Sandia
National
Laboratories

SAND2020-1398
Printed September 2020

SANDIA REPORT @

Effects of Jacobian Matrix Regularization
on the Detectability of Adversarial Samples

Michael Eydenberg, Kanad Khanna, Ryan Custer

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

Effects of Jacobian Matrix Regularization on the
Detectability of Adversarial Samples

Michael Eydenberg Kanad Khanna
Computational Decision Science Special Analytic Initiatives
Sandia National Laboratories Sandia National Laboratories
P.O. Box 5800 P.O. Box 5800
Albuquerque, NM 87185-1027 Albuquerque, NM 87185-1027
mseyden @sandia.gov kkhanna@sandia.gov
Ryan Custer

Computational Decision Science
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1027
rpcuste @sandia.gov

SAND2020-13986

ABSTRACT

The well-known vulnerability of Deep Neural Networks to adversarial samples has led to a rapid
cycle of increasingly sophisticated attack algorithms and proposed defenses. While most
contemporary defenses have been shown to be vulnerable to carefully configured attacks,
methods based on gradient regularization and out-of-distribution detection have attracted much
interest recently by demonstrating higher resilience to a broad range of attack algorithms.
However, no study has yet investigated the effect of combining these techniques. In this paper, we
consider the effect of Jacobian matrix regularization on the detectability of adversarial samples on
the CIFAR-10 image benchmark dataset. We find that regularization has a significant effect on
detectability, and in some cases can make an undetectable attack on a baseline model detectable.
In addition, we give evidence that regularization may mitigate the known weaknesses of detectors
to high-confidence adversarial samples. The defenses we consider here are highly generalizable,
and we believe they will be useful for further investigations to transfer machine learning
robustness to other data domains.

ACKNOWLEDGMENT

The authors would like to thank Jeremy Wendt for his insights into machine learning security and
methods for evaluating defenses. We would also like to thank the sponsor technical leadership
team for their input and general support of this activity.

CONTENTS

NOMENCIATUTE. . . . ottt e e e e e e e e e e 9
1. INtrodUCHION oottt e e e e e 11
1.1. Adversarial Framework 11
1.2. Defense Techniques it 12
1.3, Our ContribULIONS vttt et e e e e e e e e e e e e e e 14
1.4. Threat Model oo e e 14
1.5, Organizationiuiiunte ettt e 15
2. Jacobian Regularization it e 16
3. Out-of-Distribution Detection e 17
3.1. Local Intrinsic Dimensionalityt iiiiniiinnnennn.. 17
3.2. Deep Mahalanobis. o 18
4. Experiment Design e 21
4.1. Model Baselines and Regularization.............o, 21
4.2. Adversarial Sample Generationouuitnirn i 22
4.3. Out-of-Distribution Detection Evaluation 24
5. Results and DiSCUSSION . . . o v ottt e e e e e e e e e e e e 25
5.1. Effect of Jacobian Regularization on Accuracyo .. 26
5.2. Effect of Jacobian Regularization on OOD Detection. 29
6. CONCIUSION vttt e e e e e e e e e e e e 33
R erenCeS . . oot e 35
Appendix A. Defensive Distillation i 39
Appendix B. Additional Out-of-Distribution Detection Results 39
B.1. Self-Validated Detector Performance 0. 39
B.2. Gallery of ROC CUIVES. . ..ottt 40

LIST OF FIGURES

Figure 1-1. Example of classification boundaries for the final layer of a DDNET model
[37]. The image represents a random 2D slice of a 3072-dimensional input
VECTOT X. ottt ettt et e e e e e e e e e e 13
Figure 5-1. Adversarial perturbation distance (L?) and adversarial accuracy (vacc) vs. Ja-
cobian regularization parameter A. The shaded regions show 95% quantile re-
gions for distance. The BA and CWL2 accuracies are very similar and appear
overlaid on the right-hand plots.. 28

Figure 5-2. ROC curves for OOD detection of CWL2_0 using FGSM validation. 32

Figure B-1. ROC curves for OOD detection of FGSM using FGSM validation. 42
Figure B-2. ROC curves for OOD detection of BIM using FGSM validation. 43
Figure B-3. ROC curves for OOD detection of BA using FGSM validation. 44
LIST OF TABLES

Table 4-1. Model training summary. See [19] and [17] for architecture details of DDNET

and RESNET, respectively.. ... e i 22
Table 4-2. Attack algorithms used to evaluate defenses. BIM uses the default number of

steps in [40]. BA and all CWL2 methods use a number of steps estimated from

a course binary searchoncleandata., 24
Table 5-1. The variation of clean (acc), noisy (nacc), and adversarial (vacc) accuracy with

Jacobian regularization. For each adversarial model, the mean perturbation dis-

tance (L?) is also IVEIL. . ottt et e e e e 27
Table 5-2. OOD detection rates with FGSM validation across all models, measured by AU-

ROC. Best scores for each row are highlighted in bold. Clean model accuracies

are included for comparison. 30
Table B-1. OOD detection rates with self-validation across all models, measured by AU-
ROC. The FGSM results are omitted, as they are unchanged from Table 5-2 41

NOMENCLATURE

AUROC Area Under the Receiver Operating Characteristic

BA Boundary Attack

BIM Basic Iterative Method

CIFAR Canadian Institute For Advanced Research image collection
CWL2 Carlini and Wagner L? optimization method

DDNET Defensive-Distillation Network

DM Deep Mahalanobis

FSGM Fast Gradient Sign Method

JR Jacobian regularization

LDA Linear Discriminant Analysis

LID Local Intrinsic Dimensionality

MNIST Modified National Institute of Standards and Technology database of handwritten digits
OOD Out-of-Distribution Detection

RESNET Residual Network

1. INTRODUCTION

As machine learning systems become more widely used adversaries will attack them in order to
achieve some goal. This is part of the natural progression of the “arms race” between attackers
and defenders when a new technology is introduced. Machine learning systems are vulnerable to
adversarial examples, which are deliberately altered inputs that force a machine learning system
to misclassify the input. By forcing this misclassification, an attacker achieves some result such
as avoiding detection, subverting model confidence, or recovering sensitive data. In general,
adversarial examples are easy to generate and usually involve adding noise to a known good
example, but they can also be constructed and do not have to be based on known input [31].

To keep up in the arms race, security professionals must develop new methods to defend machine
learning systems against adversarial examples. This is a difficult task because where an attacker
need only find a single adversarial example that achieves their goal, a security professional must
be able to mitigate the effectiveness of, and ideally detect, every possible adversarial input.

In machine learning systems, this arms race began with adversaries making a single perturbation
to an input that resulted in miscategorization. This quickly evolved into iterative gradient-based
attacks that make repeated perturbations based on their effects on the target model.
Gradient-based attacks work by using the output of a neural network’s classification layer to
guide the creation of adversarial examples and allow adversaries to efficiently target their attacks
[3]. In turn, security professionals began using defensive distillation and gradient obfuscation
techniques to mask the gradient output by the neural network layers so adversaries had much less
information to target their attacks. Although these results looked promising at first, they were
quickly bypassed by adversaries and are now considered thoroughly defeated [3, 7, 8]. For a more
formal definition of gradient based attacks, adversarial examples, and classification boundaries
see the following subsections.

1.1. Adversarial Framework

Let f be a neural network trained for a supervised learning task on a collection of data (x, y),
where x € X C RP and y € {1,...,C} denotes a class label. Here, f is one of a parameterized
family of differentiable functions that map x to a representation z = f(x;08) € R®, where z is
interpreted as the logit vector for the class probabilities y = softmax(z). During training, a
differentiable loss function L is introduced and used to infer f as argming L(y,), generally
through some form of stochastic gradient descent (SGD) [15].

Geometrically, we can consider z as an abstract representation of the data x, where the classes
{z]y = ¢} form contiguous regions in the representation space [10]. An illustration is given in
Figure 1-1. The classification margin of an input x is defined as the supremum [41]

sup{e: ||x—x|| <e=9=5},

where §' = softmax(7’) is the class prediction of 7 = f(x') under f. Intuitively, if an input x has a
small classification margin, then a small perturbation may push x across a classification margin

11

into a region associated with a different class. In the context of image data, this means that small,
imperceptible changes to an image may be sufficient to cause a misclassification.

From this, we see that models with low classification margins are generally associated with
susceptibility to adversarial examples. While normal data z = f(x) associated with class y tends
to be distributed near a low-dimensional manifold, adversarial samples 7 = f(x') with y' £ y but
$" = J lie in high-dimensional regions just off of this manifold [43, 16]. This has given rise to two
general types of attack strategies:

o White-Box attacks assume that the adversary has complete knowledge of the model and
methods used to train it. This includes access to the internal data of the model, such as its
architecture, weights, and gradients. Attacks of this sort generally attempt some form of
perturbation x,qy = x + €V, L(y, §) of an input x along the gradient of the loss in order to
induce a misclassification with minimal distortion €. A canonical example of this type is the
Carlini and Wagner optimization attack [6].

e Black-Box attacks, on the contrary, make minimal assumptions on model access. In this
setting, the model is treated as an oracle, and attackers have a query budget to probe the
oracle on any input of interest in order to estimate the classification boundaries of the
model, or to train a proxy model on which to perform a white-box attack [35]. Attacks of
this type are often distinguished by the particular method they use to optimize queries
against the oracle, for examples see [22] and [4].

A complete survey of defensive methods and how to evaluate them is beyond the scope of this
paper, but there are excellent resources that exist. We recommend referring to [6] and [5] for
in-depth details on evaluating the defense techniques.

1.2 Defense Techniques

An intuitive way to combat such attacks is to simply obfuscate the gradient of f, which in turn
prevents direct evaluation of VL. Defensive distillation [37, 34] and gradient masking [44] are
two examples of this approach; some relevant details are given in Appendix A. While such
techniques substantially reduced the effectiveness of early attack algorithms, more recent
methods can bypass masking by approximating the original gradients of f [3]. As a consequence,
gradient obfuscation techniques are now considered largely ineffective for defense [5].

More recent strategies include adversarial training and ensemble methods [44], gradient
regularization [41, 45, 19] to increase the classification margins, and Out-of-Distribution (OOD)
detection to identify adversarial perturbations to the input [13, 29, 27, 1]. While not foolproof,
many of these have attracted interest as the most promising avenues for robustness to adversarial
attacks [23]. Jacobian regularization works to increase the effective distance between training data
of distinct classes as they are represented by the internal layers of the neural network. This leads
to increased robustness to both noisy and adversarial perturbations, as an adversary is forced to
make larger perturbations in order to cause a misclassification. On the other hand, OOD detectors
are sidechannel models that are trained to learn the distribution of training data, i.e. “what the
input data looks like," and send an alert when the data appears to have been modified in some

12

Decision cells forAjp =0.001

200

250

300 .
0 50 100 150 200 250 300

Figure 1-1 Example of classification boundaries for the final layer of a DDNET model
[37]. The image represents a random 2D slice of a 3072-dimensional input vector x.

13

abnormal fashion. It appears that that these two methods would compliment each other well, as
forcing the adversary to make larger perturbations would in turn lead to increased detectability.
However, to the best of our knowledge, no study has investigated this claim explicitly.

1.3. Our Contributions

Our contribution in this paper is to consider the effect of gradient regularization on the
detectability of adversarial samples. In particular, we focus on the Jacobian regularization
technique [19], as it can be implemented efficiently in a broad array of neural network
architectures. For OOD detection, we consider the Local Intrinsic Dimensionality (LID)
technique [29, 20, 21], which separates normal vs. adversarial samples based on their geometric
properties, as well as the Deep Mahalanobis (DM) method [27, 23] which builds a generative
model for normal vs. adversarial using the representations z = f(x). As with Jacobian
regularization, both of these defenses have scalable implementations that make minimal
assumptions on the specific structure of the neural network.

As the intent of this paper is to serve as a proof-of-concept, we focus on the readily available
CIFAR-10 image dataset benchmark [24], as we can take advantage of a multitude of existing
implementations for attacks and associated defenses. As a general rule, we find that adversarial
machine learning research in other domains tends to lag behind computer vision, though there has
been some success in transferring early attack and defense techniques to audio [9], text [30], and
malware detection [11, 42]. These techniques do not yet incorporate the types of defenses we
consider here, and we hope that our analysis may serve as a useful first step in evaluating which
defensive methodologies to prioritize for transfer to these other fields.

1.4. Threat Model

In order to properly evaluate a proposed defense, we must specify a threat model that outlines the
goals, capabilities, and knowledge of an attacker. This not only contextualizes the types of threats
the defense is intended to mitigate, but also enables us to posit a defensive claim in the form of a
falsifiable, and hence scientific, hypothesis [5]. We state at the outset that our goal in this paper is
not to provide a comprehensive, rigorous defense to adversarial examples, as this would entail an
exhaustive search over a broad range of attack algorithms, associated hyperparameters, and
defense-specific variants that is well beyond the scope of this paper (see [7, 3] for some illustrative
examples of the difficulty of the defensive problem). Instead, ours is the more modest goal of
demonstrating that a combined defensive posture increases the cost of the adversary to find an
adversarial example in the form of either lower attack effectiveness or higher rate of detection.

Before stating our claim more formally, we summarize the three major aspects of the threat model
as they apply to our work:

e Adversary Goal. Given an attack algorithm A, we denote by x,qy = A(x) the adversarial
example generated by the attack using clean data x as input. Additionally, let p = D(x) be
an OOD detector that maps inputs x to an adversarial probability p € [0, 1]. In our model,
the goal of the adversary is to simultaneously minimize the accuracy of f(x,qy) on

14

adversarial examples as well as the rate of detection D(x,qy) by the sideband detector. We
will assume that the adversary intends to conduct both untargeted attacks, where x,qy 1S
simply classified differently than x, as well as fargeted attacks, where if x belongs to class ¢
then x,qy is to be misclassified a predetermined target ¢’ # c.

e Adversary Capabilities. We assume a white-box scenario where the adversary has
complete access to the trained model f, i.e. its architecture, weights, and gradients. Thus
we will consider both white-box gradient attacks and black-box label attacks on the model
f- We do not place any constraints on the perturbation size ||x — x,qy|| other than implicitly
through its relationship to the detectability D(x,qy). Additionally, we place no hard
constraints on the number of queries the adversary may make against the model, other than
computation time for our resources. Finally, we assume that the adversary has access to
data x of the same distribution as that used to train f.

e Adversary Knowledge. We assume that the adversary is aware that a sideband detector D
is in use, but does not know the specific form of that detector. This is a strong assumption,
and our motivation comes from the observation than attacks against a specific detector D
may involve substantial modifications to be made to the attack (c.f. [3]) that are unable to
perform within this scope of work. Instead, we make the weaker assumption that the
adversary will perform high-confidence variants of some attacks A to try and defeat the
detector in a more generic sense. This is sufficient to evaluate whether our hypothesis of
improved cost to the attacker is correct, and we recommend a more thorough defense-aware
evaluation in future work.

Let vacc denote the mean classification accuracy of model f on adversarial data A(x), x € X, and
let AUROC be the area under the ROC curve generated by the detector D on a sample of clean
(negative) data D(x), x € X’ and adversarial (positive) data D(x), x € X. In light of our threat
model, the adversary’s goal is to minimize both vacc and AUROC. That Jacobian regularization
has a positive effect on vacc was established in earlier work [19]. In this paper, we investigate the
following claim:

Hypothesis 1. Jacobian regularization improves the AUROC performance of an OOD detector D
on adversarial examples. Furthermore, this improvement is significant even if its effect on vacc is
minimal.

1.5. Organization

The organization of this paper is as follows. In Section 2, we give an overview of Jacobian
regularization. In Section 3, we introduce the LID and DM techniques and provide some details
of their implementation. Section 4 gives a thorough discussion of our experimental setup,
including regularization parameters, attack techniques, and OOD detector training. Section 5
provides a discussion of our results, and Section 6 concludes.

15

2. JACOBIAN REGULARIZATION

As discussed in the Introduction, a promising method to defend against attacks is to regularize the
network to actively push the classification boundaries farther from the training data, i.e. to
introduce large classification margins. In addition to providing robustness to noise, this would
have the effect of forcing adversarial perturbations to be larger, and hence more easily detectable.
This can be accomplished by adding to the original loss function L a regularization penalty for the
Frobenius norm of the model Jacobian J; j(x) = dz;/dx; [19, 45]. This serves to push the gradient
of the model outputs toward zero during the training process, which in turn increases the lower
bound on the classification margins [41]. Formally, if we denote by B a batch of training samples
(x,y) and A a regularization strength parameter, the new training loss becomes:

N A
L) =1 L LOA) 455 L IMWIE ()
1Bl (eayes 1Bl oy

Note that L may include any additional regularization terms, such as traditional L! or L*> weight
regularization. The parameter A controls the influence of this regularization on the overall loss
Ly.

As a further illustration, consider the case of a linear model f(x;0) = 6; - x+ 6y. Here, Jacobian
regularization is equivalent to applying Tikhonov (ridge) regularization to the model parameters
0: | N
Liy.9) = X LOuS)+5 1013

’B| (x,y)eB 2
From this, we can infer that Jacobian regularization serves a similar purpose to Tikhonov
regularization: reducing the model’s variance in order to improve stability. In regression settings,
this regularization can mitigate the effect of output variable noise (i.e. "outliers") during training.
However, for a neural network this also has the effect of flattening out the model’s gradient over
the entire landscape of the input space, simplifying the geometry of its decision cells, and
increasing the classification margins relative to the training data. Not only can this improve the
generalizability of the model to input noise, but the shift in the decision geometry forces
adversarial perturbations to be larger, and hence confers some measure of robustness to attacks
[19].

As with any regularization scheme, Jacobian regularization adds a small amount of bias to the
model in order to decrease its variance, thus lowering the model’s performance on clean,
unadulterated data. While it is possible to introduce Jacobian regularization separately for each
layer of f, previous work demonstrates that this imposes too tight of a constraint on the model
capacity, resulting in substantially lower performance on clean data [19]. This same paper shows
that using just the input-output Jacobian J;; above approximately doubles the minimum
classification margin on multiple standard test datasets (MNIST, CIFAR-10, and ImageNet)
without a significant loss of accuracy on clean data. They also report improved effectiveness over
traditional forms of regularization, such as L? weight regularization and dropout.

Automatic differentiation is included with nearly all standard deep learning libraries, and so at
first glance implementing Jacobian regularization into the loss (1) appears straightforward.

16

However, the time required for computing the full Jacobian scales linearly with the number of
target classes in the dataset, and this requirement becomes prohibitively expensive for data with a
large number of classes. Fortunately, a good approximation to the exact Jacobian norm can be
obtained in constant time by first computing a lower-dimensional random projection of the
vector-Jacobian product [19]. The approximate Jacobian norm using ny,j random projections

1S:
1 e /(e 2
bWk~ ¥ (452) @

Mproj ;=1

where each ? is a random unit vector. For a large enough batch size |B| consisting of i.i.d.
samples, the error of this Jacobian norm estimate is of order (mpo;|B|)~'/? [19]. The
computational efficiency obtained through the use of this approximation makes the approach
practical even for datasets with a large number of classes, such as ImageNet.

3. OUT-OF-DISTRIBUTION DETECTION

Adversarial detection is often considered as a special case of out-of-distribution (OOD) detection,
where the goal is to identify input samples that are drawn from a different distribution than those
used to train a model f. In the adversarial setting, the presumption is that adversarial samples
Xadv = A(x) generated by some attack A on clean data x have a significantly different distribution
than the original data generating process. Here, we discuss two prominent OOD techniques that
we selected for this study based on promising results they demonstrated in adversarial settings.

3.1. Local Intrinsic Dimensionality

A common strategy for adversarial detection follows from the intuition that normal samples lie on
a low-dimensional manifold in the representation space, while adversarial samples lie in
contiguous, high-dimensional regions just off of this manifold [43, 16]. On this view, adversarial
samples are identified as lying in low-probability regions of the representation space with local
distributions that are significantly different than those of in-distribution data. While these
differences can be measured using kernel density estimates [13], more recent and effective
techniques take advantage of intrinsic dimensionality [20], [21] to distinguish between the
high-dimension adversarial regions and low-dimension data regions. Here, we consider the Local
Intrinsic Dimensionality (LID) approach of [29] that makes use of a computationally efficient
estimate for the local dimension of a data sample.

Following [20], LID estimates local dimensionality as the rate of growth of the number of
samples in a ball of radius r centered at a test sample x. For example, in Euclidean space the ratio
of the rate of growth of the volume of an m-ball to its radius is given by:

Vi " In(V»/V;

\%) r 1n(r2 / r1)

LID extends this concept to continuous, real-valued data distributions by using the probability
mass in place of volume. Formally, LID is defined as [29]:

17

3)

Definition 1. Given a data sample x € X, let R > 0 be a random variable denoting the distance
from x to other data samples. If the cumulative distribution function F (r) of R is positive and
continuously differentiable at r > 0, the LID of x is given by:

In(F((1+€)r)/F(r)) _r-F'(r)

LiDr () = i —— e = F () X
LIDp(x) = li_r>r(1) LIDp(x,r) Q)

whenever the limit exists.

Observe that (4) corresponds to (3) through an application of L'Hopital’s rule. To actually
compute LID in practice, [29] make use of a Maximum Likelihood Estimator developed by [2]
that estimates (4) in terms of the distances r; to the k nearest neighbors of x:

-1

ri(x)

- (x)> . (©)
Given a model f and input x, we can apply (6) to the representation z; = f(x); of the I-th layer of
the model to define the LID score L;(x) = LID*(z;) for x at that layer. The detector is then created
by training weights o; from the per-layer LID scores of a collection of adversarial (positive) and
clean (negative) samples. In practice, the negative class is generally extended to include samples
of clean + white noise data, as the detector should be robust to noisy inputs while still identifying

the adversarial ones [12], [13]. The details of this scheme are presented in Algorithm 1. For
additional notation, we denote by r;(x,S) the distance from x to the i-th closest neighbor in set

S.

1 k
LID*(x) = — <% Y log
i=1

For this work, we use the implementation of [26], which iterates Algorithm 1 over minibatches of
size B in order to keep the computation of (6) scalable. The original authors implemented this
feature as well [29], and while they report slightly improved results from varying the batch size,
we keep it at the default value of B = 100 for our experiments. Additionally, this implementation
tests the LID classifier over a range of neighbor sizes k on a validation set, and selects the best
performing parameter for use on the test set.

3.2. Deep Mahalanobis

Another strategy for OOD detection is to build a generative model for the intermediate
representations of in-sample data, generally considered as class-conditional distributions, and
identify OOD samples as outliers using various distance measures. The most recent and
successful of these methods is the Deep Mahalanobis (DM) technique of [27], which models the
in-sample representations of each layer of the network as a generative classifier using Linear
Discriminant Analysis (LDA). Test samples are scored by their Mahalanobis distance to each
mode of the classifier, and OOD samples are identified as those whose maximum score over all
classes falls below some threshold.

18

N-TE-LREEN A I

11

12
13

14
15
16

Algorithm 1: LID training routine
Input: Trained network layers f;, [€ 1...L, attack A, number of nearest neighbors k, and data
X
for x € X do
Xnoisy = {add noise(x), x € X }
L Xaav = {A(x), x € X}
= |X]|
LID, LIDyoisy, LIDqgy = zeros[N, L]
for/c1...Ldo
Z={filx),xe X}
Znoisy = {fl(x>7 DS Xnoisy}

ZLadv = {fl (x)> X e Xadv}
for jc1...Ndo

— n(zlj.2)\ 7!
LID[},]] = (_ log 2412))

LIDyoisy[/, 1] = repeat line (11) with Z;gy
LID,qy[j,1] = repeat line (11) with Z,qy

LIDpee = concatenate(LID, LID;;sy)
LIDyos = LID,q,

{oy} = train classifier(LIDpeg, LIDpos)
Return: {o;}

In detail, let z denote the input to the softmax layer of the network, and y € {1...C} the
corresponding class label. Following [27], we use Gaussian Discriminant Analysis (GDA) to
model the joint distribution P(z, y) = P(z|y)P(y) as having a Gaussian class-conditional
distribution P(z|y = ¢) ~ N (u¢, L.) with unnormalized categorical class prior P(y) = B.. From
this and Bayes’s rule, we can write the posterior class distribution P(y = ¢|z) as:

P(zly=c)P(y=c¢)
ZC/P(Z!y =c)P(y=<)

exp(—32 T e+l 22— Lul S e+ log Be)
Zaexp(—zzTZ/ery b —zch "o +1ogBe)

P(y=clz) = (7

®)

Now, introducing the LDA assumption that the class-conditional distributions share a tied
covariance X, = ¥, this expression simplifies to:

P(y — C|Z) — eXp(luc Z i ZZ :uC +10g BC) (9)
Yoexp(ulElz— zucfE Lo +1logBer)

Observe that (9) matches the form of a softmax layer with class weights w. — ul £~! and biases
be = —5u Z uc +log B.. This suggests the possibility that the representations z were fitted to
class- cond1t10nal Gaussian distributions in the course of training the network, and that the
Mahalanobis distance to the empirical class means can be used as a confidence measure. Indeed,

19

given data (x;, y;) and letting z; = f(x;) express the softmax layer representations, [27] propose
the confidence score:

Mo (x) = —(zi — 1) T2 (2 — fae), (10)
where

. & |1 . .
be=— Y 7z E==Y Y (@-f)(a—i)" (11)
: N &
are the empirical class means and tied covariance.

On top of this, [27] propose two modifications to improve detection performance. The first is an
input preprocessing step whereby the input x is perturbed in the direction of the gradient of the
confidence measure:

x— x+esign(V,M(x)). (12)

The motivation for this stems from earlier techniques that used the softmax layer representations
directly, where it was observed that the gradients of the softmax for in-distribution data are
generally larger than those for out-of-distribution data. As a consequence, the gradient
perturbation would more significantly separate the two classes [28]. However, more recent results
by [23] suggest that this size difference does not generally hold for the gradients of (10), and for
some datasets the perturbation step may in fact decrease performance. The implementation we
use accounts for this possibility, as we describe in more detail below.

In a similar manner to LID, the second modification is to extend (10) to all layers of the network,
not just the softmax layer, and combine the scores in a feature ensemble. Letting z; denote the
representation of layer / as before, and f ., il the associated layer statistics, we can write M .(x)
for the result of (10) applied to this layer. Then, given weights o the final confidence score is
given by the weighted average }; ;M .(x). As with Algorithm 1, these weights can be inferred
by training on a collection of negative (clean, noisy) and positive (adversarial) data.

The DM training procedure with these modifications is presented in Algorithm 2. The overall
framework is very similar to that of Algorithm 1, along with the inclusion of clean, noisy, and
adversarial samples. For this work, we use the reference implementation [26], which includes a
validation step to select the optimal perturbation size parameter € (including possibly no
perturbation, € = 0). While we omit this validation step in the presentation of Algorithm 2 for
brevity, we do include it in our experiments.

The DM authors compare their method in [27] to LID and a number of other contemporary
techniques, and obtain very strong results. However, more recent work in [1] and [23] reveals that
the tied covariance assumption used to derive (9) is inaccurate in most cases; instead the
representations exhibit strong, class-dependent radial correlations. In particular, [23] suggest that
in the high-dimensional representation space, adversarial samples frequently have larger variance
in directions that are not salient for classification of clean data, and this is what enables tied
covariance Gaussians to identify such samples even if they do not properly model the
class-dependent distributions themselves. While this observation has led to some iterative
improvements to the basic DM algorithm, we do not investigate them here.

20

1
2

w

e o N & » oA

10
11
12

13
14
15

Algorithm 2: Deep Mahalanobis training routine
Input: Trained network layers f;, attack A, perturbation magnitude €, estimated Gaussian
parameters { ¢ ﬁl}, and input x
for x € X do
L Xnoisy = {add noise(x), x € X }
Xaav = {A(x), x € X}

N = [X|
DM, DM,oisy, DMagy = zeros[N, L]
for/c1...Ldo

for jel...Ndo
Find the closest class ¢ = argmin, M; (X [j])
Add perturbation X [j] = X [j] +€sign (V.:M; (X [j]))
Compute confidence score DM|j,[] = min, (M .(X[j]))
DM,isy], 1] = repeat lines (8)-(10) with Xpisy
DM,qy[j,1] = repeat lines (8)-(10) with X,qy

DM;,¢e = concatenate(DM, DMjisy)
DMpOS == DMadv

{oy} = train classifier(DMpeg, DMpos)
Return: {o,}

4. EXPERIMENT DESIGN

4.1. Model Baselines and Regularization

In order to better compare our results with those in the existing literature, we constrain our study
to model architectures and datasets that are common to the regularization and OOD literature. To
that end, this work focuses on convolutional neural networks (CNNs) trained on the CIFAR-10
dataset [24]. Our baseline models consist of:

e DDNET: the Defensive-Distillation network of [37]. This is a relatively simple CNN
consisting of two convolutional layers with 64 filters each, followed by a 2 X 2 max-pooling
layer, a second set of two convolutional layers with 128 filters each, another 2 x 2
max-pooling layer, then a 256-dimensional dense layer followed by a final 10-dimensional
dense layer that yields the class logits.

e RESNET34: the 34-layer Residual Network of [17]. This is a large, 34-layer CNN
comprising 3.6 x 10° multiply-add operations in its forward pass. We use the

implementation of [26] that corresponds to variation B of [17], adapted for use on the
CIFAR-10 dataset.

Both models are trained using SGD on the 50,000 CIFAR-10 training dataset, using a batch size
of 64, learning rate of 0.1, momentum of 0.9 and an L? weight decay of 5 x 10~*. The DDNET
dropout parameter is set to p = 0.5, and all model weights are initialized with Xavier

21

Model Epochs | Regularization Procedure
DDNET 15 standard regularization
DDNET_T | 20 fine-tuned regularization
RESNET 40 standard regularization
RESNET_T | 20 fine-tuned regularization

Table 4-1 Model training summary. See [19] and [17] for architecture details of DDNET
and RESNET, respectively.

initialization. Jacobian regularization is performed using the implementation library of [18] with
A in the range:

A € {0,0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0} (13)

We use full projection (n,r0; = 10) for the regularization (2) as the number of classes in CIFAR-10
is reasonably small.

In addition to this standard regularization procedure, we also consider a "fine-tuning" procedure
for each model baseline inspired by transfer-learning techniques [32]. For DDNET, we first train
the model using A = 0, and then train for an additional number of epochs with A > 0 while only
re-initializing the final layer. Similarly, for RESNET34 we obtain pre-trained model weights from
the Pytorch model zoo [39], and re-initialize just the final layer before continuing training with
regularization. The motivation is to gauge the effect of regularization both when it is used in
model training from the outset, as well as when it is applied as part of a fine-tuning scheme.

We summarize our baseline models, along with additional training details, in Table 4-1. All
training is performed on a single NVIDIA Tesla V100 GPU.

4.2, Adversarial Sample Generation

To evaluate the effectiveness of regularization and OOD detection, we generate adversarial
samples using the following attack algorithms. As mentioned in Section 1.3, we do not intend for
these to represent a fully comprehensive range of attacks, but enough to encompass our threat
model of an attacker with full access to the model f, the intended in-distribution dataset X, and
general awareness of a sideband OOD detector D. To that end, we include both gradient-based
"white box" attacks and label-based "black box" attacks in our selection, the latter of which
makes use of only the classification labels reported by f. We also include "static" attacks that
make simple perturbations to the input, as well as more complex "dynamic" attacks that attempt
to optimize the perturbation for a given misclassification objective. Our list of attacks includes:

e The Fast Gradient Sign Method (FGSM) [16], which is a simple method that perturbs the
input x a fixed distance € along the gradient of the loss function L(y, §) associated with the
model prediction § = softmax o f(x) and the ground truth label y (c.f. Section 2). Formally,
the FGSM method can be expressed as:

Xadv = X+ €sign(V,L(y, §)). (14)
22

A targeted variant of this method exists whereby the perturbation is adjusted to minimize
the loss with respect to a target class ¢ (i.e. L(y =t, ¥)), but we consider only the untargeted
version in this work.

The Basic Iterative Method (BIM) [25], which is essentially an iterative version of FGSM
with an additional clipping step Clipg to ensure that the adversarial sample remains in a
d-ball around x. The update at each iteration is given by:

ki = Clips (g, +esign(V,L(. 7)) (15)

0

where Xody

= x. Again, we consider only the untargeted algorithm here.

The Carlini and Wagner optimization method (CWL2) [6] is arguably the most effective
framework for conducting white-box attacks, as it runs an optimization scheme to
maximize a misclassification objective while being constrained to image space, i.e.

Xadv € [0, 1]". To begin, one specifies a differentiable objective function F (x; ¢) which
captures some task-specific measure of confidence that input x will be misclassified as
target class 7. From this, the optimization problem takes the general form:

argmin, |]x—xadv|]p+c-F(xadv; 1), Xagv € [0,1]". (16)

The optimal x,qy 1s found using gradient descent, and the regularization parameter c is
simultaneously fine-tuned using a binary search scheme. The objective function F(x;) is
very general, and a number of examples have been proposed to accommodate various
distance measures LO, L2, L>, untargeted attacks, and even to attack specific defenses [8, 3].
Here, we use their original L? objective, which includes an additional confidence parameter
K:

F(x; t,X) = max (max {ziti#t}, —K)) (17)

where z; = f(x); is the softmax layer input (i.e. logit) for class i under the model f. The
parameter K allows one to target a more confident misclassification at the expense of a
potentially larger perturbation ||x — x,qy||, and this is known to have a significant effect on
OOD detection schemes [7]. In this work, we consider a targeted low-confidence attack
(CWL2_0) with x = 0, a targeted high-confidence attack (CWL2_40) with ¥ = 40, and an
untargeted attack (CWL2_0_U). For a targeted attack on CIFAR-10 input x with true label
v, we target the label r = y+ 1 mod 10.

Finally, the Boundary Attack (BA) [4] is a decision-based black box attack that uses no
information other than the label returned by the targeted model. Rather than attempt to
estimate the gradient, this attack employs an iterative heuristic to estimate the boundary
between the true class of x and that of a target class . While requiring minimal information
from the model, there is a tradeoff in that it takes up to 10* — 10’ queries in order to obtain
a sufficiently close adversarial sample. As a result, BA is the most computationally
expensive of the attacks that we test, and so we only consider a targeted version.
Additionally, it should be noted that BA attacks require a starting point x’ for each input x.
Thus, for a targeted BA attack on input x, we target the label # = y+1 mod 10 using a
random x’ in the current minibatch with true label z. If no such x’ is present, we instead
targetf = y+2 mod 10 using a corresponding x’, and so on as needed.

23

Attack Parameters Comments

FGSM e=1 untargeted, Foolbox default
BIM €=.2,steps = 10 untargeted, Foolbox default
CWL2 0 Kk =0, steps =200 | targeted, low-confidence
CWL2_40 | x =40, steps =200 | targeted, high-confidence
CWL2_0_U | k=0, steps =200 | untargeted, low-confidence
BA steps = 20000 targeted

Table 4-2 Attack algorithms used to evaluate defenses. BIM uses the default number
of steps in [40]. BA and all CWL2 methods use a humber of steps estimated from a
course binary search on clean data.

We summarize each of these attacks and their relevant parameters in Table 4-2. All attacks are
implemented using the Foolbox library [40]. We do not claim that this represents a robust
evaluation of hyperparameters, but that it is sufficient to gauge the effectiveness of a combined
regularization + OOD detection scheme compared to each defense operating on its own.

4.3. Out-of-Distribution Detection Evaluation

Our scheme for training and evaluating the detectors follows Algorithms 1 and 2. Borrowing the
nomenclature of [29], we treat the 50,000 CIFAR-10 training images as a pre-train dataset and the
10,000 test images as a pre-test dataset. The pre-train data is used to train the baseline and
regularized models f as described in Section 4.1. Then, following lines (2)-(3) of both
Algorithms, we further subdivide the pre-test dataset into 10% train and 90% ftest datasets from
which we generate data x,,0isy With added Gaussian noise and data x,qy using the methods in 4.2.
The clean data x and noisy perturbations xpeisy form the negative class for training the detectors,
while the adversarial perturbations form the positive class. Note that we follow the approach of
other authors in that we only keep samples x from the pre-test dataset for which both x and x;;sy
are correctly classified by f. Thus, the size of this and the derivative train/test datasets will
depend on the baseline accuracy of the original model, which is reported in our results below.

To train a detector D € {LID, DM}, we first specify a model f, a validation attack Ay,;, and test
attack As. The validation attack and its corresponding train dataset are used to train the
hyperparameters and weights o; of the detectors, where the clean and noisy samples are
considered in-distribution and the adversarial samples out-of-distribution. In the case that a layer /
of f outputs a convolutional filter of shape F' x H x W, we follow the procedure of [27] of taking
the mean over the H, W dimensions to obtain the vector representation z;. The detection
performance is evaluated against the test attack and corresponding test dataset. As with prior
studies, we consider two forms of validation: validating D on the same kind of attack A on which
it is to be tested, and validating it on FGSM samples. The latter gives an indication of how well a
detector trained on one attack algorithm can generalize to novel, and indeed more sophisticated,
algorithms. In our case, this allows us to evaluate whether a detector trained on untargeted FGSM
samples can still identify samples from targeted, iterative, and black-box adversarial techniques.
Note that even if the detector is validated on the same kind of attack on which it is tested, the
validation and testing are performed using different datasets.

24

To implement Algorithms 1 and 2, we begin with the reference library of [26] which contains
code written by the authors of both [29] and [27], and modify the adversarial generation loop to
implement the Foolbox library [40] with user-specified attack parameters. We keep their
preprocessing steps for normalizing the CIFAR-10 data for the DDNET and RESNET baseline
models. As discussed in Section 3, both LID and DM have hyperparameters that must be
specified in addition to the layer weights ;. For LID, this is the nearest-neighbor parameter k,
while for DM it is the step size €. The implementation performs this hyperparameters search
during the classifier training step of both algorithms. The hyperparameters are tuned using a grid
search on the sets:

k € [10, 20, 30, 40, 50, 60, 70, 80, 90] (18)
g € 0, .0005, .001, .0014, .002, .005, .01]. (19)

The search is performed separately for each f + A combination on the train dataset, and the best
parameter from this is used to report results on the test dataset.

Using the pre-train set, we train 32 baseline models f based on the four baseline architectures and
eight regularization weights A of Section 4.1. For each of these, we generate adversarial samples
on the pre-test set using one of the four attack algorithms A € {FGSM, BIM, CWL2_0, BA}. On
the 16 transfer models, we additionally generate samples using the CWL?2 variants CWL2_40 and
CWL2_0_U to measure the influence of high-confidence attacks and untargeted attacks on the
detection rate, respectively. This yields a total of 160 f+A combinations on which to train the
detectors.

The most time-consuming aspect of this process is generating the adversarial samples for each
model f. For CIFAR-10, the pre-train dataset contains 10,000 images. On a single NVIDIA V100
GPU, the FGSM and BIM samples for this dataset can be generated in a few minutes, while the
CWL2 samples take approximately 2 hours to process. The BA samples, owing to the large
numbers of iterations needed, can take up to 7 hours to process for this dataset.

5. RESULTS AND DISCUSSION

In this section, we evaluate the combined effectiveness of Jacobian regularization and OOD
detection to identify adversarial samples. We follow the experimental outline of Section 4, where
the model baselines of 4.1 are trained on the CIFAR-10 pre-train dataset and used with the attacks
of 4.2 to generate adversarial samples on the pre-test dataset. The DM and LID detectors are
trained on the train/test datasets using the evaluation procedure of 4.3.

In view of Hypothesis 1, we expect higher regularization strength to incur an increased cost for
the adversary as measured by both improved model accuracy on adversarial samples, i.e. higher
vacc, as well as increased probability of detection, i.e. higher AUROC. However, this intuitively
comes with a concomitant cost to model accuracy on both clean (acc) and noisy (nacc) samples
due to the increased regularization. We will explore the veracity of these statements in the
discussion of our results below.

25

5.1. Effect of Jacobian Regularization on Accuracy

We begin with the effect of Jacobian regularization on the accuracy measures acc, nacc, and vacc.
The goal is to corroborate the CIFAR-10 analysis of [19] (Appendix E) and extend it to include a
broader range of attacks. Table 5-1 gives the variation clean, noisy, and adversarial sample
accuracy with A for each of the model f + adversarial A combinations, as well as the mean
adversarial L? perturbation distance. These results are also displayed in Figure 5-1, which shades
the 95% quantile region for the adversarial perturbations. We observe two general patterns of
behavior that emerge between the optimization-based attacks BA and CWL2 on one hand, vs. the
more "static" FGSM and BIM techniques that perform no optimization. First, both BA and
CWL2 have a significantly lower vacc (i.e. higher adversarial success rate) across all models and
regularizations. In particular, we find that Jacobian regularization has almost no effect on vacc,
but it does force the attacks to make larger perturbations in order to maintain this level of
effectiveness. We also find that BA and CWL2 demonstrate similar growth in L? perturbation
distance with A, which corroborates the assertion that increasing A pushes the classification
boundaries of the model farther away from the training data.

In contrast, the adversarial perturbation of BIM and FGSM are largely unaffected by Jacobian
regularization, which follows from the fact that neither of these methods explicitly optimize the
perturbation distance. As seen in (14) and (15), both methods perturb the input in a fixed distance
based on the sign of the gradient, but do not modify the size of the perturbation. As a
consequence, we find that vacc generally increases (i.e. adversarial success rate decreases) with
the regularization A, for rather than attempt to search a larger perturbation distance for an
adversarial input, these methods will simply return a failure condition.

These observations indicate that while Jacobian regularization can mitigate the effectiveness of
non-optimization attacks, it does little on its own to prevent more sophisticated methods from
finding adversarial samples. However, it does force the latter methods to make larger
perturbations of the original data in order to cross the classification boundaries. This suggests that
gradient regularization should not be used in isolation, but should generally be coupled with OOD
detection or some other method to identify perturbations as part of a combined defensive
framework.

Concerning the effect of regularization on clean accuracy, Table 5-1 shows that acc generally
degrades with increasing regularization strength A, with a notable exception of the RESNET_T
model. In fact, both fine-tuned models DDNET_T and RESNET _T generally exhibit improved
accuracy for a given A over their baseline counterparts. For a possible explanation of this
phenomenon, we point to recent work by [14] to study the degree of entanglement of the
class-dependent representations of the inner layers of a model and its effect on model
performance. They find, rather surprisingly, that increasing the entanglement in the internal layers
leads to improved generalization accuracy and robustness to perturbations, despite the fact that
this would seem to bring the classification boundaries closer to the training data. Their
explanation is that the internal layers of the network learn class-agnostic features that are specific
to the domain, and it is the final layer that learns discriminatory features for classification. Our
results appear to corroborate this, as applying Jacobian regularization to the models from the
outset would aggressively separate the class representations across all layers of the network,

26

DDNET A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000

acc 0.793 0.783 0.778 0.772 0.740 0.738 0.628 0.571
nacc 0.792 0.783 0.778 0.773 0.739 0.737 0.628 0.571
BA vacc 0.023 0.024 0.027 0.026 0.032 0.031 0.042 0.052
L? 1.809 2.245 2.995 3.507 4.871 5.387 8.404 10.752
BIM vacc 0.348 0.420 0.532 0.568 0.609 0.630 0.588 0.555
L? 1.531 1.560 1.579 1.587 1.607 1.614 1.630 1.634
CWL2 0 vacc 0.023 0.024 0.027 0.026 0.032 0.031 0.042 0.052
- L? 1.390 1.758 2.381 2.776 3.811 4.305 6.726 8.588
FGSM vacc 0.462 0.507 0.581 0.608 0.627 0.638 0.591 0.554
L? 1.660 1.660 1.660 1.660 1.660 1.660 1.660 1.660
DDNET.T A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.793 0.786 0.786 0.792 0.756 0.732 0.701 0.644
nacc 0.793 0.786 0.785 0.791 0.755 0.731 0.701 0.644
BA vacc 0.023 0.018 0.022 0.024 0.030 0.029 0.029 0.038
L? 1.806 2.221 2.955 3.285 4.542 5.428 7.861 9.940
BIM vacc 0.348 0.430 0.508 0.543 0.616 0.633 0.650 0.618
L? 1.531 1.550 1.578 1.583 1.602 1.612 1.626 1.632
CWL2 0 vacc 0.023 0.018 0.022 0.024 0.030 0.029 0.029 0.038
- L? 1.389 1.757 2.341 2.589 3.607 4.253 6.216 7.986
vacc 0.112 0.118 0.115 0.114 0.129 0.133 0.151 0.167
CWL20.U L? 0.824 1.036 1.268 1.365 1.859 2.167 3.013 3.489
CWL2 40 VA 0.023 0.018 0.023 0.023 0.090 0.100 0.100 0.100
- L? 7.649 10.792 21.478 35.224 53.823 54.750 54.361 54.318
FGSM vacc 0.462 0.511 0.557 0.586 0.637 0.644 0.655 0.619
L? 1.660 1.660 1.660 1.660 1.660 1.660 1.661 1.660
RESNET A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.847 0.831 0.817 0.823 0.837 0.822 0.817 0.807
nacc 0.845 0.829 0.815 0.822 0.836 0.821 0.815 0.804
BA vacc 0.016 0.021 0.020 0.017 0.016 0.015 0.024 0.018
L? 1.559 1.618 1.851 1.988 2.361 2.674 2.814 2.800
BIM vacc 0.290 0.306 0.351 0.388 0.464 0.513 0.500 0.527
L? 1.543 1.557 1.578 1.589 1.604 1.609 1.610 1.605
CWL2 0 vacc 0.016 0.021 0.019 0.017 0.016 0.015 0.024 0.018
- L? 1.269 1.313 1.509 1.636 1.933 2.200 2.397 2.969
FGSM vacc 0.408 0.414 0.449 0.470 0.535 0.566 0.556 0.572
L? 1.661 1.661 1.661 1.661 1.661 1.661 1.661 1.661
RESNET_T A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.847 0.896 0.899 0.892 0.897 0.903 0.901 0.905
nacc 0.845 0.891 0.895 0.891 0.894 0.901 0.900 0.903
BA vacc 0.016 0.011 0.008 0.009 0.009 0.008 0.010 0.008
L? 1.561 1.375 1.464 1.508 1.659 1.703 2.040 2.189
BIM vacc 0.290 0.261 0.313 0.310 0.357 0.384 0.447 0.479
L? 1.543 1.502 1.531 1.541 1.552 1.561 1.582 1.585
CWL2 0 vacc 0.016 0.011 0.007 0.009 0.009 0.008 0.009 0.008
- L? 1.268 1.092 1.207 1.238 1.361 1.392 1.866 1.779
CWL2 0 U VA 0.091 0.067 0.062 0.071 0.061 0.061 0.064 0.060
I o 0.884 0.828 0.909 0.913 0.993 1.043 1.148 1.221
CWL2 40 Vacc 0.098 0.100 0.100 0.100 0.100 0.100 0.100 0.100
- L? 61911 66.543 66.664 67.476 66.627 66.246 66.368 66.693
FGSM vacc 0.408 0.478 0.527 0.511 0.536 0.532 0.559 0.574
L? 1.661 1.661 1.661 1.661 1.661 1.661 1.661 1.661

Table 5-1 The variation of clean (acc), noisy (nacc), and adversarial (vacc) accuracy
with Jacobian regularization. For each adversarial model, the mean perturbation dis-
tance (L?) is also given.

27

DDNET, L?
-
& & o ©O

MJ

10

DDNET T, L?
o

3.0

2.5

2.0

RESNET, L?

15

RESNET T, L2
= = N
n - o
o wn o

=
MJ
U

Adversarial Distance

_——/ff—__d_{
__———'_;/--’F
-6 -4 -2 0
logA
.-—"”'-/_‘J-’
-6 -4 -2 0
logA
—_— __,.7/-— T
’#/—-"—;
-6 -4 -2 0
logA
_-—-ﬁd___
-6 -4 -2 0
logA

Figure 5-1 Adversarial perturbation distance (L2) and adversarial accuracy (vacc) vs.
Jacobian regularization parameter A. The shaded regions show 95% quantile regions
for distance. The BA and CWL2 accuracies are very similar and appear overlaid on

the right-hand plots.

28

vacc

vacc

vacc

vacc

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

0.4

0.2

0.0

0.6

0.4

0.2

0.0

Adversarial Accuracy

adv_type
BA
BIM
CWL2 0
FGSM
-6 -4 -2 0
logA
_6 4 -2 0
logA
—6 —4) 0
logA
-6 -4 -2 0
logA

whereas the fine-tuning scheme inherits the near-optimal class boundaries from the pre-trained
networks and reinitialized only the final layer.

5.2 Effect of Jacobian Regularization on OOD Detection

Recall from Section 4.3 that the OOD detectors are trained using two general approaches:
"self"-trained where both the training and testing are done on samples generated from the same
attack, and "other"-trained where the detectors are trained on FGSM samples and tested on
samples from the other attacks. This allows us to evaluate the performance of the detectors in the
more realistic scenario where they are trained on one form of attack but encounter samples from a
novel and previously unobserved algorithm. Table 5-2 gives the performance of the DM and LID
detectors trained on FGSM validation samples and applied to each of the other attacks. We
measure this performance using the AUROC metric defined in Hypothesis 1. The table gives
these results for each f 4+ A combination, along with the corresponding clean model accuracy
(acc) as a reference. Results for the self-trained detectors are provided in Appendix B.1.

We begin by comparing our non-regularized OOD results (A = 0) with those reported by the
original LID [29] and DM [27] authors for the RESNET34 model trained on CIFAR-10. Our
detection scores for FGSM, BIM, and CWL2_0 for LID are (.725, .603, .939) respectively
compared to the originally reported scores of (.824, .916, .933) in Table 2 of [29] (those authors
do not consider BA. Note also that our BIM corresponds to their BIM-b). While our CWL2_0
score is similar, we do not yet know the reason why our scores for the simpler non-optimization
attacks are so much lower. While we use a different implementation of the attacks (we apply the
Foolbox implementation [40], while they employed the Cleverhans library [33]), we suspect that
the discrepancy is more likely due to differences in how the attacks are parameterized, as neither
method optimizes its hyperparameters to the same extent that CWL2 does. The vacc scores we
report in Table 5-1 for FGSM and BIM are also substantially higher than those given in Table 4 of
their paper, which suggests that we have chosen our parameters for these attacks too
conservatively. If the perturbations are too minor, then they will neither distinguish themselves
significantly from the clean data, nor be as likely to cross a class boundary and result in
misclassification. Similarly, our DM detection scores of (.683, .620, .840) are substantially lower
than those of (.999, .989, .939) reported in Table 4 of [27]. These are more difficult to compare,
since those authors use a custom implementation for these three attacks. It is important to note,
however, that as with us neither paper claims to conduct a fully robust suite of attack
optimizations. While we recommend a more thorough investigation of attack implementations
and hyperparameter choices for future research, this does not prevent us from evaluating the effect
of A on the detection scores which is the primary focus of this work.

Considering the results for A > 0, we find that in nearly all cases adding regularization improves
detection performance, though both the optimal A and the magnitude of its effect are case
dependent. The improvement appears more significant for the BA and CWL2 attacks, which
follows from the sensitivity of their perturbation sizes to A as seen in Figure 5-1. The effect of
regularization is to increase the average distance in representation space from the in-distribution
data to the classification boundaries. Thus, as both CWL2 and BA attempt to minimize distance
simultaneously with a misclassification objective (i.e. (17) for CWL2 and enforced

29

DDNET A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.793 0.783 0.778 0.772 0.740 0.738 0.628 0.571
BA 0.508 0.598 0.541 0.485 0.667 0.561 0.533 0.510
DM BIM 0.496 0.513 0.500 0.502 0.512 0.505 0.503 0.497
CWL2_0 0.515 0.612 0.543 0.485 0.623 0.551 0.505 0.492
FGSM 0.520 0.515 0.516 0.496 0.515 0.515 0.503 0.505
BA 0.801 0.792 0.795 0.841 0.842 0.832 0.736 0.790
LID BIM 0.640 0.547 0.545 0.548 0.549 0.531 0.521 0.513
CWL2_0 0.795 0.796 0.797 0.845 0.844 0.832 0.740 0.794
FGSM 0.651 0.586 0.562 0.560 0.550 0.533 0.522 0.517
DDNET.T A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.793 0.786 0.786 0.792 0.756 0.732 0.701 0.644
BA 0.488 0.573 0.627 0.671 0.678 0.570 0.521 0.531
BIM 0.496 0.505 0.511 0.508 0.512 0.496 0.497 0.505
DM CWL2_0 0.483 0.571 0.655 0.674 0.668 0.546 0.499 0.506
CWL2_0_U 0.460 0.543 0.570 0.574 0.555 0.522 0.512 0.504
CWL2_40 0.691 0.184 0.060 0.052 0.734 0.392 0.592 0.999
FGSM 0.508 0.504 0.510 0.525 0.520 0.495 0.497 0.504
BA 0.781 0.885 0.880 0.906 0.814 0.795 0.798 0.739
BIM 0.465 0.604 0.587 0.587 0.545 0.536 0.509 0.506
LID CWL2_0 0.789 0.883 0.882 0.905 0.815 0.794 0.802 0.746
CWL2_0_U 0.604 0.809 0.778 0.818 0.611 0.606 0.639 0.531
CWL2_40 0.001 0.941 0.966 0.995 0.788 0.785 0.741 0.666
FGSM 0.560 0.653 0.616 0.605 0.550 0.537 0.507 0.510
RESNET A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.847 0.831 0.817 0.823 0.837 0.822 0.817 0.807
BA 0.830 0.840 0.769 0.775 0.838 0.804 0.775 0.654
DM BIM 0.620 0.555 0.561 0.557 0.565 0.564 0.549 0.547
CWL2_0 0.840 0.853 0.784 0.786 0.847 0.811 0.785 0.669
FGSM 0.683 0.684 0.668 0.637 0.627 0.623 0.602 0.581
BA 0.938 0.944 0.928 0.926 0.955 0.960 0.949 0.906
LID BIM 0.605 0.600 0.626 0.617 0.640 0.583 0.630 0.618
CWL2_0 0.939 0.944 0.932 0.926 0.955 0.959 0.950 0.910
FGSM 0.719 0.717 0.688 0.667 0.687 0.634 0.667 0.644
RESNET_T A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.847 0.896 0.899 0.892 0.897 0.903 0.901 0.905
BA 0.834 0.865 0.843 0.832 0.809 0.858 0.860 0.867
BIM 0.620 0.613 0.641 0.613 0.595 0.607 0.606 0.627
DM CWL2_0 0.843 0.890 0.868 0.853 0.828 0.873 0.868 0.879
CWL2_0_U 0.767 0.857 0.855 0.839 0.820 0.849 0.844 0.827
CWL2_40 0.128 0.974 1.000 0.963 0.869 0.534 0.983 0.167
FGSM 0.683 0.731 0.742 0.712 0.682 0.703 0.672 0.697
BA 0.938 0.983 0.947 0.978 0.979 0.971 0.982 0.982
BIM 0.603 0.642 0.629 0.633 0.626 0.623 0.650 0.675
LID CWL2_0 0.939 0.984 0.946 0.977 0.978 0.971 0.982 0.981
CWL2_0_U 0.864 0.929 0.798 0.910 0.931 0.934 0.925 0.940
CWL2_40 0.969 0.999 1.000 0.990 0.993 0.985 0.997 0.994
FGSM 0.725 0.748 0.734 0.719 0.728 0.732 0.729 0.744

Table 5-2 OOD detection rates with FGSM validation across all models, measured by
AUROC. Best scores for each row are highlighted in bold. Clean model accuracies

are included for comparison.

30

misclassification for BA), they must accept larger perturbations from the clean data in order to
meet this objective, and thus become more susceptible to detection. A collection of ROC curves
for detecting CWL2_0 under FGSM validation is given in Figure 5-2; samples for other attacks
are provided in Appendix B.2. The baseline detection rate at A = 0 is also significantly higher for
the RESNET models than the DDNET ones, and hence the latter tend to show larger gains as
regularization increases. For example, adding a moderate amount of regularization (A = .01)
increases the baseline DDNET_T detection of both BA and CWL2_0 from worse than a coin flip
(AUROC < .5) to a statistically significant (AUROC > .67) at nearly no cost in clean accuracy.

Table 5-2 also demonstrates that adding regularization as a fine-tuning step is generally superior
to regularizing the model from scratch, both in terms of clean accuracy and detectability of
adversarial samples. This again support the findings of [14] that the internal layers are more
strongly associated with general class-agnostic features, and thus regularization should target the
discriminatory features of the final layer. Recall that for these models we also consider two
additional CWL2 variants: an untargeted low-confidence attack CWL2_0_U and a targeted
high-confidence attack CWL2_40. The scores for the untargeted attacks are slightly lower than
those for the targeted low-confidence baseline CWL2_0. We believe that this is due to the
relaxation of the misclassification criterion in (16), which allows the algorithm to find a tighter
bound on the perturbation distance. Far more striking, however, is the degree of improvement for
the high-confidence attacks. Observe that the AUROC scores for CWL2_40 are extremely low for
A = 0 in most cases, but jump significantly as regularization is added (.691 — .999 for DDNET_T
+ DM, .001 — .995 for DDNET_T + LID, and .128 — 1.00 for RESNET_T + DM). It has been
observed (c.f. [7]) that high-confidence attacks can defeat basic OOD detection schemes by
forcing the attacker to generate an adversarial sample x,q, with a representation z,q4, that is very
similar to those drawn from the target class-dependent distribution. Our results indicate that
adding even a small amount of regularization can potentially mitigate the force of such an attack,
possibly due to an effect of further separating the class-dependent distributions of the final layers
of the model. We recommend investigating this more thoroughly in future work, using adversaries
specifically designed to target OOD methods [7, 3].

We also comment on the surprisingly similar behavior of both BA and CWL2 with respect to their
adversarial accuracy, perturbation distance, and detectability across our experiments. This is of
note because, while both attempt to minimize an objective, CWL2 is a white-box method that
requires complete access to the model and its weights, while BA is a wholly black-box approach
that only uses the prediction labels. In considering why these very different techniques behave so
similarly, we refer to some of the early work in transfer attacks by [36]. In this work, the authors
conjecture that, given two similar models f and g and a data distribution D, the representations
Dy and D, of the data under each model will be highly correlated, and hence an attack A that
targets the model f may produce samples that are simultaneously misclassified by g. We
conjecture that an analogous property holds for samples from attacks A and B that target a single
model f. If A and B are both white-box attacks, then it is reasonable to expect that the adversarial
samples A(x) and B(x) for a given input x will be correlated, as they will both be perturbations
involving the gradient V,L(y, P(§ = y|x)) at x (c.f. Section 4.2). Would a similar correlation hold
if B is instead a black-box attack that does not explicitly use gradient information? We consider
this a promising line of investigation for future research.

31

DDNET_T, TPR DDNET, TPR

RESNET, TPR

RESNET_T, TPR

DM

1.0
0.81 model
== auroc:0.515, A:0
0.6 - auroc:0.612, A:0.001
= aguroc:0.543, A:0.005
0.4 1 —— auroc:0.485, A:0.01
—— aurec:0.623, A:0.05
0_2 1 e guroc:0.551, A:0.1
auroc:0.505, A:0.5
0.0 1 aurcc:0.492, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0
0.81 model
== auroc:0.483, A:0
0.6 1 auroc:0.571, 4:0.001
—— aurec:0.655, A:0.005
0.4 1 —— auroc:0.674, A:0.01
—— guroc:0. 668, A:0.05
[]_2 1 —— guroc:0.546, A:0.1
auroc:0.499, A:0.5
0.0 1 aurec:0.506, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0
0.81 modgl
auroc:0.64, A:0
0.6 1 auroc:0.853, A:0.001
aurec:0.784, A:0.005
0.4 1 auroc:0.786, 4:0.01
auroc:0.847, A:0.05
0.2 1 auroc:0.811, A:0.1
auroc:0.785, A:0.5
0.0 1 auroc:0. 668, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0 4
0.81 modi-;l
I auroc:0.643, A:0
0.6 1 - auroc:0.89, A:0.001
,,/’ —— auroc:0.868, A:0.005
0.4 - -~ —— auroc:0.853, A:0.01
—— auroc:0.828, A:0.05
0.2 1 = auroc:0.873, A:0.1
auroc:0.868, A:0.5
0.0 auroc:0.67% A:1

0.0 0.2 0.4 06
FPR

Figure 5-2 ROC curves for OOD detection of CWL2_0 using FGSM validation.

08 1.0

TPR

TPR

TPR

TPR

1.01

0.8

0.6 1

0.4

0.2

-
madel
auroc:0.795, A:0
auroc:0.796, A:0.001
auroc:0.797, A:0.005
aurec:0.845, A:0.01
aurcc:0.844, A:0.05
auroc:0.832, A:0.1
auroc:0.74, A:0.5
auroc:0.794, A:1

0.8 1.0

-
model
auroc:0.789, A:0
auroc:0.683, A:0.001
auroc:0.882, A:0.005
auroc:0.905, A:0.01
auroc:0.815, A:0.05
auroc:0.794, A:0.1
auroc:0.802, A:0.5
auroc:0.746, A:1

0.8 1.0

e
model

auroc:0.939, A:0
auroc:0.944, A:0.001
aurec:0.932, A:0.005
auroc:0.926, A:0.01
auroc:0.955, A:0.05
auroc:0.959, A:0.1
auroc:0.95, A:0.5
auroc:0.91, A:1

FPR

0.8 1.0

-
model

auroc:0.939, A:0
auroc:0.984, A:0.001
auroc:0.946, A:0.005
auroc:0.977, A:0.01
auroc:0.978, A:0.05
auroc:0.971, A:0.1
auroc:0.982, A:0.5
auroc:0.981, A:1

FPR

0.6

0.8 1.0

6. CONCLUSION

In this report, we investigated the claim of Hypothesis 1 that gradient regularization techniques
improve the performance of OOD detectors to identify adversarial samples. We find that, in most
cases, the claim holds, as adding regularization increases the distance from clean in-distribution
data to the classification boundaries of the representation layers of the model. As a consequence,
either the adversarial accuracy vacc increases (i.e. attacks are less effective), or the adversary is
forced to make larger perturbations which increases their detectability. However, the degree of
improvement is not uniform, and depends heavily on both the nature of the attack and the
accuracy of the baseline model. In particular, we observe that it is easier to identify
optimization-based attacks that attempt to minimize the perturbation for a given level of
effectiveness than it is to detect static attacks that simply perturb the input for a fixed number of
iterations. Additionally, while increased regularization has a more significant effect on adversarial
detection for models with a low baseline accuracy(DDNET), the most effective detection
performance is obtained for models with a high baseline accuracy (RESNET).

Our results also corroborate the findings of other authors that detectors trained on relatively
simple attacks (FGSM) can still effectively identify samples generated from more sophisticated
schemes (CWL2, BA). We suggest that this indicates a possible analogy to the well-known
phenomenon of transferability of attacks [36], in that the samples x,q, generated from a variety of
attacks against a single model f may also turn out to be highly correlated. If true, such a property
would improve the prospects for detecting previously unobserved attack schemes, and we
recommend a thorough investigation of this claim in future work. Additionally, we obtain
significantly better detection rates at a lower clean accuracy cost when regularizing pre-trained
networks that re-initialize only the final layer. We believe this supports recent claims that deep
neural networks learn class-agnostic features in deeper layers and discriminatory features in final
layers, which has important implications for understanding which aspects of the network are most
salient for improving robustness [14].

We also remark that the adversarial detection rates we obtain are generally lower than those
reported by the original LID [29] and DM [27] authors for similar attacks on the CIFAR-10
dataset, even with Jacobian regularization implemented. It is important to note that neither we nor
these other studies claim to perform a fully robust battery of adversarial tests, as this involves a
level of hyperparameter tuning that is beyond the scope of the current work. To further complicate
this search, it is possible to modify certain attacks (such as CWL?2) to specifically target
adversarial detection schemes [7, 3]. These modifications generally target the confidence score,
such as (6) or (10), to produce high-confidence adversarial perturbations. While we are successful
identifying adversaries using a generic high-confidence score (CWL2_40), future work should
incorporate a threat model where the adversary knows the specific detector in use and explore
possible modifications of these attacks.

Our final comments concern the generalization of these techniques to models trained in other data
domains, such as text [30] and cybersecurity [11, 38]. An advantage of the regularization and
OOD detection methods studied here is that they make minimal assumptions on the neural
network architecture, and can be broadly applied to feed-forward, convolutional, recurrent, and
even more esoteric models. This makes them amenable to potentially improving the robustness of

33

machine learning tasks that have thus far focused on distillation and model ensembles for
security, such as malware classification [42]. Indeed, we conjecture that regularization can be
employed to increase the diversity of models within an ensemble, so that an attacker that attempts
to attack one model is increasing their likelihood of detection with respect to another, for it
becomes increasingly difficult for the adversary to perturb an input in such a way that is
simultaneously misclassified by all models and also goes unnoticed by associated sideband
detectors. Again, we suggest that this is a promising avenue for future work to extend these
defenses beyond computer vision tasks.

34

REFERENCES

[1] Nilesh A. Ahuja, Ibrahima Ndiour, Trushant Kalyanpur, and Omesh Tickoo. Probabilistic
Modeling of Deep Features for Out-of-Distribution and Adversarial Detection. arXiv
e-prints, page arXiv:1909.11786, September 2019.

[2] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E. Houle,
Ken-ichi Kawarabayashi, and Michael Nett. Estimating local intrinsic dimensionality. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, pages 29-38, New York, NY, USA, 2015. Association for
Computing Machinery.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. volume 80 of Proceedings of
Machine Learning Research, pages 274-283, Stockholmsméssan, Stockholm Sweden,
10-15 Jul 2018. PMLR.

[4] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-Based Adversarial Attacks:
Reliable Attacks Against Black-Box Machine Learning Models. arXiv e-prints, page
arXiv:1712.04248, December 2017.

[5] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On Evaluating
Adversarial Robustness. arXiv e-prints, page arXiv:1902.06705, February 2019.

[6] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural
Networks. arXiv e-prints, page arXiv:1608.04644, August 2016.

[7] Nicholas Carlini and David Wagner. Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods. arXiv e-prints, page arXiv:1705.07263, May 2017.

[8] Nicholas Carlini and David Wagner. MagNet and “Efficient Defenses Against Adversarial
Attacks” are Not Robust to Adversarial Examples. arXiv e-prints, page arXiv:1711.08478,
November 2017.

[9] Nicholas Carlini and David Wagner. Audio Adversarial Examples: Targeted Attacks on
Speech-to-Text. arXiv e-prints, page arXiv:1801.01944, January 2018.

[10] Kevin K. Chen. The upper bound on knots in neural networks, 2016.

[11] George Dahl, Jay Stokes, Li Deng, and Dong Yu. Large-scale malware classification using
random projections and neural networks. In Proceedings IEEE Conference on Acoustics,
Speech, and Signal Processing (ICASSP), May 2013.

[12] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of
classifiers: from adversarial to random noise. arXiv e-prints, page arXiv:1608.08967,
August 2016.

[13] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. Detecting
Adversarial Samples from Artifacts. arXiv e-prints, page arXiv:1703.00410, March 2017.

35

[14] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. Analyzing and Improving
Representations with the Soft Nearest Neighbor Loss. arXiv e-prints, page
arXiv:1902.01889, February 2019.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[16] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing
Adversarial Examples. arXiv e-prints, page arXiv:1412.6572, December 2014.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[18] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Github - facebookresearch - jacobian
regularizer, November 2019.

[19] Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust Learning with Jacobian
Regularization. arXiv e-prints, page arXiv:1908.02729, August 2019.

[20] Michael E. Houle. Local intrinsic dimensionality i: An extreme-value-theoretic foundation
for similarity applications. In Christian Beecks, Felix Borutta, Peer Kroger, and Thomas
Seidl, editors, Similarity Search and Applications, pages 64—79, Cham, 2017. Springer
International Publishing.

[21] Michael E. Houle, Erich Schubert, and Arthur Zimek. On the correlation between local
intrinsic dimensionality and outlierness. In Stéphane Marchand-Maillet, Yasin N. Silva, and
Edgar Chavez, editors, Similarity Search and Applications, pages 177-191, Cham, 2018.
Springer International Publishing.

[22] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box
adversarial attacks with bandits and priors, 2019.

[23] Ryo Kamoi and Kei Kobayashi. Why is the Mahalanobis Distance Effective for Anomaly
Detection? arXiv e-prints, page arXiv:2003.00402, February 2020.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of
Toronto, 05 2012.

[25] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. arXiv e-prints, page arXiv:1607.02533, July 2016.

[26] Kimin Lee. Github - pokaxpoka - deep mahalanobis detector, August 2019.

[27] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified Framework for
Detecting Out-of-Distribution Samples and Adversarial Attacks. arXiv e-prints, page
arXiv:1807.03888, July 2018.

[28] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing The Reliability of Out-of-distribution
Image Detection in Neural Networks. arXiv e-prints, page arXiv:1706.02690, June 2017.

36

[29] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E. Houle, and James Bailey. Characterizing Adversarial
Subspaces Using Local Intrinsic Dimensionality. arXiv e-prints, page arXiv:1801.02613,
January 2018.

[30] Takeru Miyato, Andrew M. Dai, and lan Goodfellow. Adversarial Training Methods for
Semi-Supervised Text Classification. arXiv e-prints, page arXiv:1605.07725, May 2016.

[31] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images. arXiv e-prints, page
arXiv:1412.1897, December 2014.

[32] S.J. Pan and Q. Yang. A survey on transfer learning. /IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345-1359, 2010.

[33] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick McDaniel.
cleverhans v1.0.0: an adversarial machine learning library. arXiv preprint
arXiv:1610.00768, 2016.

[34] Nicolas Papernot and Patrick McDaniel. Extending Defensive Distillation. arXiv e-prints,
page arXiv:1705.05264, May 2017.

[35] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in Machine
Learning: from Phenomena to Black-Box Attacks using Adversarial Samples. arXiv
e-prints, page arXiv:1605.07277, May 2016.

[36] Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z. Berkay Celik, and
Ananthram Swami. Practical Black-Box Attacks against Machine Learning. arXiv e-prints,
page arXiv:1602.02697, February 2016.

[37] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks. arXiv
e-prints, page arXiv:1511.04508, November 2015.

[38] Jugal Parikh, Holly Stewart, and Randy Treit. Protecting the protector: Hardening machine
learning defenses against adversarial attacks, August 2018.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024—8035. Curran Associates, Inc., 2019.

[40] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to
benchmark the robustness of machine learning models. In Reliable Machine Learning in the
Wild Workshop, 34th International Conference on Machine Learning, 2017.

[41] J. Sokoli¢, R. Giryes, G. Sapiro, and M. R. D. Rodrigues. Robust large margin deep neural
networks. IEEE Transactions on Signal Processing, 65(16):4265-4280, 2017.

37

[42] Jack W. Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone. Attack and
Defense of Dynamic Analysis-Based, Adversarial Neural Malware Classification Models.
arXiv e-prints, page arXiv:1712.05919, December 2017.

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv e-prints, page
arXiv:1312.6199, December 2013.

[44] Florian Tramer, Alexey Kurakin, Nicolas Papernot, lan Goodfellow, Dan Boneh, and Patrick
McDaniel. Ensemble Adversarial Training: Attacks and Defenses. arXiv e-prints, page
arXiv:1705.07204, May 2017.

[45] Déniel Varga, Adrian CsiszAarik, and Zsolt Zombori. Gradient regularization improves
accuracy of discriminative models. 2018.

38

APPENDIX A. DEFENSIVE DISTILLATION

Here we provide some additional details on defensive distillation [37, 34]. In this process, a
secondary model f7 is trained to learn "soft labels" from those predicted by the primary model f.
These labels approximate the conditional probability distribution over the outputs given the
training data. A temperature parameter, 7', regularizes this conditional probability distribution
toward a uniform distribution.

In detail, recall from Section 2 that a model z = f(x) is inferred on a dataset (x, y) by minimizing
a loss function argming L(y, §), where y = softmax(z). To perform distillation, we train a model
fr with the same architecture as f on the dataset (x, ¥), i.e. we treat the class predictions of f.
Additionally, we replace the standard softmax with the following parameterized version:

zr = fr(x) (20)
A eZ,‘J‘/T
yirt = W7 2D

where z; 7 denotes the i-th component of z7, etc. The distilled function f7 is thus

argming L(¥, 7), where the training proceeds as with the original function f. Observe that while
T =1 corresponds to the standard softmax function, f is still trained on the dataset (x,) as
opposed to the original dataset (x, y).

To consider the effect of 7', we compute derivatives of y7 with respect to the input x to obtain:

a)A’i,T _ leZiVT/T Z <azi _ azﬁ) ear/T ’
ox; T g*x) \“T\ dx; Ox;

where g denotes the denominator of (21). From this, we see that increasing 7" has the effect of
reducing the magnitude of the derivatives of yr, and in turn reduces the sensitivity of the
predictions to perturbations in the input [37]. While this approach proved effective in mitigating
many early attack algorithms, it has only a minimal effect on more recent techniques that are able
to approximate the gradient of the original network f [6, 3].

APPENDIX B. ADDITIONAL OUT-OF-DISTRIBUTION DETECTION RESULTS

In this Appendix, we give some additional results for OOD detection performance.

B.1. Self-Validated Detector Performance

Table B-1 gives the performance of the OOD detectors when trained on adversarial samples from
the same attack on which they are tested, as opposed to Table 5-2 when they are trained only on
FGSM samples (note that this means the FGSM results are unchanged, and they are omitted from
the table). We find that in most cases, the best AUROC scores are modestly better than the

39

FGSM-trained values (usually within .05). When comparing to Table 5-2, these results suggest
that detectors trained on simpler attacks my generalize to more sophisticated algorithms with
comparable performance to those trained on the more sophisticated attacks themselves.

B.2. Gallery of ROC Curves

Here we provide ROC curves for the OOD detection of other attacks. We observe that Deep
Mahalanobis largely fails to identify either FGSM or BIM adversarial samples on DDNET, even
with the effects of Jacobian regularization. While this may simply reflect the fact that neither
attack attempts to optimize perturbation distance, it does contrast with the results of [27] who
were successful in identifying such attacks. Similarly, while the LID scores do have
discriminatory power with sufficient regularization, they are not as high as those reported by [29].
The Boundary Attack scores have strong discriminatory power across both detector types, and
they closely follow the behavior of CWL2 despite the very different nature of the attacks (c.f.
Figure 5-2).

40

DDNET A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.793 0.783 0.778 0.772 0.740 0.738 0.628 0.571
BA 0.564 0.622 0.569 0.572 0.705 0.651 0.679 0.659
DM BIM 0.514 0.500 0.502 0.509 0.517 0.502 0.528 0.506
CWL2_0 0.551 0.634 0.570 0.569 0.679 0.612 0.627 0.629
BA 0.806 0.873 0.896 0.894 0.899 0.902 0.860 0.872
LID BIM 0.638 0.619 0.564 0.548 0.547 0.529 0.512 0.517
CWL2_0 0.811 0.874 0.897 0.896 0.900 0.903 0.862 0.874
DDNET_.T A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.793 0.786 0.786 0.792 0.756 0.732 0.701 0.644
BA 0.569 0.594 0.667 0.705 0.687 0.714 0.638 0.586
BIM 0.513 0.498 0.500 0.501 0.511 0.508 0.501 0.501
DM CWL2_0 0.577 0.602 0.691 0.699 0.688 0.710 0.611 0.561
CWL2_0_U 0.548 0.559 0.581 0.571 0.551 0.602 0.548 0.515
CWL2_40 0977 0.996 0.998 0.943 0.996 1.000 1.000 1.000
BA 0.807 0.894 0.903 0.911 0.901 0.907 0.849 0.847
BIM 0.639 0.588 0.543 0.562 0.566 0.541 0.509 0.503
LID CWL2_0 0.813 0.893 0.905 0.912 0.897 0.906 0.856 0.850
CWL2_0_U 0.793 0.828 0.826 0.822 0.782 0.771 0.686 0.616
CWL2_40 0.999 1.000 0.999 0.998 0.963 0.977 0.993 0.996
RESNET A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.847 0.831 0.817 0.823 0.837 0.822 0.817 0.807
BA 0.852 0.853 0.786 0.805 0.850 0.810 0.780 0.662
DM BIM 0.661 0.648 0.614 0.587 0.564 0.580 0.550 0.541
CWL2_0 0.862 0.862 0.797 0.810 0.854 0.814 0.791 0.667
BA 0.958 0.964 0.950 0.951 0.967 0.960 0.949 0.933
LID BIM 0.564 0.580 0.612 0.613 0.624 0.572 0.646 0.617
CWL2_0 0.958 0.964 0.950 0.951 0.966 0.959 0.949 0.935
RESNET_T A=0.000 A=0.001 A=0.005 A=0.010 A=0.050 A=0.100 A=0.500 A=1.000
acc 0.847 0.896 0.899 0.892 0.897 0.903 0.901 0.905
BA 0.852 0.925 0.905 0.875 0.858 0.897 0.884 0.908
BIM 0.663 0.756 0.701 0.686 0.650 0.670 0.624 0.630
DM CWL2_0 0.861 0.929 0.911 0.883 0.866 0.902 0.886 0.910
CWL2_0_U 0.823 0.898 0.902 0.868 0.857 0.885 0.870 0.891
CWL2_40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BA 0.959 0.983 0.984 0.980 0.979 0.983 0.983 0.983
BIM 0.581 0.602 0.629 0.593 0.616 0.616 0.648 0.664
LID CWL2_0 0.959 0.984 0.982 0.978 0.978 0.981 0.982 0.982
CWL2_0_U 0.865 0.932 0.939 0.926 0.934 0.938 0.929 0.947
CWL2_40 0.993 1.000 0.999 0.999 0.995 0.993 0.998 0.999

Table B-1 OOD detection rates with self-validation across all models, measured by
AUROC. The FGSM results are omitted, as they are unchanged from Table 5-2

41

DDNET_T, TPR DDNET, TPR

RESNET, TPR

RESNET_T, TPR

DM LD

1.0 / 1.0
0.81 model 0.8 model
= auroc:0.52, A:0 < auroc:0.651, A:0
0.6 - auroc:0.515, A:0.001 o 0.6 auroc:0.586, A:0.001
= guroc:0.516, A:0.005 & —— auroc:0.562, A:0.005
0.4 1 —— auroc:0.496, A:0.01 0.4 —— awroc:0.56, A:0.01
—— aurec:0.514, A:0.05 :; —— auroc:0.55, A:0.05
0_2 1 e guroc:0.514, A:0.1 0_2 4) — auroc:0.533, A:0.1
auroc:0.503, A:0.5 auroc:0.522, A:0.5
0.0 1 aurec:0.505, A:1 0.0 auroc:0.517, A:1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR
1.0 / 1.01
0.81 model 0.8 madel
auroc:0.508, A:0 == auroc:0.56, A:0
0.6 1 auroc:0.504, A:0.001 o 0.6 auroc:0.653, A:0.001
aurec:0.51, A:0.005 & —— auroc:0.616, A:0.005
0.4 1 auroc:0.525, A:0.01 0.4 —— awroc:0.605, A:0.01
auroc:0.52, A:0.05 —— auroc:0.55, A:0.05
[]_2 1 auroc:0.495, A:0.1 []_2 4 = auroc:0.537,A:0.1
auroc:0.497, A:0.5 auroc:0.507, A:0.5
0.0 1 aurec:0.504, A:1 0.0 auroc:0.51, A:1
T T T T T T T T
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0 1.0
-
0.81 . modgl 0.8 modi-eT
auroc:0.683, A:0 auroc:0.719, A:0
0.6 1 auroc:0.684, A:0.001 e 0.6 auroc:0.717, 4:0.001
aurec:0.668, A:0.005 & auroc:0.688, A:0.005
0.4 1 auroc:0.637, 4:0.01 0.4 auroc:0.667, 4:0.01
auroc:0.627, A:0.05 auroc:0.687, A:0.05
0.2 1 auroc:0.623, A:0.1 0.2 auroc:0.634, A:0.1
auroc:0.602, A:0.5 auroc:0.667, A:0.5
0.0 1 auroc:0.581, A:1 0.01 auroc:0.644, A:1
T T T T T T T T
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0 4 1.0
0.81 modi-;l 0.8 mod;;
= auroc:0.663, A:0 1= auroc:0.725, A:0
0.6 1 auroc:0.731, A:0.001 e 0.61 -~ auroc:0.748, A:0.001
—— aurcc:0.742, A:0.005 & —— auroc:0.734, 4:0.005
0.4 4 —— auroc:0.712, A:0.01 0.4 —— auroc:0.719, A:0.01
—— auroc:0.682, A:0.05 —— auroc:0.728, A:0.05
0.2 1 = aurpc:0.703, A:0.1 0.2 = auroc:0.732, A:0.1
auroc:0.672, A:0.5 auroc:0.729, A:0.5
0.0 auroc:0.687, A:1 0.01 auroc:0.744, A:1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR FPR

Figure B-1 ROC curves for OOD detection of FGSM using FGSM validation.

42

DDNET_T, TPR DDNET, TPR

RESNET, TPR

RESNET_T, TPR

DM

1.0 4 /
0.81 model
—— auroc:0.49%6, A:0
0.6 - auroc:0.513, A:0.001
= aguroc:0.5, A:0.005
0.4 1 —— auroc:0.502, A:0.01
—— aurec:0.512, A:0.05
0_2 1 e guroc:0.505, A:0.1
auroc:0.503, A:0.5
0.0 1 aurcc:0.497, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0 /
0.81 model
== auroc:0.496, A:0
0.6 1 auroc:0.505, A:0.001
—— aurec:0.511, A:0.005
0.4 1 —— auroc:0.508, A:0.01
—— guroc:0.512, A:0.05
[]_2 1 —— guroc:0.496, A:0.1
auroc:0.497, A:0.5
0.0 1 aurec:0.505, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0
o
-
0.81 modgl
auroc:0.62, A:0
0.6 1 auroc:0.555, A:0.001
aurec:0.561, A:0.005
0.4 1 auroc:0.557,4:0.01
auroc:0.565, A:0.05
0.2 1 auroc:0.564, A:0.1
auroc:0.549, A:0.5
0.0 1 auroc:0.547, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0 4
0.81 modé’l
auroc:0.62, A:0
0.6 1 auroc:0.613, 4:0.001
—— aurcc:0.641, A:0.005
0.4 4 —— auroc:0.613, A:0.01
—— auroc:0.585, A:0.05
0.2 1 = auroc:0.607, A:0.1
auroc:0.606, A:0.5
0.0 auroc:0.627, A:1

06 08 1.0

FPR

TPR

TPR

TPR

TPR

1.01

0.8

0.6 1

0.4

0.2

0.0

1.01

0.8

0.6

0.4

0.2

0.0

1.01

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

LD

>
maodel
auroc:0.64, A:0
auroc:0.547, A:0.001
auroc:0.545, A:0.005
auroc:0.548, A:0.01
auroc:0.549, A:0.05
auroc:0.531, A:0.1
auroc:0.521, A:0.5
auroc:0.513, A:1

0.4 0.6

FPR

0.8 1.0

g

model

auroc:0.465, A:0
auroc:0.604, A:0.001
auroc:0.587, A:0.005
auroc:0.587, A:0.01
auroc:0.545, A:0.05
auroc:0.536, A:0.1
auroc:0.509, A:0.5
auroc:0.506, A:1

0.6
FPR

0.8 1.0

-
model
auroc:0.605, A:0
auroc:0.6, A:0.001
auroc:0.626, A:0.005
auroc:0.617, A:0.01
auroc:0.64, A:0.05
auroc:0.583, A:0.1
auroc:0.63, A:0.5
auroc:0.618, A:1

FPR

0.8 1.0

-
model
auroc:0.603, A:0
auroc:0.642, A:0.001
auroc:0.629, A:0.005
auroc:0.633, A:0.01
auroc:0.626, A:0.05
auroc:0.623, A:0.1
auroc:0.65, A:0.5
auroc:0.675, A:1

0.6
FPR

Figure B-2 ROC curves for OOD detection of BIM using FGSM validation.

0.8 1.0

DDNET_T, TPR DDNET, TPR

RESNET, TPR

RESNET_T, TPR

DM

1.0
0.81 “madel
—— auroc:0.508, A:0
0.6 - auroc:0.598, A:0.001
—— auroc:0.541, A:0.005
0.4 1 —— auroc:0.485, A:0.01
—— auroc:0.667, A:0.05
0_2 1 e guroc:0.561, A:0.1
auroc:0.533, 3:0.5
0.0 auroc:0.51, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0
0.81 madel
—— auroc:0.488, A:0
0.6 1 auroc:0.573, A:0.001
— auroc:0.627, 4:0.005
0.4 1 —— auroc:0.671, A:0.01
—— guroc:0.678, A:0.05
0_2 1 —— guroc:0.57, A:0.1
auroc:0.521, A:0.5
0.0 auroc:0.531, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0
0.81 model
auroc:0.83, A:0
0.6 1 auroc:0.84, A:0.001
aurec:0.76% A:0.005
0.4 1 aurec:0.775, 4:0.01
auroc:0.838, A:0.05
0.2 1 auroc:0.804, A:0.1
auroc:0.775, A:0.5
0.0 auroc:0.654, 4:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FPR
1.0 4
] -
0.8 model
_— auroc:D.B34, A:0
0.6 1 - auroc:0.865, A:0.001
-
LT —— auroc:0.843, A.0.005
0.4 4 —— auroc:0.832, A:0.01
—— auroc:0.809, A:0.05
0.2 1 —— auroc:0.858, 4:0.1
auroc:0.86, A:0.5
0.0 auroc:0.867, A:1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FPR

TPR

TPR

TPR

TPR

-
madel

auroc:0.801, A:0
auroc:0.792, A:0.001
auroc:0.795, A:0.005
auroc:0.841, 4:0.01
aurec:0.842, 4:0.05
auroc:0.832, .01
aurac:0.736, A:0.5
aurgc:0.79, A:1

0.8 1.0

-
model

auroc:0.781, A:0
auroc:0.885, A:0.001
auroc:0.88, A:0.005
auroc:0.906, 4:0.01
auroc:0.814, A:0.05
auroc:0.795, A:0.1
auroc:0.798, A:05
auroc:0.739, A:1

0.8 1.0

e
model

auroc:0.938, A:0
auroc:0.944, A:0.001
auroc:0.928, A:0.005
auroc:(0.926, 4:0.01
auroc:0.955, A:0.05
auroc:0.96, A:0.1
auroc:0.949, 4:0.5
auroc:0.906, A:1

FPR

0.8 1.0

-
model

auroc:0.938, A:0
auroc:0.983, A:0.001
auroc:0.947, 4:0.005
auroc:0.978, A:0.01
aurac:0.979, A:0.05
auroc:0.971, A:0.1
auroc:0.982, 4:0.5
auroc:0.982, A:1

FPR

0.6

Figure B-3 ROC curves for OOD detection of BA using FGSM validation.

44

0.8 1.0

DISTRIBUTION
Email—Internal _

Michael Eydenberg 05954 mseyden@sandia.gov
Kanad Khanna 05951 kkhanna@sandia.gov
Ryan Custer 05954 rpcuste@sandia.gov
Daniel Garcia 05951 dgarci2@sandia.gov
Technical Library 01177 libref@sandia.gov

45

Sandia
National
Laboratories

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.

