rn). Thus, Theorem 4.1 can be immediately applied to the

special case of fractional operators, as we show in the following corollary. Note that, in
this case, the unweighted energy norm corresponds to the Hs norm for which the Poincaré
inequality is satisfied for all u ∈ Hs

Ω
(Rn) [8].
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Corollary 4.1. Let A be a tensor satisfying (3.1), and let ω and α be defined as in (2.29). For

f ∈ L2(0, T ; (Hs
Ω
(Rn))′) and u0 ∈ Hs

Ω
(Rn), the problem

(∂tu, v) +Bω;A(u, v) =F (v), ∀ v ∈ Hs
Ω
(Rn), (4.5)

has a unique solution u∗ ∈ L2(0, T ; Hs
Ω
(Rn)) that satisfies the estimate (4.4) for |||·||| = ‖ · ‖Hs

Ω

and Ccoer as in (3.18).

5. Anisotropic advection-diffusion for solute transport

In this section, we introduce a mathematical model that is suitable for solute transport
applications and we prove its well-posedness. The anisotropic, fractional-order model in-
troduced in the previous section can be used to describe surface or subsurface anisotropic
anomalous diffusion of solutes (e.g. pollutants). As already mentioned in the introduc-
tion, several fractional models have been introduced in the literature with this purpose,
see, e.g. [21] for surface transport and [3] for subsurface transport. The novelty of model
proposed in this section is the characterization of the anisotropic behavior via a diffusion
tensor, similarly to what is commonly done in the PDE setting.

We point out that a diffusion tensor A(x ) can be easily added to an unweighted nonlo-
cal Laplacian, just by defining the kernel as γ(x , y) = α(x , y)(A(x )α(x , y)); however, this
definition compromises the symmetry of the kernel and, hence, the well-posedness of the
associated diffusion equation. The formulation below instead guarantees that the operator
Lω;A, defined as in (3.3) and with ω and α defined as in (2.29), is equivalent to an un-
weighted operator with a symmetric kernel, whose associated energy space is equivalent
to Hs

Ω
(Rn). Hence, the operator induces a well-posed diffusion problem. It should also be

noted that, since A(·) is a one-point function, only pointwise information is required to de-
fine its value, as opposed to other unweighted diffusion models where the diffusion tensor
is a two-point function [23]. In addition to being computationally complex and expensive
to identify (compared to one-point tensors), a two-point diffusivity tensor may be difficult
to interpret physically.

5.1. The anisotropic anomalous transport equation and its well-posedness

We extend the anisotropic fractional diffusion model introduced in Section 4 to an
advection-diffusion model that takes into account the presence of drift. We assume the
advection field to be a given solenoidal field v; in general, such a field is the solution of
Darcy’s equation.

Let A be a bounded, measurable and elliptic tensor and v be a bounded, solenoidal
vector, i.e. ‖v‖L∞(Ω) ≤ Cv <∞ and∇·v= 0. Forω and α defined as in (2.29), f : Ω→ R,
g : Rn \Ω → R and u0 : Ω → Rn, the strong form of the anomalous transport problem is
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defined as follows





∂tu(x , t) = Dω(A(x )Gωu(x , t))− v(x )·∇u(x , t) + f (x , t), (x , t) ∈ Ω× (0, T ]

u(x , t) = g, (x , t) ∈ Rn \Ω× (0, T ]

u(x , 0) = u0(x ), x ∈ Ω
(5.1)

The anisotropic Green’s first identity allows us to write the weak formulation of (5.1). For
the sake of simplicity, we analyze the weak form for homogeneous volume-constraints,
i.e., g ≡ 0. Due to the presence of the advection term and in accordance with the theory
presented in [5], we restrict the fractional order to s ∈ [0.5,1), in order to guarantee the
coercivity of the problem in presence of advection. For s ∈ [0.5,1), f ∈ L2(0, T ; H−s(Rn)),
and u0 ∈ Hs

Ω
(Rn), we seek u ∈ L2(0, T ; Hs(Rn)) such that

(∂tu, v) +Bω;A(u, v) + (v · ∇u, v) =F (v), ∀ v ∈ Hs
Ω
(Rn), (5.2)

where Bω;A is the bilinear form defined in (3.13).
The following lemma shows that the bilinear form Bω;A(u, v) + (v · ∇u, v) is coercive.

Its proof is a combination of equation (3.16) and [5, Proposition 3].

Lemma 5.1. Let the fractional order s ∈ [0.5,1) and λmin be the smallest eigenvalue of the

tensor A over Rn. If the advection field v is bounded and solenoidal, then the bilinear form

B ′(u, v) =Bω;A(u, v) + (v · ∇u, v) is coercive. In particular,

B ′(u,u) =Bω;A(u,u) ≥
Cn,s

2
λmin‖u‖

2
Hs
Ω

.

Arguments similar to Corollary 4.1 imply the well-posedness of problem (5.2).

6. Conclusion

We proposed and analyzed an anisotropic nonlocal equation generalizing several re-
sults of the unified nonlocal calculus introduced in [15]. In particular, we showed that,
in presence of an anisotropic diffusion tensor, the weighted nonlocal Laplacian operator is
equivalent to an unweighted Laplacian operator whose corresponding kernel is symmetric.
For the same operator we also proved an anisotropic Green’s first identity and showed that
the corresponding bilinear form induces an anisotropic energy norm that is equivalent to its
weighted and unweighted counterparts. This result allowed us to prove the well-posedness
of the associated elliptic and parabolic problems. Furthermore, thanks to the equivalence
results presented in [15] for fractional operators, we showed that our theory holds in the
special, important, case of fractional operators.

The theory developed in the first part of this work allowed us to prove the well-posedness
of an anisotropic nonlocal advection-diffusion problem. In the special case of fractional op-
erators, and for solenoidal advection fields, such a model is suitable for the description
of anisotropic, anomalous transport of solutes in heterogeneous media. Our model, as
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opposed to other models proposed in the literature, allows one to include a diffusion ten-
sor in the same way as for PDEs, without compromising the symmetry or well-posedness
of the variational form of the problem. The existence of a symmetric equivalence kernel
for anisotropic weighted nonlocal diffusion operators also implies that nonlocal diffusion
operators are a sufficiently rich class of models capable of describing such behavior in ap-
plications.
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