
DATA-DRIVEN LEARNING OF NON-AUTONOMOUS SYSTEMS

2 TONG QIN*, ZHEN CHEN*, JOHN D. JAKEMANt , AND DONGBIN XIU*

3 Abstract. We present a numerical framework for recovering unknown non-autonomous dy-
namical systems with time-dependent inputs. To circumvent the difficulty presented by the non-

5 autonomous nature of the system, our method transforms the solution state into piecewise integra-
6 tion of the system over a discrete set of time instances. The time-dependent inputs are then locally
7 parameterized by using a proper model, for example, polynomial regression, in the pieces determined
8 by the time instances. This transforms the original system into a piecewise parametric system that
9 is locally time invariant. We then design a deep neural network structure to learn the local models.
io Once the network model is constructed, it can be iteratively used over time to conduct global system
11 prediction. We provide theoretical analysis of our algorithm and present a number of numerical
12 examples to demonstrate the effectiveness of the method.

13 Key words. Deep neural network, residual network, non-autonomous systems

14 1. Introduction. There has been growing research interests in designing ma-
15 chine learning methods to learn unknown physical models from observation data.
16 The fast development of modern machine learning algorithms and availability of vast
17 amount of data have further promoted this line of research. A number of numeri-
18 cal methods have been developed to learn dynamical systems. These include sparse
19 identification of nonlinear dynamical systems (SINDy) [2], operator inference [14],
20 model selection approach [11], polynomial expansions [28, 27], equation-free multi-
21 scale methods [7, 26], Gaussian process regression [21], and deep neural networks
22 [23, 20, 22, 10, 9, 24]. Most of these methods treat the unknown governing equations
23 as functions mapping state variables to their time derivatives. Although effective in
24 many cases, the requirement for time derivatives poses a challenge when these data
25 are not directly available, as numerical approximation of derivatives can be highly
26 sensitive to noises.
27 Learning methods that do not require time derivatives have also been developed,
28 in conjunction with, for example, dynamic mode decomposition (DMD) [25], Koop-
29 man operator theory [12, 13], hidden Markov models [5], and more recently, deep
30 neural network (DNN) [19]. The work of [19] also established a newer framework,
31 which, instead of directly approximating the underlying governing equations like in
32 most other methods, seeks to approximate the flow map of the unknown system. The
33 approach produces exact time integrators for system prediction and is particularly
34 suitable with residual network (ResNet) ([6]). The approach was recently extended
35 to learning dynamical systems with uncertainty [18], reduced system [?], model cor-
36 rection [4], and partial differential equations (PDEs) [29].
37 Most of the aforementioned methods are applicable only to autonomous dynam-
38 ical systems, whose time invariant property is a key in the mathematical formulation

*Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
(qin.428@osu.edu, chen.7168@osu.edu, xiu.16@osu.edu). Funding: This work was partially sup-
ported by AFOSR FA9550-18-1-0102.

f Optimization and Uncertainty Quantification Department, Sandia National Laboratory, Al-
buqerque, NM, 87123 USA (jdjakem@sandia.gov). Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of En-
ergy's National Nuclear Security Administration under contract DE-NA-0003525. The views ex-
pressed in the article do not necessarily represent the views of the U.S. Department of Energy or the
United States Government.

1

SAND2020-5887R

39 of the methods. For non-autonomous systems with time-dependent inputs, the solu-
40 tion states depend on the entire history of the system states. This renders most of
41 the existing methods non-applicable. A few approaches have been explored for non-
42 autonomous systems in the context of system control [16, 3, 17]. They are, however,
43 not applicable for general non-autonomous system learning.
44 The focus of this paper is on data driven learning method for non-autonomous
45 systems. In particular, we present a novel numerical approach suitable for learning
46 general non-autonomous systems with time-dependent inputs. The key ingredient
47 of the method is in the decomposition of the system learning into piecewise local
48 learnings of over a set of discrete time instances. Inside each of the time intervals
49 defined by the discrete time instances, we seek to locally parameterize the external
50 time-dependent inputs using a local basis over time. This transforms the original non-
51 autonomous system into a superposition of piecewise local parametric systems over
52 each time intervals. We then design a neural network structure, which extends the idea
53 of ResNet learning for autonomous system ([19]) and parametric system ([18]), to the
54 local parametric system learning by using observation data. Once the local network
55 model is successfully trained and constructed, it can be iteratively used over discrete
56 time instances, much like the way standard numerical integrators are used, to provide
57 system predictions of different initial conditions and time-dependent external inputs,
58 provided that the new inputs can be properly parameterized by the local basis used
59 during system learning. In addition to the description of the algorithm, we also provide
60 theoretical estimate on the approximation error bound of the learned model. The
61 proposed method is applicable to very general non-autonomous systems, as it requires
62 only mild assumptions, such as Lipschitz continuity, on the original unknown system.
63 A set of numerical examples, including linear and nonlinear dynamical systems as
64 well as a partial differential equation (PDE), are provided. The numerical results
65 demonstrate that the proposed method can be quite flexible and effective. More
66 in-depth examination of the method shall follow in future studies.

67 2. Setup and Preliminary. Let us consider a general non-autonomous dynam-
68 ical system:

dt

1
—
d
x(t) = f(x, -y(t)),

(2.1)
x(0) = xo,

69 where x E Rd are state variables and -y(t) is a known time-dependent input. For
70 notational convenience, we shall write -y(t) as a scalar function throughout this paper.
71 The method and analysis discussed in this paper can easily be applied to vector-valued
72 time-dependent inputs in component-by-component manner.

73 2.1. Problem Statement. Our goal is to construct a numerical model of the
74 unknown dynamical system (2.1) using measurement data of the system state. We
75 assume that observations of the system state are available as a collection of trajectories
76 of varying length,

X(2) = {x (t;:)) ;-y(i)} , k = 1, . . . , K(i) , i = 1, • • . , NT , (2.2)

77 where NT is the number of trajectories, K(i) is the length of the i-th trajectory
78 measurement, and ry(i) is the corresponding external input process. In pract.ice, 'TM

79 may be known either analytically over t or discretely at the time instances { t(z)}. The

2

80 state variable data may contain measurement noises, which are usually modeled as
81 random variables. Note that each trajectory data may occupy a different span over
82 the time axis and be originated from different (and unknown) initial conditions.

Given the trajectory data (2.2), our goal is to construct a numerical model to
predict the dynamical behavior of the system (2.1). More specifically, for an arbitrary
initial condition xo and a given external input process -y(t), we seek a numerical model
that provides an accurate prediction X of the true state x such that such that

where

ic(ti; x(ti; 3C0111)) i= N,

0 = to < • • • < tN = T

83 is a sequence of time instances with a finite horizon T > O.

84 2.2. Learning Autonomous Systems. For autonomous systems, several data
85 driven learning methods have been developed. Here we briefly review the method
86 from [19], as it is related to our proposed method for non-autonomous sytem (2.1).
87 With the absence of y(t), the system (2.1) becomes autonomous and time variable
88 can be arbitrarily shifted. It defines a flow map : d I. d such that

x(s1) = (11.91-82 (3C(82))

89 for any 81, s2 > O. For any 6 > 0, we have

5
x(6) = x(0) + J f(x(s))ds = [Id + 11)(• , 6)] (x(0)),

0

where Id is identity matrix of size d x d, and for any z E

6
Ix., (5) [z] = ti)(z, 6) = f (<P, (z))ds

0

(2.3)

(2.4)

90 is the effective increment along the trajectory from z over the time lag 6. This suggests
91 that given sufficient data of x(0) and x(6), one can build an accurate approximation

/i) (z, (z, (5) . (2.5)

92 This in turn can be used in (2.4) iteratively to conduct system prediction. Except the
93 error in constructing the approximation for the effective increment in (2.5), there is
94 no temporal error explicitly associated with the time step 6 when system prediction
95 is conducted using the learned model ([19]).

96 2.3. Deep Neural Network. While the approximation (2.5) can be accom-
97 plished by a variety of approximation methods, e.g., polynomial regression, we focus
98 on using deep neural network (DNN), as DNN is more effective and flexible for high
99 dimensional problems. The DNN utilized here takes the form of standard feed-forward
loo neural network (FNN), which defines nonlinear map between input and output. More
101 specifically, let N : RTh be the operator associated with a FNN with L > 1
102 hidden layers. The relation between its input yin E Rm and output yout E Rn can be
103 written as

yout = N(yin; 6)
WL+1 ° (0-L WL) 0 • • . 0 (0-1 W1)(yin),

3

(2.6)

104 where Wi is weight matrix between the j-th layer and the (j +1)-th layer, (7 : R
105 is activation function, and o stands for composition operator. Following the standard
106 notation, we have augmented network biases into the weight matrices, and applied
107 the activation function in component-wise manner. We shall use O to represent all
108 the parameters associated with the network.
109 One particular variation of FNN is residual network (ResNet), which was first
no proposed in [6] for image analysis and has since seen wide applications in practice.
111 In ResNet, instead of direct mapping between the input and output as in (2.6), one
112 maps the residue between the output and input by the FNN. This is achieved by
113 introducing an identity operator into the network such that

yout + N(.; e)](yin) = yin N(yin; 6). (2.7)

114 ResNet is particularly useful for learning unknown dynamical systems ([19]). Upon
115 comparing (2.4) with (2.7), it is straightforward to see that the FNN operator N
116 becomes an approximation for the effective increment IP.

117 3. Method Description. In this section we present the detail of our method for
118 deep learning of non-autonomous systems (2.1). The key ingredients of the method
119 include: (1) parameterizing the external input -y(t) locally (in time); (2) decomposing
120 the dynamical system into a modified system comprising of a sequence of local systems;
121 and (3) deep learning of the local systems.

3.1. Local Parameterization. The analytical solution of the unknown system
(2.1) satisfies

x(t) = x0 + f(x(s),ry(s))ds.
0

122 Our learning method aims at providing accurate approximation to the true solution
123 at a prescribed set of discrete time instances,

where T > O. Let

0 = to < ti < • • • < tn < • • • < tN = T , (3.1)

(57) tn+1 tn, = 0, , N — 1,

124 be the time steps, the exact solution satisfies, for n = 0, , N — 1,

t,,,+1
x(tn+i) = x(tn) f f(x(s),-y(s))ds

t„

= x(tn) + f(x(tn r),-y(tn + 7))dr.
o

(3.2)

125 For each time interval [tn, tn+1], n = 0, , N —1, we first seek a local parameterization
126 for the external input function -y(t), in the following form,

nb

;in (7; rn) := E ,3•4bi (7) -y (tn + 7), r E [0, 8n], (3.3)
j=1

127 where { bi(r), j = 1, , nb} is a set of prescribed analytical basis functions and

rn
/n b)

E Rnb

4

(3.4)

128 are the basis coeffi [tn, cients parameterizing the local input -y(t) in t 1
129 Note that in many practical applications, the external input/control process -y(t)
130 is already prescribed in a parameterized form. In this case, the local parameterization
131 (3.3) becomes exact, i.e., -y(tn + 7-) = CT,n(T; rn,). In other applications when the
132 external input ry(t) is only known/measured at certain time instances, a numerical
133 procedure is required to create the parameterized form (3.3). This can be typically
134 accomplished via a numerical approximation method, for example, Taylor expansion,
135 polynomial interpolation, least squares regression etc.

136 3.2. Modified System. With the local parameterization (3.3) constructed for
137 each time interval it 1 we proceed to define a global parameterized input

138 where

N-1

5;(t; r) =
n=0

Tin (t tn; rn)ff[t.,,,t,,,±1](t); (3.5)

r = frn}nN—oi c RN nb (3.6)

139 is global parameter set for 5,-(t), and 11A is indicator function satisfying, for a set A,
140 RA (x) = 1 if x E A and 0 otherwise.
141 We now define a modified system, corresponding to the true (unknown) system
142 (2.1), as follows,

{d

dt
x(t) = (t;r)),

(3.7)
X(0) = xo,

143 where cji(t; r) is the globally parameterized input defined in (3.5). Note that when
144 the system input y(t) is already known or given in a parametric form, i.e. ;:y- (t) =
145 -y(t), the modified system (3.7) is equivalent to the original system (2.1). When
146 the parameterized process ,"="y (t) needs to be numerically constructed, the modified
147 system (3.7) becomes an approximation to the true system (2.1). The approximation
148 accuracy obviously depends on the accuracy in cj% (t) -y (t) . For the modified system,
149 the following results holds.
150 LEMMA 3.1. Consider system (3.7) over the discrete set of time instances (3.1).

151 There exists a function 0 : Rd x N nb X R —> Rd, which depends on f, such that for
152 any time interval [tn,tn+1], the solution of (3.7) satisfies

R(tn-F1) = X(tn) ii)(R(tn) ,r , 6.), n = 0, , N — 1, (3.8)

153 where 6-n = tn+1 and Fr, is the local parameter set (3.4) for the locally parame-
154 terized input ryn(t) (3.3).

Proof. Let Xn(t) denote x(t) in the time interval [tn, 4,41], i.e.,

N-1

X(t) = E Rn(t)li[t„,„+1](t).
n=0

With the global input y(t) defined in the piecewise manner in (3.5), the system (3.7)
can be written equivalently as, for each interval [tn, t 1 n = 0, , N — 1,

Id

dt
—xn(t) = f(in,itn(t tnirn)),

Xn(tn) = X(tn).

5

t E (tri l tn+1];

Let (I)n : (Rd x R) x R Rd be its (time dependent) flow map such that

155 We then have

iin(r) = 4"n((iin(s), s), r — s), tn < s < r < tn+1.

(tn + T) = 4.72 ((R(tn), 0), T), T E [0, 84 (3.9)

156 where the initial condition Rn(tn) = ic"(tn) has been used.
The solution of (3.7) from tn to tn+1 satisfies

ii(tn+i) = 5i(tn) + f f Ci-c(t) , (t;11)dt
tn
6„

= X(tn) + f f (iim(tn T), (T; rn))dT
0
6„

= ii(tn) + f f(lin((R(tn), 0),T),Yn(T; rn))dr,

where (3.5) and (3.9) have been applied. Let

ån

ii)(5i(tn), rn, := f (4)n ((34tn), 0), T), (T; rn))dr
o

157 and the proof is complete. 0

158 3.3. Learning of Modified Systems. The function cP in (3.8) governs the
159 evolution of the solution of the modified system (3.7) and is the target function for
160 our proposed deep learning method. Note that in each time interval [tn,tn±i] over
161 the prediction time domain (3.1), the solution at tn+1 is determined by its state at
162 tn, the local parameter set rn for the local input Yn , the step size S-n = tn+l tn

163 and obviously, the form of the original equation f. Our learning algorithm thus seeks
164 to establish and train a deep neural network with input x(tn), rn , 8n and output
165 X(tn+1). The internal feed-forward network connecting the input and output thus
166 serves as a model of the unknown dynamical system (2.1).

167 3.3.1. Training Data Set. To construct the training data set, we first re-
168 organize the original data set (2.2). Let us assume the length of each trajectory
169 data in (2.2) is at least 2, i.e., K(i) > 2, Vi. We then re-organize the data into pairs
170 of two adjacent time instances,

{x (t(:)) , x (t1(,2F1) ; 0,(01 , k = 1, . . . , K(i) — 1, i = 1, . . . , NT, (3.10)

171 where NT is the total number of data trajectories. Note that for each i = 1, , NT,
172 its trajectory is driven by a known external input ry(i), as shown in (2.2). We then

173 seek, for the time interval [t(:), el] with (5,(:) = t(k22F1 — t(k1), its local parameterized

174 form qi)(T; It)), where T e [0, 61:)] and It) is the parameter set for the local param-
175 eterization of the input, in the form of (3.3). Again, if the external input is already
176 known in an analytical parametric form, this step is trivial; if not this step usually
177 requires a standard regression/approximation procedure and is not discussed in detail
178 here for the brevity of the paper.

6

xin

N

Fig. 3.1: Illustration of the proposed neural network.

xout

179 For each data pair (3.10), we now have its associated time step and local

180 parameter set ekt) for the external input. The total number of such pairings is Ktot =
181 K(1) + K(2) + • • • K(NT) — NT . We then proceed to select J < Ktot number of such
182 pairings to construct the training data set for the neural network model. Upon re-
183 ordering using a single index, the training data set takes the following form

s = {(x(ki), x(41); eci), , J) (3.11)

184 where the superscript j denotes the j-th data entry, which belongs a certain i-th
185 trajectory in the original data pairings (3.10). The re-ordering can be readily enforced
186 to be one-on-one, with the trajectory information is implicitly embedded. Note that
187 one can naturally select all the data pairs in (3.10) into the training data set (3.11),
188 i.e., J = Ktot. In practice, one may also choose a selective subset of (3.10) to construct
189 the training set (3.11), i.e.. J < Ktot, depending on the property and quality of the
190 original data.

191 3.3.2. Network Structure and Training. With the training data set (3.11)
192 available, we proceed to define and train our neural network model. The network
193 model seeks to learn the one-step evolution of the modified system, in the form of
194 (3.8). Our proposed network model defines a mapping N : I d+nb +1 —> Rd, such that

Xout = Si(Xin; 9), xin E Rd+nb+1,)(out E Rd, (3.12)

195 where 9 are the network parameters that need to be trained. The network structure
196 is illustrated in Fig. 3.1. Inside the network, N : Rd+74+1- —> Rd denotes the operator
197 associated with a feed-forward neural network with (d + nb + 1) input nodes and d

198 output nodes. The input is multiplied with I and then re-introduced back before the
199 final output. The operator I E dx (d+n5 +1) is a matrix of size d x (d + nb + 1). It

7

200 takes the form

= 01, (3.13)

201 where id is identity matrix of size d x d and 0 is a zero matrix of size d x (nb + 1).
202 Therefore, the network effectively defines a mapping

)(nut = SI(Xin; 6) =[I + N(•; e)] (X.). (3.14)

203 Training of the network is accomplished by using the training data set (3.11). For
204 each of the j-th data entry, j = 1, . . . , J , we set

X(n) [3c(k3); ek3);(57?)] E Rd+nb+1. (3.15)

205 The network training is then conducted by minimizing the mean squared loss between

206 the network output X0(3at and the data x(3)
1,

i.e.,
k+

e* = argmin
8

J=1

N(X,(jan); C)) — x;,32F1
2

(3.16)

207 3.3.3. Learned Model and System Prediction. Upon satisfactory training
208 of the network parameter using (3.16), we obtain a trained network model for the
209 unknown modified system (3.7)

Xout = ST(Xin; e*) = + N(.; e*)](Xzn), (3.17)

210 where i is defined in (3.13) and N is the operator of the FNN, as illustrated in the
211 previous section and in Fig. 3.1.

For system prediction with a given external input function 7(0, which is usually
not in the training data set, let us consider the time instances (3.1). Let

Xin = [x(tn); rn; (51,i]

212

Ln, -n+,
be a concatenated vector consisting of the state variable at tn, the parameter vector for

213 the local parameterization of the external input between f t ,1 7 and fi-n = tn-F1—tn•
214 Then, the trained model produces a one-step evolution of the solution

X(tn+i) = x(tn) + N(x(tn), rn , (5n; Cr)• (3.18)

215 Upon applying (3.18) recursively, we obtain a network model for predicting the
216 system states of the unknown non-autonomous system (2.1). For a given initial con-
217 dition xo and external input 1/ (t),

5Z(to) = x0,{

ic(tn+i) = R(tn) + N(R(tn), rn, (5n; ®*), (3.19)

tn+1 — tn + ånl n = 0, ... , N — 1,

218 where rn are the parameters in the local parameterization of -y (t) in the time interval
[tn, tn-F1] •219 It is obvious that the network predicting model (3.18) is an approximation

220 to the one-step evolution (3.8) of the modified system (3.7), which in turn is an
221 approximation of the original unknown dynamical system (2.1). Therefore, (3.19)
222 generates an approximation to the solution of the unknown system (2.1) at the discrete
223 time instances {tn } (3.1).

8

224 3.4. Theoretical Properties. We now present certain theoretical analysis for
225 the proposed learning algorithm. The following result provides a bound between the
226 solution of the modified system (3.7) and the original system (2.1). The difference
227 between the two systems is due to the use of the parameterized external input ;5," (t)
228 (3.5) in the modified system (3.7), as opposed to the original external input -y(t) in the
229 original system (2.1). Again, we emphasize that in many practical situations when
230 the external input is already known in a parametric form, the modified system (3.7)
231 is equivalent to the original system (2.1).

PROPOSITION 3.2. Consider the original system (2.1) with input 7(t) and the
modified system (3.7) with input ;="y(t) (3.5), and assume the function f(x,ry) is Lip-
schitz continuous with respect to both x and 1,, with Lipschitz constants L1 and L2,
respectively. If the difference in the inputs is bounded by

232

233

117 (t) (OM Go JD

where T > 0 is a finite time horizon. Then,

lx(t) — x(t) L2 n t eL1t, Vt E [0, 7].

Proof. For any t E [0, T],

x(t) = x(0) + f f(x(s),-y(s)) ds,

x(t) = x(0) + f f(X(s), (s)) ds.
0

We then have

x(t) — x(t)1 f (x(s), (8)) — f (R(8) ,;i(8))1ds
0

t• If (x(s), (s)) — f(x(s), 'r(s)) I ds + fo (x(s),'Y(s)) — f(ii(s), •---Y(s))1 ds
t t

• L2 fo 17(8) ;--Y(8)1 ds + f 0 lx(s) — (s)l ds

t
• L2 ti t + f lx(s) — R(s)l ds•

0

By using Gronwall's inequality, we obtain

lx(t) — x(t) 1 < L2 rl t eL1t.

0
We now recall the celebrated universal approximation property of neural networks.
PROPOSITION 3.3 ([15]). For any function F E C (Rn) and a positive real number

E > 0, there exists a single-hidden-layer neural network Al(• ; e) with parameter e such
that

mED
ax 1F(y) — N(y ; 6)1 <

y

234 for any compact set D E RI', if and only if the activation functions are continuous
235 and are not polynomials.

9

236 Relying on this result, we assume the trained neural network model (3.17) has
237 sufficient accuracy, which is equivalent to assuming accuracy in the trained FNN
238 operator N of (3.18) to the one-step evolution operator c/) in (3.8). More specifically,
239 let D be the convex hull of the training data set S, defined (3.11). We then assume

N('; e*) — 21)(*) 1L—(D) < e'
(3.20)

240 where E > 0 is a sufficiently small real number.
241 PROPOSITION 3.4. Consider the modified system (3.8) and the trained network
242 model (3.19) over the time instances (3.1). Assume the exact evolution operator (3.8)
243 is Lipschitz continuous with respect to x, with Lipschitz constant Lo. If the network
244 training is sufficiently accurate such that (3.20) holds, then

245

1 — LTh
llic(tn) — R(tn)11 c6E,1 — Lo

n = 0, . . . , N . (3.21)

Proof. Let 4) = i + ii,, where i is defined in (3.13), we can rewrite the one-step
evolution (3.8) as

ii(tn+i) = [4,(•, Fn, Sn)](5c(tn)),

Meanwhile, the learned model (3.19) satisfies, by using (3.17),

5i(tn+i) = [&(*; e*)i(lc(tn)).

Let en = Ilic(tn) —5e(tn) ll, we then have

[Ñ('; e*MR(tn-1)) — [41(',rn-1,(5n-1)i(R(tn-1))11

< 1 [Ñ(.; e*) — .1)(., rn_i, 8n-1)](R(tn-1))11 +

II [4)(5c(tn-1), rn_1, 8n-0] — [(5c(tn_1) rn_1, 8n—i)] II

< E + Lo 1*(tn-1) — R(tn-1)11

This gives

en =

en < £ + Loen-1.

246 Repeated use of this relation and with e0 = 0 immediately gives the conclusion. 0
247 Note that the assumption of Lipschitz continuity on the evolution operator in (3.8)
248 is equivalent to assuming Lipschitz continuity on the right-hand-side of the original
249 system (2.1). This is a very mild condition, commonly assumed for the well-posedness
250 of the original problem (2.1).
251 Upon combining the results from above and using triangular inequality, we im-
252 mediately obtain the following.
253 THEOREM 3.5. Under the assumptions of Proposition 3.2 and 3.4, the solution
254 of the trained network model (3.19) and the true solution of the original system (2.1)
255 over the time instances satisfies (3.1) satisfy

1 — Ln
11R(tn)

95 E, n = 0, ... , N. (3.22)— x(tn)11 L2 ntn eLlt- +
1 — Lo

10

256

257 REMARK 3.1. It is worth noting that the DNN structure employed here is to
258 accomplish the approximation (3.20). Such an approximation can be conducted by any
259 other proper approximation techniques using, for example, (orthogonal) polynomials,
260 Gaussian _process, radial basis, etc. The target function is the one-step evolution
261 operator 0 in (3.8). Since for many problems of practical interest, 0 :Rd+nb+1 —> Rd
262 often resides in high dimensions and is highly nonlinear, DNN represents a more
263 flexible and practical choice and is the focus of this paper.

264 4. Numerical Examples. In this section, we present numerical examples to
265 verify the properties of the proposed methods. Since our purpose is to validate the
266 proposed deep learning method, we employ synthetic data generated from known dy-
267 namical systems with known time-dependent inputs. The training data are generated
268 by solving the known system with high resolution numerical scheme, e.g., 4th-order
269 Runge Kutta with sufficiently small time steps. Our proposed learning method is then
270 applied to the training data set. Once the learned model is constructed, we conduct
271 system prediction using the model with new initial conditions and new external in-
272 puts. The prediction results are then compared with the reference solution obtained
273 by solving the exact system with the same new inputs. Also, to clearly examine the
274 numerical errors, we only present the tests where the training data do not contain
275 noises.
276 In all the examples, we generate the training data set (2.2) with K(i) 2, Vi,
277 i.e., each trajectory only contains two data points. For each of the i-th entry in the
278 data set, the first data entry is randomly sampled from a domain IX using uniform
279 distribution. The second data entry is produced by solving the underlying reference
280 dynamical system with a time step (5(1) E Io = [0.05, 0.15] and subject to a param-
281 eterized external input in the form of (3.3), whose parameters (3.4) are uniformly
282 sampled from a domain Ir. The sampling domains Ix and Ir are problem specific
283 and listed separately for each example.
284 The DNNs in all the examples use activation function a(x) = tanh(x) and are
285 trained by minimizing the mean squared loss function in (3.16). The network training
286 is conducted by using Adam algorithm [8] with the open-source Tensorflow library [1].
287 Upon satisfactory training, the learned models are used to conduct system prediction,
288 in the form of (3.19), with a constant step size 6,2= 0.1.

289 4.1. Linear Scalar Equation with Source. Let us first consider the following
290 scalar equation

—
dx
= —a(t)x +

dt
(4.1)

291 where the time-dependent inputs a(t) and NO are locally parameterized with polyno-
292 mials of degree 2, resulting the local parameter set (3.4) rri E Rnb with nb = 3+3 = 6.
293 We build a neural network model consisting of 3 hidden layers with 80 nodes per layer.
294 The model is trained with 20, 000 data trajectories randomly sampled, with uniform
295 distribution, in the state variable domain/. = [-2, 2] and the local parameter domain
296 Ir = [-5, 5]6. After the network model is trained, we use it to conduct system pre-
297 diction. In Fig. 4.1, the prediction result with a new initial condition xo = 2 and new
298 external inputs a(t) = sin(4t) 1 and O(t) = cos(t2 11000) is shown, for time up to
299 T = 100. The reference solution is also shown for comparison. It can be seen that the
300 network model produces accurate prediction for this relatively long-term integration.

11

2.0 -

1 . 5 -

1.0 -

0.5 -
><

0.0 -

— 0 . 5 -

—1.0 -

0

11111111111111111

— reference

- - - NN

1 1

1

1

1.1

II

20 40

t

60 80 100

Fig. 4.1: DNN model prediction of (4.1) with external inputs a(t) = sin(4t) + 1 and
= cos(t2/1000) and an initial condition xo = 2. Comparison of long-term neural

network model prediction (labelled "NN") with the reference solution.

301 For this relatively simple and low-dimensional system, its learning can be effec-
302 tively conducted by other standard approximation method, as discussed in Remark
303 3.1. With the same quadratic polynomial for local parameterization as in the DNN
304 modeling, which results in I-, c [-5, 5]6, we employ tensor Legendre orthogonal
305 polynomials in total degree space, which is a standard multi-dimensional approxima-
306 tion technique, for the approximation of the one-step evolution operator in (3.8). In
307 Fig. 4.2, the prediction results by the polynomial learning model are shown, for a
308 case with external inputs a(t) = sin(t/10) + 1 and Mt) = cos(t). In Fig. 4.2(a), the
309 prediction result obtained by 2nd-degree polynomial learning model is shown. We
310 observe good agreement with the reference solution. In Fig. 4.2(b), the numerical
311 errors at T = 100 are shown for the polynomial learning model with varying degrees.
312 We observe that the errors decay exponentially fast when the degree of polynomial is
313 increased. Such kind of exponential error convergence is expected for approximation
314 of smooth problems, such as this example.

12

2.0

1.5

1.0

x 0.5

0.0

—0.5

—1.0

20 40
t

60

(a) System prediction.

10-1

10-2

io-3

E.
r=1 io-4

io-5

10—e

80 100 2 3 4
Degree

(b) Errors vs. polynomial degree.

Fig. 4.2: Polynomial learning model for (4.1) with a(t) = sin(t/10) + 1 and O(t) =
cos(t). (a) Comparison of the model prediction with reference solution. (b) Relative
error in prediction at T = 100 for increasing polynomial degree in the polynomial
learning model. In all models piecewise quadratic polynomials are used for local
parameterization.

315 4.2. Predator-prey Model with Control. We now consider the following
316 Lotka-Volterra Predator-Prey model with a time-dependent input u(t):

dx1
 =
dt

xi — xix2 + u(t),

dx2

dt
= x2 + xix2.

(4.2)

317 The local parameterization for the external input is conducted using quadratic
318 polynomials, resulting in Fr, E R3. More specifically, we set Ir = [0, 5]3 and the
319 state variable space 1-„ = [0, 5] 2 . The DNN learning model consists of 3 hidden layers,
320 each of which with 80 nodes. The network training is conducted using 20, 000 data
321 trajectories randomly sampled fromI„ x Ir. In Fig. 4.3a, we plot its prediction result
322 for a case with u(t) = sin(t/3) + cos(t) + 2, for time up to T = 100, along with the
323 reference solution. It can be seen that the DNN model prediction agrees very well
324 with the reference solution. The numerical error fluctuates at the level of 0(10-3),
325 for this relatively long-term prediction.

326 4.3. Forced Oscillator. We now consider a forced oscillator

dx1

dt
dx2

dt

= X2 ,

= v(t) xi — k x2 + f (t),
(4.3)

327 where the damping term v(t) and the forcing f (t) are time-dependent processes. Lo-
328 cal parameterization for the inputs is conducted using quadratic polynomials. More
329 specifically, the training data are generated randomly by sampling from state vari-
330 able space Ix = [-3, 3]2 and local parameterization space Ir = [-3, 3]6. Similar
331 to other examples, the DNN contains 3 hidden layers with 80 nodes in each hidden

13

>i'

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

0.5 -
A\A\A\A\

H reference]

A J
20 40 60

t

80

(a) System prediction of xi.

100 o 20 40 60

t

80

(b) Error in prediction for xi

100

Fig. 4.3: DNN learning model for (4.2). Comparison of its prediction result for x1
with u(t) = sin(t/3) + cos(t) + 2 against reference solution. Results for x2 are very
similar and not shown.

332 layer. System prediction using the trained network model is shown in Fig. 4.4, for
333 rather arbitrarily chosen external inputs v(t) = cos(t) and f (t) = t/50. Once again,
334 we observe very good agreement with the reference solution for relatively long-term

simulation up to T = 100.

335

4 — reference
-- NN $

$
1.5

1.0

3 0.5

0.0

X 2
' —0.5

—1.0

1

0
,AAAIII —1.5

—2.0

20 40 60

t

(a) xi (t)

80 100 20 40 60

t

(b) x2 (t)

80 100

Fig. 4.4: DNN model prediction of (4.3) with inputs v(t) = cos(t) and f (t) = t/50.

336 4.4. PDE: Heat Equation with Source. We now consider a partial differen-
337 tial equation (PDE). In particular, the following heat equation with a source term,

ut = uxx + q(t, x), x E [0, 1],

U(0, x) = u0(x),

u(t, 0) = u(t, 1) = 0,
14

(4.4)

where q(t, x) is the source term varying in both space and time. We set the source
term to be

q(t, x) = a(t)e (~a2 ,

338 where a(t) is its time varying amplitude and parameter µ and o- determine its the
339 spatial profile.

The learning of (4.4) is conducted in a discrete space. Specifically, we employ
n = 22 equally distributed grid points in the domain [0, 1],

Let

= j1(n — 1), j =1,...,n.

u(t) = [u(t , x2), • • • , u(t xn-1)]t

340 we then seek to construct a DNN model to discover the dynamical behavior of the
341 solution vector u(t). Note that the boundary values u(xi) = u(xn) = 0 are fixed in
342 the problem setting and to be included in the learning model.
343 Upon transferring the learning of the PDE (4.4) into learning of a finite dimen-
344 sional dynamical system of u E 1Rd, where d = n — 2 = 20, the DNN learning method
345 discussed in this paper can be readily applied. Training data are synthetic data gen-
346 erated by solving the system (4.4) numerically. In particular, we employ second-order
347 central difference scheme using the same grid points {x3}. The trajectory data are gen-
348 erated by randomly sample u c r:2° in a specific domain I„ = [0, 2]20. Quadratic poly-
349 nomial interpolation is used in local parameterization of the time dependent source
350 term, resulting in 3-dimensional local representation for the time dependent coeffi-
351 cient a(t). Random sampling in domain Ia = [-2, 2]3, Iµ = [0, 3], I, = [0.05, 0.5] is
352 then used to generate the synthetic training data set, for the parameters a, p, and a,
353 respectively.
354 The DNN network model thus consists of a total of 25 inputs. Because of curse-
355 of-dimensionality, constructing accurate approximation in 25 dimensional space is
356 computational expensive via traditional methods such as polynomials, radial basis,
357 etc. For DNN, however, 25 dimension is considered low and accurate network model
358 can be readily trained. Here we employ a DNN with 3 hidden layers, each of which
359 with 80 nodes. Upon successful training of the DNN model, we conduct system
360 prediction for a new source term (not in training data set), where a(t) = t — [t _I is a
361 saw-tooth discontinuous function, p, = 1, and o- = 0.5.
362 The system prediction results are shown in Fig. 4.5, along with the reference
363 solution solved from the underlying PDE. We observe excellent agreement between
364 the DNN model prediction to the reference solution. It is worth noting that the DNN
365 model, once trained, can be readily used to predict system behavior for other time
366 dependent inputs.

367 5. Conclusion. In this paper we presented a numerical approach for learning
368 unknown non-autonomous dynamical systems using observations of system states.
369 To circumvent the difficulty posed by the non-autonomous nature of the system,
370 the system states are expressed as piecewise integrations over time. The piecewise
371 integrals are then transformed into parametric form, upon a local parameterization
372 procedure of the external time-dependent inputs. We then designed deep neural
373 network (DNN) structure to model the parametric piecewise integrals. Upon using

15

0.12

0.10

0.08

0.06

0.04

0.02

— reference
• NN

0 1 2 3 4 5 6 7 8

(a) Solution evolution at x = 0.5

0 2 0 4 0.6

X

0.8 0

le-2

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

o:o

7

6

5

4

3

2

1

0
0 0

0.2 0.4 0.6
X

0:8

(b) Solution profile at t = 2

0 2 0.4

X

0.6 0.8

i:o

0

(c) Reference solution contours over time (d) DNN prediction contours over time

Fig. 4.5: System prediction of (4.4) with (1(0 = t — [t], µ= 1, and a = 0.5. Com-
parison between the predictions by the DNN model and the reference solution.

374 sufficient training data to train the DNN model, it can be used recursively over time
375 to conduct system prediction for other external inputs. Various numerical examples
376 in the paper suggest the methodology holds promise to more complex applications.

16

377 REFERENCES

378 [1] M. ABADI, A. AGARWAL, P. BARHAM, E. BREVDO, Z. CHEN, C. CITRO, G. S. CORRADO,
379 A. DAVIS, J. DEAN, M. DEVIN, S. GHEMAWAT, I. GOODFELLOW, A. HARP, G. IRVING,
380 M. ISARD, Y. JIA, R. JOZEFOWICZ, L. KAISER, M. KUDLUR, J. LEVENBERG, D. MANE.,
381 R. MONGA, S. MOORE, D. MURRAY, C. OLAH, M. SCHUSTER, J. SHLENS, B. STEINER,
382 I. SUTSKEVER, K. TALWAR, P. TUCKER, V. VANHOUCKE, V. VASUDEVAN, F. VIgGAS,
383 O. VINYALS, P. WARDEN, M. WATTENBERG, M. WICKE, Y. YU, AND X. ZHENG, Ten-
384 sorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.
385 tensorflow.org/. Software available from tensorflow.org.
386 [2] S. L. BRUNTON, J. L. PROCTOR, AND J. N. KUTZ, Discovering governing equations from data
387 by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. U.S.A., 113
388 (2016), pp. 3932-3937.
389 [3] S. L. BRUNTON, J. L. PROCTOR, AND J. N. KUTZ, Sparse identification of nonlinear dynamics
390 with control (sindyc), IFAC-PapersOnLine, 49 (2016), pp. 710-715.
391 [4] Z. CHEN AND D. XIU, On generalized residue network for deep learning of unknown dynamical
392 systems, arXiv preprint arXiv:2002.02528, (2020).
393 [5] N. GALIOTO AND A. A. GORODETSKY, Bayesian system id: optimal management of param-
394 eter, model, and measurement uncertainty, (2020), https://arxiv.org/abs/2003.02359.
395 Submitted.
396 [6] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recognition, in
397 Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
398 pp. 770-778.
399 [7] I. G. KEVREKIDIS, C. W. GEAR, J. M. HYMAN, P. G. KEVREKIDID, O. RUNBORG, C. THEODOR-
400 OPOULOS, ET AL., Equation-free, coarse-grained multiscale computation: Enabling mocro-
401 scopic simulators to perform system-level analysis, Commun. Math. Sci., 1 (2003), pp. 715-
402 762.
403 [8] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, arXiv preprint
404 arXiv:1412.6980, (2014).
aos [9] Z. LONG, Y. Lu, AND B. DONG, Pde-net 2.0: Learning pdes from data with a numeric-symbolic
406 hybrid deep network, Journal of Computational Physics, 399 (2019), p. 108925.
407 [10] Z. LONG, Y. Lu, X. MA, AND B. DONG, PDE-net: learning PDEs from data, in Proceedings of
408 the 35th International Conference on Machine Learning, J. Dy and A. Krause, eds., vol. 80
409 of Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm Sweden, 10-
410 15 Jul 2018, PMLR, pp. 3208-3216.
411 [11] N. M. MANGAN, J. N. KUTZ, S. L. BRUNTON, AND J. L. PROCTOR, Model selection for dy-
412 namical systems via sparse regression and information criteria, Proceedings of the Royal
413 Society of London A: Mathematical, Physical and Engineering Sciences, 473 (2017).
414 [12] I. MEZIÓ, Spectral properties of dynamical systems, model reduction and decompositions, Non-
415 linear Dynamics, 41 (2005), pp. 309-325.
416 [13] I. MEZIÓ, Analysis of fluid flows via spectral properties of the koopman operator, Annual Review
417 of Fluid Mechanics, 45 (2013), pp. 357-378.
418 [14] B. PEHERSTORFER AND K. WILLCOX, Data-driven operator inference for nonintrusive
419 projection-based model reduction, Computer Methods in Applied Mechanics and Engineer-
420 ing, 306 (2016), pp. 196-215.
421 [15] A. PINKUS, Approximation theory of the MLP model in neural networks, Acta Numerica, 8
422 (1999), pp. 143-195.
423 [16] J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ, Dynamic mode decomposition with control,
424 SIAM Journal on Applied Dynamical Systems, 15 (2016), pp. 142-161.
425 [17] J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ, Generalizing koopman theory to allow for
426 inputs and control, SIAM Journal on Applied Dynamical Systems, 17 (2018), pp. 909-930.
427 [18] T. QIN, Z. CHEN, J. JAKEMAN, AND D. XIU, A neural network approach for uncertainty
428 quantification for time-dependent problems with random parameters, arXiv preprint
429 arXiv:1910.07096, (2019).
430 [19] T. QIN, K. Wu, AND D. XIU, Data driven governing equations approximation using deep neural
431 networks, Journal of Computational Physics, 395 (2019), pp. 620-635.
432 [20] M. RAISSI, Deep hidden physics models: Deep learning of nonlinear partial differential equa-
433 tions, The Journal of Machine Learning Research, 19 (2018), pp. 932-955.
434 [21] M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, Machine learning of linear differential
435 equations using gaussian processes, Journal of Computational Physics, 348 (2017), pp. 683-
436 693.
437 [22] M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, Multistep neural networks for data-driven

17

438 discovery of nonlinear dynamical systems, arXiv preprint arXiv:1801.01236, (2018).
439 [23] R. RICO-MARTINEZ AND I. G. KEVREKIDIS, Continuous time modeling of nonlinear systems:
440 A neural network-based approach, in IEEE International Conference on Neural Networks,
441 IEEE, 1993, pp. 1522-1525.
442 [24] S. H. RUDY, J. N. KUTZ, AND S. L. BRUNTON, Deep learning of dynamics and signal-noise de-
443 composition with time-stepping constraints, Journal of Computational Physics, 396 (2019),
444 pp. 483-506.
445 [25] P. J. SCHMID, Dynamic mode decomposition of numerical and experimental data, Journal of
446 fluid mechanics, 656 (2010), pp. 5-28.
447 [26] C. THEODOROPOULOS, Y.-H. QIAN, AND I. G. KEVREKIDIS, "coarse" stability and bifurcation
448 analysis using time-steppers: A reaction-diffusion example, Proceedings of the National
449 Academy of Sciences, 97 (2000), pp. 9840-9843.
450 [27] K. Wu, T. QIN, AND D. XIIT, Structure-preserving method for reconstructing unknown hamil-
451 tonian systems from trajectory data, arXiv preprint arXiv:1905.10396, (2019).
452 [28] K. Wu AND D. Xiu, Numerical aspects for approximating governing equations using data,
453 Journal of Computational Physics, 384 (2019), pp. 200-221.
454 [29] K. Wu AND D. Xiu, Data-driven deep learning of partial differential equations in modal space,
455 Journal of Computational Physics, 408 (2020), p. 109307.

18

