

1 **DATA-DRIVEN LEARNING OF NON-AUTONOMOUS SYSTEMS**2 TONG QIN*, ZHEN CHEN*, JOHN D. JAKEMAN[†], AND DONGBIN XIU*

3 **Abstract.** We present a numerical framework for recovering unknown non-autonomous dy-
 4 namical systems with time-dependent inputs. To circumvent the difficulty presented by the non-
 5 autonomous nature of the system, our method transforms the solution state into piecewise integra-
 6 tion of the system over a discrete set of time instances. The time-dependent inputs are then locally
 7 parameterized by using a proper model, for example, polynomial regression, in the pieces determined
 8 by the time instances. This transforms the original system into a piecewise parametric system that
 9 is locally time invariant. We then design a deep neural network structure to learn the local models.
 10 Once the network model is constructed, it can be iteratively used over time to conduct global system
 11 prediction. We provide theoretical analysis of our algorithm and present a number of numerical
 12 examples to demonstrate the effectiveness of the method.

13 **Key words.** Deep neural network, residual network, non-autonomous systems

14 **1. Introduction.** There has been growing research interests in designing ma-
 15 chine learning methods to learn unknown physical models from observation data.
 16 The fast development of modern machine learning algorithms and availability of vast
 17 amount of data have further promoted this line of research. A number of numeri-
 18 cal methods have been developed to learn dynamical systems. These include sparse
 19 identification of nonlinear dynamical systems (SINDy) [2], operator inference [14],
 20 model selection approach [11], polynomial expansions [28, 27], equation-free multi-
 21 scale methods [7, 26], Gaussian process regression [21], and deep neural networks
 22 [23, 20, 22, 10, 9, 24]. Most of these methods treat the unknown governing equations
 23 as functions mapping state variables to their time derivatives. Although effective in
 24 many cases, the requirement for time derivatives poses a challenge when these data
 25 are not directly available, as numerical approximation of derivatives can be highly
 26 sensitive to noises.

27 Learning methods that do not require time derivatives have also been developed,
 28 in conjunction with, for example, dynamic mode decomposition (DMD) [25], Koop-
 29 man operator theory [12, 13], hidden Markov models [5], and more recently, deep
 30 neural network (DNN) [19]. The work of [19] also established a newer framework,
 31 which, instead of directly approximating the underlying governing equations like in
 32 most other methods, seeks to approximate the flow map of the unknown system. The
 33 approach produces exact time integrators for system prediction and is particularly
 34 suitable with residual network (ResNet) ([6]). The approach was recently extended
 35 to learning dynamical systems with uncertainty [18], reduced system [?], model cor-
 36 rection [4], and partial differential equations (PDEs) [29].

37 Most of the aforementioned methods are applicable only to autonomous dynam-
 38 ical systems, whose time invariant property is a key in the mathematical formulation

*Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
 (qin.428@osu.edu, chen.7168@osu.edu, xiu.16@osu.edu). Funding: This work was partially sup-
 ported by AFOSR FA9550-18-1-0102.

[†]Optimization and Uncertainty Quantification Department, Sandia National Laboratory, Al-
 buquerque, NM, 87123 USA (jdjakem@sandia.gov). Sandia National Laboratories is a multi-mission
 laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
 LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of En-
 ergy's National Nuclear Security Administration under contract DE-NA-0003525. The views ex-
 pressed in the article do not necessarily represent the views of the U.S. Department of Energy or the
 United States Government.

39 of the methods. For non-autonomous systems with time-dependent inputs, the solution
 40 states depend on the entire history of the system states. This renders most of
 41 the existing methods non-applicable. A few approaches have been explored for non-
 42 autonomous systems in the context of system control [16, 3, 17]. They are, however,
 43 not applicable for general non-autonomous system learning.

44 The focus of this paper is on data driven learning method for non-autonomous
 45 systems. In particular, we present a novel numerical approach suitable for learning
 46 general non-autonomous systems with time-dependent inputs. The key ingredient
 47 of the method is in the decomposition of the system learning into piecewise local
 48 learnings of over a set of discrete time instances. Inside each of the time intervals
 49 defined by the discrete time instances, we seek to locally parameterize the external
 50 time-dependent inputs using a local basis over time. This transforms the original non-
 51 autonomous system into a superposition of piecewise local parametric systems over
 52 each time intervals. We then design a neural network structure, which extends the idea
 53 of ResNet learning for autonomous system ([19]) and parametric system ([18]), to the
 54 local parametric system learning by using observation data. Once the local network
 55 model is successfully trained and constructed, it can be iteratively used over discrete
 56 time instances, much like the way standard numerical integrators are used, to provide
 57 system predictions of different initial conditions and time-dependent external inputs,
 58 provided that the new inputs can be properly parameterized by the local basis used
 59 during system learning. In addition to the description of the algorithm, we also provide
 60 theoretical estimate on the approximation error bound of the learned model. The
 61 proposed method is applicable to very general non-autonomous systems, as it requires
 62 only mild assumptions, such as Lipschitz continuity, on the original unknown system.
 63 A set of numerical examples, including linear and nonlinear dynamical systems as
 64 well as a partial differential equation (PDE), are provided. The numerical results
 65 demonstrate that the proposed method can be quite flexible and effective. More
 66 in-depth examination of the method shall follow in future studies.

67 **2. Setup and Preliminary.** Let us consider a general non-autonomous dynamical
 68 system:

$$\begin{cases} \frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(\mathbf{x}, \gamma(t)), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases} \quad (2.1)$$

69 where $\mathbf{x} \in \mathbb{R}^d$ are state variables and $\gamma(t)$ is a known time-dependent input. For
 70 notational convenience, we shall write $\gamma(t)$ as a scalar function throughout this paper.
 71 The method and analysis discussed in this paper can easily be applied to vector-valued
 72 time-dependent inputs in component-by-component manner.

73 **2.1. Problem Statement.** Our goal is to construct a numerical model of the
 74 unknown dynamical system (2.1) using measurement data of the system state. We
 75 assume that observations of the system state are available as a collection of trajectories
 76 of varying length,

$$\mathbf{X}^{(i)} = \left\{ \mathbf{x}\left(t_k^{(i)}\right); \gamma^{(i)} \right\}, \quad k = 1, \dots, K^{(i)}, \quad i = 1, \dots, N_T, \quad (2.2)$$

77 where N_T is the number of trajectories, $K^{(i)}$ is the length of the i -th trajectory
 78 measurement, and $\gamma^{(i)}$ is the corresponding external input process. In practice, $\gamma^{(i)}$
 79 may be known either analytically over t or discretely at the time instances $\{t_k^{(i)}\}$. The

80 state variable data may contain measurement noises, which are usually modeled as
 81 random variables. Note that each trajectory data may occupy a different span over
 82 the time axis and be originated from different (and unknown) initial conditions.

Given the trajectory data (2.2), our goal is to construct a numerical model to predict the dynamical behavior of the system (2.1). More specifically, for an arbitrary initial condition \mathbf{x}_0 and a given external input process $\gamma(t)$, we seek a numerical model that provides an accurate prediction $\hat{\mathbf{x}}$ of the true state \mathbf{x} such that such that

$$\hat{\mathbf{x}}(t_i; \mathbf{x}_0, \gamma) \approx \mathbf{x}(t_i; \mathbf{x}_0, \gamma), \quad i = 1, \dots, N,$$

where

$$0 = t_0 < \dots < t_N = T$$

83 is a sequence of time instances with a finite horizon $T > 0$.

84 **2.2. Learning Autonomous Systems.** For autonomous systems, several data
 85 driven learning methods have been developed. Here we briefly review the method
 86 from [19], as it is related to our proposed method for non-autonomous system (2.1).

87 With the absence of $\gamma(t)$, the system (2.1) becomes autonomous and time variable
 88 can be arbitrarily shifted. It defines a flow map $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that

$$\mathbf{x}(s_1) = \Phi_{s_1 - s_2}(\mathbf{x}(s_2)), \quad (2.3)$$

89 for any $s_1, s_2 \geq 0$. For any $\delta > 0$, we have

$$\mathbf{x}(\delta) = \mathbf{x}(0) + \int_0^\delta \mathbf{f}(\mathbf{x}(s))ds = [\mathbf{I}_d + \psi(\cdot, \delta)](\mathbf{x}(0)), \quad (2.4)$$

where \mathbf{I}_d is identity matrix of size $d \times d$, and for any $\mathbf{z} \in \mathbb{R}^d$,

$$\psi(\cdot, \delta)[\mathbf{z}] = \psi(\mathbf{z}, \delta) = \int_0^\delta \mathbf{f}(\Phi_s(\mathbf{z}))ds$$

90 is the effective increment along the trajectory from \mathbf{z} over the time lag δ . This suggests
 91 that given sufficient data of $\mathbf{x}(0)$ and $\mathbf{x}(\delta)$, one can build an accurate approximation

$$\hat{\psi}(\mathbf{z}, \delta) \approx \psi(\mathbf{z}, \delta). \quad (2.5)$$

92 This in turn can be used in (2.4) iteratively to conduct system prediction. Except the
 93 error in constructing the approximation for the effective increment in (2.5), there is
 94 no temporal error explicitly associated with the time step δ when system prediction
 95 is conducted using the learned model ([19]).

96 **2.3. Deep Neural Network.** While the approximation (2.5) can be accom-
 97 plished by a variety of approximation methods, e.g., polynomial regression, we focus
 98 on using deep neural network (DNN), as DNN is more effective and flexible for high
 99 dimensional problems. The DNN utilized here takes the form of standard feed-forward
 100 neural network (FNN), which defines nonlinear map between input and output. More
 101 specifically, let $\mathbf{N} : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be the operator associated with a FNN with $L \geq 1$
 102 hidden layers. The relation between its input $\mathbf{y}^{in} \in \mathbb{R}^m$ and output $\mathbf{y}^{out} \in \mathbb{R}^n$ can be
 103 written as

$$\mathbf{y}^{out} = \mathbf{N}(\mathbf{y}^{in}; \Theta) = \mathbf{W}_{L+1} \circ (\sigma_L \circ \mathbf{W}_L) \circ \dots \circ (\sigma_1 \circ \mathbf{W}_1)(\mathbf{y}^{in}), \quad (2.6)$$

104 where \mathbf{W}_j is weight matrix between the j -th layer and the $(j+1)$ -th layer, $\sigma_j : \mathbb{R} \rightarrow \mathbb{R}$
 105 is activation function, and \circ stands for composition operator. Following the standard
 106 notation, we have augmented network biases into the weight matrices, and applied
 107 the activation function in component-wise manner. We shall use Θ to represent all
 108 the parameters associated with the network.

109 One particular variation of FNN is residual network (ResNet), which was first
 110 proposed in [6] for image analysis and has since seen wide applications in practice.
 111 In ResNet, instead of direct mapping between the input and output as in (2.6), one
 112 maps the residue between the output and input by the FNN. This is achieved by
 113 introducing an identity operator into the network such that

$$\mathbf{y}^{out} = [\mathbf{I} + \mathbf{N}(\cdot; \Theta)](\mathbf{y}^{in}) = \mathbf{y}^{in} + \mathbf{N}(\mathbf{y}^{in}; \Theta). \quad (2.7)$$

114 ResNet is particularly useful for learning unknown dynamical systems ([19]). Upon
 115 comparing (2.4) with (2.7), it is straightforward to see that the FNN operator \mathbf{N}
 116 becomes an approximation for the effective increment ψ .

117 **3. Method Description.** In this section we present the detail of our method for
 118 deep learning of non-autonomous systems (2.1). The key ingredients of the method
 119 include: (1) parameterizing the external input $\gamma(t)$ locally (in time); (2) decomposing
 120 the dynamical system into a modified system comprising of a sequence of local systems;
 121 and (3) deep learning of the local systems.

3.1. Local Parameterization. The analytical solution of the unknown system
 (2.1) satisfies

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_0^t \mathbf{f}(\mathbf{x}(s), \gamma(s))ds.$$

122 Our learning method aims at providing accurate approximation to the true solution
 123 at a prescribed set of discrete time instances,

$$0 = t_0 < t_1 < \dots < t_n < \dots < t_N = T, \quad (3.1)$$

where $T > 0$. Let

$$\delta_n = t_{n+1} - t_n, \quad n = 0, \dots, N-1,$$

124 be the time steps, the exact solution satisfies, for $n = 0, \dots, N-1$,

$$\begin{aligned} \mathbf{x}(t_{n+1}) &= \mathbf{x}(t_n) + \int_{t_n}^{t_{n+1}} \mathbf{f}(\mathbf{x}(s), \gamma(s))ds \\ &= \mathbf{x}(t_n) + \int_0^{\delta_n} \mathbf{f}(\mathbf{x}(t_n + \tau), \gamma(t_n + \tau))d\tau. \end{aligned} \quad (3.2)$$

125 For each time interval $[t_n, t_{n+1}]$, $n = 0, \dots, N-1$, we first seek a local parameterization
 126 for the external input function $\gamma(t)$, in the following form,

$$\tilde{\gamma}_n(\tau; \Gamma_n) := \sum_{j=1}^{n_b} \hat{\gamma}_n^j b_j(\tau) \approx \gamma(t_n + \tau), \quad \tau \in [0, \delta_n], \quad (3.3)$$

127 where $\{b_j(\tau), j = 1, \dots, n_b\}$ is a set of prescribed analytical basis functions and

$$\Gamma_n = (\hat{\gamma}_n^1, \dots, \hat{\gamma}_n^{n_b}) \in \mathbb{R}^{n_b} \quad (3.4)$$

128 are the basis coefficients parameterizing the local input $\gamma(t)$ in $[t_n, t_{n+1}]$.

129 Note that in many practical applications, the external input/control process $\gamma(t)$
130 is already prescribed in a parameterized form. In this case, the local parameterization
131 (3.3) becomes exact, i.e., $\gamma(t_n + \tau) = \tilde{\gamma}_n(\tau; \mathbf{\Gamma}_n)$. In other applications when the
132 external input $\gamma(t)$ is only known/measured at certain time instances, a numerical
133 procedure is required to create the parameterized form (3.3). This can be typically
134 accomplished via a numerical approximation method, for example, Taylor expansion,
135 polynomial interpolation, least squares regression etc.

136 **3.2. Modified System.** With the local parameterization (3.3) constructed for
137 each time interval $[t_n, t_{n+1}]$, we proceed to define a global parameterized input

$$\tilde{\gamma}(t; \mathbf{\Gamma}) = \sum_{n=0}^{N-1} \tilde{\gamma}_n(t - t_n; \mathbf{\Gamma}_n) \mathbb{I}_{[t_n, t_{n+1}]}(t), \quad (3.5)$$

138 where

$$\mathbf{\Gamma} = \{\mathbf{\Gamma}_n\}_{n=0}^{N-1} \in \mathbb{R}^{N \times n_b} \quad (3.6)$$

139 is global parameter set for $\tilde{\gamma}(t)$, and \mathbb{I}_A is indicator function satisfying, for a set A ,
140 $\mathbb{I}_A(x) = 1$ if $x \in A$ and 0 otherwise.

141 We now define a modified system, corresponding to the true (unknown) system
142 (2.1), as follows,

$$\begin{cases} \frac{d}{dt} \tilde{\mathbf{x}}(t) = \mathbf{f}(\tilde{\mathbf{x}}, \tilde{\gamma}(t; \mathbf{\Gamma})), \\ \tilde{\mathbf{x}}(0) = \mathbf{x}_0, \end{cases} \quad (3.7)$$

143 where $\tilde{\gamma}(t; \mathbf{\Gamma})$ is the globally parameterized input defined in (3.5). Note that when
144 the system input $\gamma(t)$ is already known or given in a parametric form, i.e. $\tilde{\gamma}(t) =$
145 $\gamma(t)$, the modified system (3.7) is equivalent to the original system (2.1). When
146 the parameterized process $\tilde{\gamma}(t)$ needs to be numerically constructed, the modified
147 system (3.7) becomes an approximation to the true system (2.1). The approximation
148 accuracy obviously depends on the accuracy in $\tilde{\gamma}(t) \approx \gamma(t)$. For the modified system,
149 the following results holds.

150 **LEMMA 3.1.** *Consider system (3.7) over the discrete set of time instances (3.1).
151 There exists a function $\tilde{\phi} : \mathbb{R}^d \times \mathbb{R}^{n_b} \times \mathbb{R} \rightarrow \mathbb{R}^d$, which depends on \mathbf{f} , such that for
152 any time interval $[t_n, t_{n+1}]$, the solution of (3.7) satisfies*

$$\tilde{\mathbf{x}}(t_{n+1}) = \tilde{\mathbf{x}}(t_n) + \tilde{\phi}(\tilde{\mathbf{x}}(t_n), \mathbf{\Gamma}_n, \delta_n), \quad n = 0, \dots, N-1, \quad (3.8)$$

153 where $\delta_n = t_{n+1} - t_n$ and $\mathbf{\Gamma}_n$ is the local parameter set (3.4) for the locally parameterized input $\tilde{\gamma}_n(t)$ (3.3).

154 *Proof.* Let $\tilde{\mathbf{x}}_n(t)$ denote $\tilde{\mathbf{x}}(t)$ in the time interval $[t_n, t_{n+1}]$, i.e.,

$$\tilde{\mathbf{x}}(t) = \sum_{n=0}^{N-1} \tilde{\mathbf{x}}_n(t) \mathbb{I}_{[t_n, t_{n+1}]}(t).$$

With the global input $\tilde{\gamma}(t)$ defined in the piecewise manner in (3.5), the system (3.7)
can be written equivalently as, for each interval $[t_n, t_{n+1}]$, $n = 0, \dots, N-1$,

$$\begin{cases} \frac{d}{dt} \tilde{\mathbf{x}}_n(t) = \mathbf{f}(\tilde{\mathbf{x}}_n, \tilde{\gamma}_n(t - t_n; \mathbf{\Gamma}_n)), & t \in (t_n, t_{n+1}], \\ \tilde{\mathbf{x}}_n(t_n) = \tilde{\mathbf{x}}(t_n). \end{cases}$$

Let $\Phi_n : (\mathbb{R}^d \times \mathbb{R}) \times \mathbb{R} \rightarrow \mathbb{R}^d$ be its (time dependent) flow map such that

$$\tilde{\mathbf{x}}_n(r) = \Phi_n((\tilde{\mathbf{x}}_n(s), s), r - s), \quad t_n \leq s \leq r \leq t_{n+1}.$$

155 We then have

$$\tilde{\mathbf{x}}_n(t_n + \tau) = \Phi_n((\tilde{\mathbf{x}}(t_n), 0), \tau), \quad \tau \in [0, \delta_n], \quad (3.9)$$

156 where the initial condition $\tilde{\mathbf{x}}_n(t_n) = \tilde{\mathbf{x}}(t_n)$ has been used.

The solution of (3.7) from t_n to t_{n+1} satisfies

$$\begin{aligned} \tilde{\mathbf{x}}(t_{n+1}) &= \tilde{\mathbf{x}}(t_n) + \int_{t_n}^{t_{n+1}} \mathbf{f}(\tilde{\mathbf{x}}(t), \tilde{\gamma}(t; \mathbf{\Gamma})) dt \\ &= \tilde{\mathbf{x}}(t_n) + \int_0^{\delta_n} \mathbf{f}(\tilde{\mathbf{x}}_n(t_n + \tau), \tilde{\gamma}_n(\tau; \mathbf{\Gamma}_n)) d\tau \\ &= \tilde{\mathbf{x}}(t_n) + \int_0^{\delta_n} \mathbf{f}(\Phi_n((\tilde{\mathbf{x}}(t_n), 0), \tau), \tilde{\gamma}_n(\tau; \mathbf{\Gamma}_n)) d\tau, \end{aligned}$$

where (3.5) and (3.9) have been applied. Let

$$\tilde{\phi}(\tilde{\mathbf{x}}(t_n), \mathbf{\Gamma}_n, \delta_n) := \int_0^{\delta_n} \mathbf{f}(\Phi_n((\tilde{\mathbf{x}}(t_n), 0), \tau), \tilde{\gamma}_n(\tau; \mathbf{\Gamma}_n)) d\tau$$

157 and the proof is complete. \square

158 **3.3. Learning of Modified Systems.** The function $\tilde{\phi}$ in (3.8) governs the
159 evolution of the solution of the modified system (3.7) and is the target function for
160 our proposed deep learning method. Note that in each time interval $[t_n, t_{n+1}]$ over
161 the prediction time domain (3.1), the solution at t_{n+1} is determined by its state at
162 t_n , the local parameter set $\mathbf{\Gamma}_n$ for the local input $\tilde{\gamma}_n$, the step size $\delta_n = t_{n+1} - t_n$,
163 and obviously, the form of the original equation \mathbf{f} . Our learning algorithm thus seeks
164 to establish and train a deep neural network with input $\tilde{\mathbf{x}}(t_n)$, $\mathbf{\Gamma}_n$, δ_n and output
165 $\tilde{\mathbf{x}}(t_{n+1})$. The internal feed-forward network connecting the input and output thus
166 serves as a model of the unknown dynamical system (2.1).

167 **3.3.1. Training Data Set.** To construct the training data set, we first re-
168 organize the original data set (2.2). Let us assume the length of each trajectory
169 data in (2.2) is at least 2, i.e., $K^{(i)} \geq 2, \forall i$. We then re-organize the data into pairs
170 of two adjacent time instances,

$$\left\{ \mathbf{x}\left(t_k^{(i)}\right), \mathbf{x}\left(t_{k+1}^{(i)}\right); \gamma^{(i)} \right\}, \quad k = 1, \dots, K^{(i)} - 1, \quad i = 1, \dots, N_T, \quad (3.10)$$

171 where N_T is the total number of data trajectories. Note that for each $i = 1, \dots, N_T$,
172 its trajectory is driven by a known external input $\gamma^{(i)}$, as shown in (2.2). We then
173 seek, for the time interval $[t_k^{(i)}, t_{k+1}^{(i)}]$ with $\delta_k^{(i)} = t_{k+1}^{(i)} - t_k^{(i)}$, its local parameterized
174 form $\tilde{\gamma}_k^{(i)}(\tau; \mathbf{\Gamma}_k^{(i)})$, where $\tau \in [0, \delta_k^{(i)}]$ and $\mathbf{\Gamma}_k^{(i)}$ is the parameter set for the local param-
175 eterization of the input, in the form of (3.3). Again, if the external input is already
176 known in an analytical parametric form, this step is trivial; if not this step usually
177 requires a standard regression/approximation procedure and is not discussed in detail
178 here for the brevity of the paper.

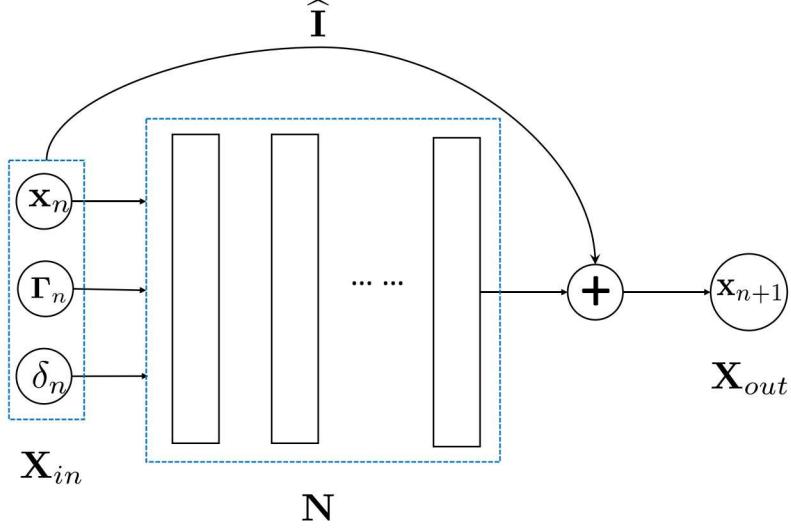


Fig. 3.1: Illustration of the proposed neural network.

179 For each data pair (3.10), we now have its associated time step $\delta_k^{(i)}$ and local
 180 parameter set $\boldsymbol{\Gamma}_k^{(i)}$ for the external input. The total number of such pairings is $K_{tot} =$
 181 $K^{(1)} + K^{(2)} + \dots + K^{(N_T)} - N_T$. We then proceed to select $J \leq K_{tot}$ number of such
 182 pairings to construct the training data set for the neural network model. Upon re-
 183 ordering using a single index, the training data set takes the following form

$$\mathcal{S} = \left\{ (\mathbf{x}_k^{(j)}, \mathbf{x}_{k+1}^{(j)}; \boldsymbol{\Gamma}_k^{(j)}, \delta_k^{(j)}) \right\}, \quad j = 1, \dots, J, \quad (3.11)$$

184 where the superscript j denotes the j -th data entry, which belongs a certain i -th
 185 trajectory in the original data pairings (3.10). The re-ordering can be readily enforced
 186 to be one-on-one, with the trajectory information is implicitly embedded. Note that
 187 one can naturally select all the data pairs in (3.10) into the training data set (3.11),
 188 i.e., $J = K_{tot}$. In practice, one may also choose a selective subset of (3.10) to construct
 189 the training set (3.11), i.e., $J < K_{tot}$, depending on the property and quality of the
 190 original data.

191 **3.3.2. Network Structure and Training.** With the training data set (3.11)
 192 available, we proceed to define and train our neural network model. The network
 193 model seeks to learn the one-step evolution of the modified system, in the form of
 194 (3.8). Our proposed network model defines a mapping $\hat{\mathbf{N}} : \mathbb{R}^{d+n_b+1} \rightarrow \mathbb{R}^d$, such that

$$\mathbf{X}_{out} = \hat{\mathbf{N}}(\mathbf{X}_{in}; \Theta), \quad \mathbf{X}_{in} \in \mathbb{R}^{d+n_b+1}, \quad \mathbf{X}_{out} \in \mathbb{R}^d, \quad (3.12)$$

195 where Θ are the network parameters that need to be trained. The network structure
 196 is illustrated in Fig. 3.1. Inside the network, $\mathbf{N} : \mathbb{R}^{d+n_b+1} \rightarrow \mathbb{R}^d$ denotes the operator
 197 associated with a feed-forward neural network with $(d + n_b + 1)$ input nodes and d
 198 output nodes. The input is multiplied with $\hat{\mathbf{I}}$ and then re-introduced back before the
 199 final output. The operator $\hat{\mathbf{I}} \in \mathbb{R}^{d \times (d+n_b+1)}$ is a matrix of size $d \times (d + n_b + 1)$. It

200 takes the form

$$\widehat{\mathbf{I}} = [\mathbf{I}_d, \mathbf{0}], \quad (3.13)$$

201 where \mathbf{I}_d is identity matrix of size $d \times d$ and $\mathbf{0}$ is a zero matrix of size $d \times (n_b + 1)$.

202 Therefore, the network effectively defines a mapping

$$\mathbf{X}_{out} = \widehat{\mathbf{N}}(\mathbf{X}_{in}; \Theta) = [\widehat{\mathbf{I}} + \mathbf{N}(\cdot; \Theta)](\mathbf{X}_{in}). \quad (3.14)$$

203 Training of the network is accomplished by using the training data set (3.11). For
204 each of the j -th data entry, $j = 1, \dots, J$, we set

$$\mathbf{X}_{in}^{(j)} \leftarrow [\mathbf{x}_k^{(j)}; \boldsymbol{\Gamma}_k^{(j)}; \delta_k^{(j)}] \in \mathbb{R}^{d+n_b+1}. \quad (3.15)$$

205 The network training is then conducted by minimizing the mean squared loss between
206 the network output $\mathbf{X}_{out}^{(j)}$ and the data $\mathbf{x}_{k+1}^{(j)}$, i.e.,

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} \frac{1}{J} \sum_{j=1}^J \left\| \widehat{\mathbf{N}}(\mathbf{X}_{in}^{(j)}; \Theta) - \mathbf{x}_{k+1}^{(j)} \right\|^2. \quad (3.16)$$

207 **3.3.3. Learned Model and System Prediction.** Upon satisfactory training
208 of the network parameter using (3.16), we obtain a trained network model for the
209 unknown modified system (3.7)

$$\mathbf{X}_{out} = \widehat{\mathbf{N}}(\mathbf{X}_{in}; \Theta^*) = [\widehat{\mathbf{I}} + \mathbf{N}(\cdot; \Theta^*)](\mathbf{X}_{in}), \quad (3.17)$$

210 where $\widehat{\mathbf{I}}$ is defined in (3.13) and \mathbf{N} is the operator of the FNN, as illustrated in the
211 previous section and in Fig. 3.1.

For system prediction with a given external input function $\gamma(t)$, which is usually
not in the training data set, let us consider the time instances (3.1). Let

$$\mathbf{X}_{in} = [\mathbf{x}(t_n); \boldsymbol{\Gamma}_n; \delta_n]$$

212 be a concatenated vector consisting of the state variable at t_n , the parameter vector for
213 the local parameterization of the external input between $[t_n, t_{n+1}]$, and $\delta_n = t_{n+1} - t_n$.
214 Then, the trained model produces a one-step evolution of the solution

$$\widehat{\mathbf{x}}(t_{n+1}) = \mathbf{x}(t_n) + \mathbf{N}(\mathbf{x}(t_n), \boldsymbol{\Gamma}_n, \delta_n; \Theta^*). \quad (3.18)$$

215 Upon applying (3.18) recursively, we obtain a network model for predicting the
216 system states of the unknown non-autonomous system (2.1). For a given initial
217 condition \mathbf{x}_0 and external input $\gamma(t)$,

$$\begin{cases} \widehat{\mathbf{x}}(t_0) = \mathbf{x}_0, \\ \widehat{\mathbf{x}}(t_{n+1}) = \widehat{\mathbf{x}}(t_n) + \mathbf{N}(\widehat{\mathbf{x}}(t_n), \boldsymbol{\Gamma}_n, \delta_n; \Theta^*), \\ t_{n+1} = t_n + \delta_n, \quad n = 0, \dots, N-1, \end{cases} \quad (3.19)$$

218 where $\boldsymbol{\Gamma}_n$ are the parameters in the local parameterization of $\gamma(t)$ in the time interval
219 $[t_n, t_{n+1}]$. It is obvious that the network predicting model (3.18) is an approximation
220 to the one-step evolution (3.8) of the modified system (3.7), which in turn is an
221 approximation of the original unknown dynamical system (2.1). Therefore, (3.19)
222 generates an approximation to the solution of the unknown system (2.1) at the discrete
223 time instances $\{t_n\}$ (3.1).

224 **3.4. Theoretical Properties.** We now present certain theoretical analysis for
 225 the proposed learning algorithm. The following result provides a bound between the
 226 solution of the modified system (3.7) and the original system (2.1). The difference
 227 between the two systems is due to the use of the parameterized external input $\tilde{\gamma}(t)$
 228 (3.5) in the modified system (3.7), as opposed to the original external input $\gamma(t)$ in the
 229 original system (2.1). Again, we emphasize that in many practical situations when
 230 the external input is already known in a parametric form, the modified system (3.7)
 231 is equivalent to the original system (2.1).

PROPOSITION 3.2. *Consider the original system (2.1) with input $\gamma(t)$ and the modified system (3.7) with input $\tilde{\gamma}(t)$ (3.5), and assume the function $\mathbf{f}(\mathbf{x}, \gamma)$ is Lipschitz continuous with respect to both \mathbf{x} and γ , with Lipschitz constants L_1 and L_2 , respectively. If the difference in the inputs is bounded by*

$$\|\gamma(t) - \tilde{\gamma}(t)\|_{L^\infty([0, T])} \leq \eta,$$

where $T > 0$ is a finite time horizon. Then,

$$|\mathbf{x}(t) - \tilde{\mathbf{x}}(t)| \leq L_2 \eta t e^{L_1 t}, \quad \forall t \in [0, T].$$

232

Proof. For any $t \in [0, T]$,

$$\begin{aligned} \mathbf{x}(t) &= \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}(s), \gamma(s)) ds, \\ \tilde{\mathbf{x}}(t) &= \mathbf{x}(0) + \int_0^t \mathbf{f}(\tilde{\mathbf{x}}(s), \tilde{\gamma}(s)) ds. \end{aligned}$$

We then have

$$\begin{aligned} |\mathbf{x}(t) - \tilde{\mathbf{x}}(t)| &\leq \int_0^t |\mathbf{f}(\mathbf{x}(s), \gamma(s)) - \mathbf{f}(\tilde{\mathbf{x}}(s), \tilde{\gamma}(s))| ds \\ &\leq \int_0^t |\mathbf{f}(\mathbf{x}(s), \gamma(s)) - \mathbf{f}(\mathbf{x}(s), \tilde{\gamma}(s))| ds + \int_0^t |\mathbf{f}(\mathbf{x}(s), \tilde{\gamma}(s)) - \mathbf{f}(\tilde{\mathbf{x}}(s), \tilde{\gamma}(s))| ds \\ &\leq L_2 \int_0^t |\gamma(s) - \tilde{\gamma}(s)| ds + L_1 \int_0^t |\mathbf{x}(s) - \tilde{\mathbf{x}}(s)| ds \\ &\leq L_2 \eta t + L_1 \int_0^t |\mathbf{x}(s) - \tilde{\mathbf{x}}(s)| ds. \end{aligned}$$

By using Gronwall's inequality, we obtain

$$|\mathbf{x}(t) - \tilde{\mathbf{x}}(t)| \leq L_2 \eta t e^{L_1 t}.$$

□

233 We now recall the celebrated universal approximation property of neural networks.

PROPOSITION 3.3 ([15]). *For any function $F \in C(\mathbb{R}^n)$ and a positive real number $\varepsilon > 0$, there exists a single-hidden-layer neural network $N(\cdot; \Theta)$ with parameter Θ such that*

$$\max_{\mathbf{y} \in D} |F(\mathbf{y}) - N(\mathbf{y}; \Theta)| \leq \varepsilon,$$

234 for any compact set $D \in \mathbb{R}^n$, if and only if the activation functions are continuous
 235 and are not polynomials.

236 Relying on this result, we assume the trained neural network model (3.17) has
 237 sufficient accuracy, which is equivalent to assuming accuracy in the trained FNN
 238 operator \mathbf{N} of (3.18) to the one-step evolution operator $\tilde{\phi}$ in (3.8). More specifically,
 239 let \mathcal{D} be the convex hull of the training data set \mathcal{S} , defined (3.11). We then assume

$$\|\mathbf{N}(\cdot; \Theta^*) - \tilde{\phi}(\cdot)\|_{L^\infty(\mathcal{D})} < \mathcal{E}, \quad (3.20)$$

240 where $\mathcal{E} \geq 0$ is a sufficiently small real number.

241 **PROPOSITION 3.4.** *Consider the modified system (3.8) and the trained network
 242 model (3.19) over the time instances (3.1). Assume the exact evolution operator (3.8)
 243 is Lipschitz continuous with respect to \mathbf{x} , with Lipschitz constant L_ϕ . If the network
 244 training is sufficiently accurate such that (3.20) holds, then*

$$\|\tilde{\mathbf{x}}(t_n) - \tilde{\mathbf{x}}(t_n)\| \leq \frac{1 - L_\phi^n}{1 - L_\phi} \mathcal{E}, \quad n = 0, \dots, N. \quad (3.21)$$

245 *Proof.* Let $\Phi = \widehat{\mathbf{I}} + \tilde{\phi}$, where $\widehat{\mathbf{I}}$ is defined in (3.13), we can rewrite the one-step evolution (3.8) as

$$\tilde{\mathbf{x}}(t_{n+1}) = [\Phi(\cdot, \mathbf{\Gamma}_n, \delta_n)](\tilde{\mathbf{x}}(t_n)),$$

Meanwhile, the learned model (3.19) satisfies, by using (3.17),

$$\widehat{\mathbf{x}}(t_{n+1}) = [\widehat{\mathbf{N}}(\cdot; \Theta^*)](\widehat{\mathbf{x}}(t_n)).$$

Let $e_n = \|\widehat{\mathbf{x}}(t_n) - \tilde{\mathbf{x}}(t_n)\|$, we then have

$$\begin{aligned} e_n &= \|[\widehat{\mathbf{N}}(\cdot; \Theta^*)](\widehat{\mathbf{x}}(t_{n-1})) - [\Phi(\cdot, \mathbf{\Gamma}_{n-1}, \delta_{n-1})](\tilde{\mathbf{x}}(t_{n-1}))\| \\ &\leq \|[\widehat{\mathbf{N}}(\cdot; \Theta^*) - \Phi(\cdot, \mathbf{\Gamma}_{n-1}, \delta_{n-1})](\widehat{\mathbf{x}}(t_{n-1}))\| + \\ &\quad \|[\Phi(\tilde{\mathbf{x}}(t_{n-1}), \mathbf{\Gamma}_{n-1}, \delta_{n-1})] - [\Phi(\tilde{\mathbf{x}}(t_{n-1}), \mathbf{\Gamma}_{n-1}, \delta_{n-1})]\| \\ &\leq \mathcal{E} + L_\phi \|\widehat{\mathbf{x}}(t_{n-1}) - \tilde{\mathbf{x}}(t_{n-1})\| \end{aligned}$$

This gives

$$e_n \leq \mathcal{E} + L_\phi e_{n-1}.$$

246 Repeated use of this relation and with $e_0 = 0$ immediately gives the conclusion. \square

247 Note that the assumption of Lipschitz continuity on the evolution operator in (3.8)
 248 is equivalent to assuming Lipschitz continuity on the right-hand-side of the original
 249 system (2.1). This is a very mild condition, commonly assumed for the well-posedness
 250 of the original problem (2.1).

251 Upon combining the results from above and using triangular inequality, we im-
 252 mediately obtain the following.

253 **THEOREM 3.5.** *Under the assumptions of Proposition 3.2 and 3.4, the solution
 254 of the trained network model (3.19) and the true solution of the original system (2.1)
 255 over the time instances satisfies (3.1) satisfy*

$$\|\tilde{\mathbf{x}}(t_n) - \mathbf{x}(t_n)\| \leq L_2 \eta t_n e^{L_1 t_n} + \frac{1 - L_\phi^n}{1 - L_\phi} \mathcal{E}, \quad n = 0, \dots, N. \quad (3.22)$$

256

REMARK 3.1. It is worth noting that the DNN structure employed here is to
 accomplish the approximation (3.20). Such an approximation can be conducted by any
 other proper approximation techniques using, for example, (orthogonal) polynomials,
 Gaussian process, radial basis, etc. The target function is the one-step evolution
 operator ϕ in (3.8). Since for many problems of practical interest, $\tilde{\phi} : \mathbb{R}^{d+n_b+1} \rightarrow \mathbb{R}^d$
 often resides in high dimensions and is highly nonlinear, DNN represents a more
 flexible and practical choice and is the focus of this paper.

4. Numerical Examples. In this section, we present numerical examples to
 verify the properties of the proposed methods. Since our purpose is to validate the
 proposed deep learning method, we employ synthetic data generated from known dy-
 namical systems with known time-dependent inputs. The training data are generated
 by solving the known system with high resolution numerical scheme, e.g., 4th-order
 Runge Kutta with sufficiently small time steps. Our proposed learning method is then
 applied to the training data set. Once the learned model is constructed, we conduct
 system prediction using the model with new initial conditions and new external in-
 puts. The prediction results are then compared with the reference solution obtained
 by solving the exact system with the same new inputs. Also, to clearly examine the
 numerical errors, we only present the tests where the training data do not contain
 noises.

In all the examples, we generate the training data set (2.2) with $K^{(i)} \equiv 2, \forall i$,
 i.e., each trajectory only contains two data points. For each of the i -th entry in the
 data set, the first data entry is randomly sampled from a domain I_x using uniform
 distribution. The second data entry is produced by solving the underlying reference
 dynamical system with a time step $\delta^{(i)} \in I_\Delta = [0.05, 0.15]$ and subject to a param-
 eterized external input in the form of (3.3), whose parameters (3.4) are uniformly
 sampled from a domain I_Γ . The sampling domains I_x and I_Γ are problem specific
 and listed separately for each example.

The DNNs in all the examples use activation function $\sigma(x) = \tanh(x)$ and are
 trained by minimizing the mean squared loss function in (3.16). The network training
 is conducted by using Adam algorithm [8] with the open-source Tensorflow library [1].
 Upon satisfactory training, the learned models are used to conduct system prediction,
 in the form of (3.19), with a constant step size $\delta_n = 0.1$.

4.1. Linear Scalar Equation with Source. Let us first consider the following
 scalar equation

$$\frac{dx}{dt} = -\alpha(t)x + \beta(t), \quad (4.1)$$

where the time-dependent inputs $\alpha(t)$ and $\beta(t)$ are locally parameterized with polyno-
 mials of degree 2, resulting the local parameter set (3.4) $\Gamma_n \in \mathbb{R}^{n_b}$ with $n_b = 3+3 = 6$.
 We build a neural network model consisting of 3 hidden layers with 80 nodes per layer.
 The model is trained with 20,000 data trajectories randomly sampled, with uniform
 distribution, in the state variable domain $I_x = [-2, 2]$ and the local parameter domain
 $I_\Gamma = [-5, 5]^6$. After the network model is trained, we use it to conduct system pre-
 diction. In Fig. 4.1, the prediction result with a new initial condition $x_0 = 2$ and new
 external inputs $\alpha(t) = \sin(4t) + 1$ and $\beta(t) = \cos(t^2/1000)$ is shown, for time up to
 $T = 100$. The reference solution is also shown for comparison. It can be seen that the
 network model produces accurate prediction for this relatively long-term integration.



Fig. 4.1: DNN model prediction of (4.1) with external inputs $\alpha(t) = \sin(4t) + 1$ and $\beta(t) = \cos(t^2/1000)$ and an initial condition $x_0 = 2$. Comparison of long-term neural network model prediction (labelled “NN”) with the reference solution.

301 For this relatively simple and low-dimensional system, its learning can be effec-
 302 tively conducted by other standard approximation method, as discussed in Remark
 303 3.1. With the same quadratic polynomial for local parameterization as in the DNN
 304 modeling, which results in $\Gamma_n \in [-5, 5]^6$, we employ tensor Legendre orthogonal
 305 polynomials in total degree space, which is a standard multi-dimensional approxima-
 306 tion technique, for the approximation of the one-step evolution operator in (3.8). In
 307 Fig. 4.2, the prediction results by the polynomial learning model are shown, for a
 308 case with external inputs $\alpha(t) = \sin(t/10) + 1$ and $\beta(t) = \cos(t)$. In Fig. 4.2(a), the
 309 prediction result obtained by 2nd-degree polynomial learning model is shown. We
 310 observe good agreement with the reference solution. In Fig. 4.2(b), the numerical
 311 errors at $T = 100$ are shown for the polynomial learning model with varying degrees.
 312 We observe that the errors decay exponentially fast when the degree of polynomial is
 313 increased. Such kind of exponential error convergence is expected for approximation
 314 of smooth problems, such as this example.

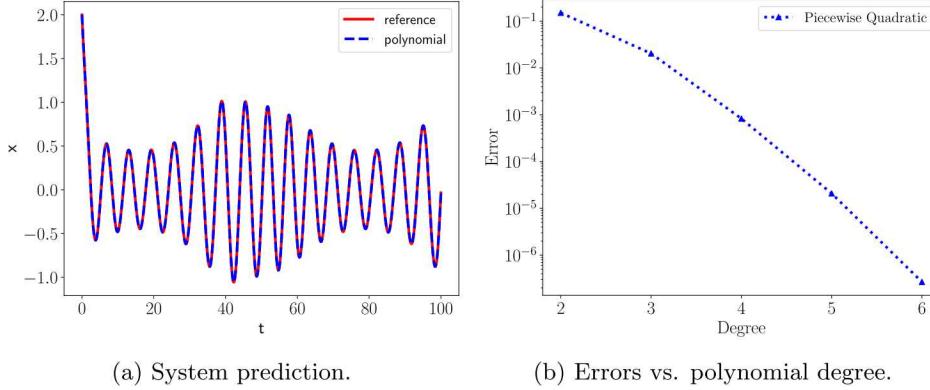


Fig. 4.2: Polynomial learning model for (4.1) with $\alpha(t) = \sin(t/10) + 1$ and $\beta(t) = \cos(t)$. (a) Comparison of the model prediction with reference solution. (b) Relative error in prediction at $T = 100$ for increasing polynomial degree in the polynomial learning model. In all models piecewise quadratic polynomials are used for local parameterization.

315 **4.2. Predator-prey Model with Control.** We now consider the following
 316 Lotka-Volterra Predator-Prey model with a time-dependent input $u(t)$:

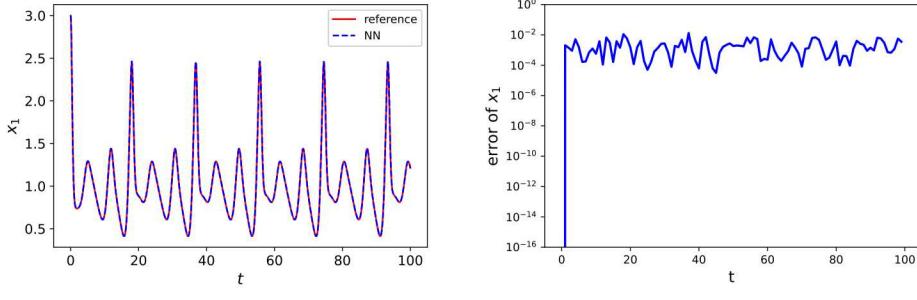
$$\begin{aligned} \frac{dx_1}{dt} &= x_1 - x_1 x_2 + u(t), \\ \frac{dx_2}{dt} &= -x_2 + x_1 x_2. \end{aligned} \quad (4.2)$$

317 The local parameterization for the external input is conducted using quadratic
 318 polynomials, resulting in $\Gamma_n \in \mathbb{R}^3$. More specifically, we set $I_\Gamma = [0, 5]^3$ and the
 319 state variable space $I_x = [0, 5]^2$. The DNN learning model consists of 3 hidden layers,
 320 each of which with 80 nodes. The network training is conducted using 20,000 data
 321 trajectories randomly sampled from $I_x \times I_\Gamma$. In Fig. 4.3a, we plot its prediction result
 322 for a case with $u(t) = \sin(t/3) + \cos(t) + 2$, for time up to $T = 100$, along with the
 323 reference solution. It can be seen that the DNN model prediction agrees very well
 324 with the reference solution. The numerical error fluctuates at the level of $O(10^{-3})$,
 325 for this relatively long-term prediction.

326 **4.3. Forced Oscillator.** We now consider a forced oscillator

$$\begin{aligned} \frac{dx_1}{dt} &= x_2, \\ \frac{dx_2}{dt} &= -\nu(t) x_1 - k x_2 + f(t), \end{aligned} \quad (4.3)$$

327 where the damping term $\nu(t)$ and the forcing $f(t)$ are time-dependent processes. Lo-
 328 cal parameterization for the inputs is conducted using quadratic polynomials. More
 329 specifically, the training data are generated randomly by sampling from state vari-
 330 able space $I_x = [-3, 3]^2$ and local parameterization space $I_\Gamma = [-3, 3]^6$. Similar
 331 to other examples, the DNN contains 3 hidden layers with 80 nodes in each hidden



(a) System prediction of x_1 . (b) Error in prediction for x_1

Fig. 4.3: DNN learning model for (4.2). Comparison of its prediction result for x_1 with $u(t) = \sin(t/3) + \cos(t) + 2$ against reference solution. Results for x_2 are very similar and not shown.

332 layer. System prediction using the trained network model is shown in Fig. 4.4, for
 333 rather arbitrarily chosen external inputs $\nu(t) = \cos(t)$ and $f(t) = t/50$. Once again,
 334 we observe very good agreement with the reference solution for relatively long-term
 simulation up to $T = 100$.

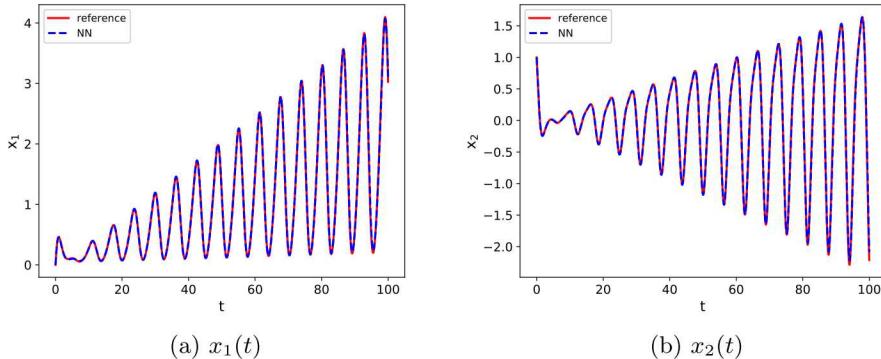


Fig. 4.4: DNN model prediction of (4.3) with inputs $\nu(t) = \cos(t)$ and $f(t) = t/50$.

335

336 **4.4. PDE: Heat Equation with Source.** We now consider a partial differen-
 337 tial equation (PDE). In particular, the following heat equation with a source term,

$$\begin{aligned}
 u_t &= u_{xx} + q(t, x), \quad x \in [0, 1], \\
 u(0, x) &= u_0(x), \\
 u(t, 0) &= u(t, 1) = 0,
 \end{aligned} \tag{4.4}$$

where $q(t, x)$ is the source term varying in both space and time. We set the source term to be

$$q(t, x) = \alpha(t)e^{-\frac{(x-\mu)^2}{\sigma^2}},$$

338 where $\alpha(t)$ is its time varying amplitude and parameter μ and σ determine its the
339 spatial profile.

The learning of (4.4) is conducted in a discrete space. Specifically, we employ $n = 22$ equally distributed grid points in the domain $[0, 1]$,

$$x_j = j/(n-1), \quad j = 1, \dots, n.$$

Let

$$\mathbf{u}(t) = [u(t, x_2), \dots, u(t, x_{n-1})]^\dagger,$$

340 we then seek to construct a DNN model to discover the dynamical behavior of the
341 solution vector $\mathbf{u}(t)$. Note that the boundary values $u(x_1) = u(x_n) = 0$ are fixed in
342 the problem setting and to be included in the learning model.

343 Upon transferring the learning of the PDE (4.4) into learning of a finite dimen-
344 sional dynamical system of $\mathbf{u} \in \mathbb{R}^d$, where $d = n - 2 = 20$, the DNN learning method
345 discussed in this paper can be readily applied. Training data are synthetic data gen-
346 erated by solving the system (4.4) numerically. In particular, we employ second-order
347 central difference scheme using the same grid points $\{x_j\}$. The trajectory data are gen-
348 erated by randomly sample $\mathbf{u} \in \mathbb{R}^{20}$ in a specific domain $I_{\mathbf{u}} = [0, 2]^{20}$. Quadratic poly-
349 nomial interpolation is used in local parameterization of the time dependent source
350 term, resulting in 3-dimensional local representation for the time dependent coeffi-
351 cient $\alpha(t)$. Random sampling in domain $I_\alpha = [-2, 2]^3$, $I_\mu = [0, 3]$, $I_\sigma = [0.05, 0.5]$ is
352 then used to generate the synthetic training data set, for the parameters α , μ , and σ ,
353 respectively.

354 The DNN network model thus consists of a total of 25 inputs. Because of curse-
355 of-dimensionality, constructing accurate approximation in 25 dimensional space is
356 computational expensive via traditional methods such as polynomials, radial basis,
357 etc. For DNN, however, 25 dimension is considered low and accurate network model
358 can be readily trained. Here we employ a DNN with 3 hidden layers, each of which
359 with 80 nodes. Upon successful training of the DNN model, we conduct system
360 prediction for a new source term (not in training data set), where $\alpha(t) = t - \lfloor t \rfloor$ is a
361 saw-tooth discontinuous function, $\mu = 1$, and $\sigma = 0.5$.

362 The system prediction results are shown in Fig. 4.5, along with the reference
363 solution solved from the underlying PDE. We observe excellent agreement between
364 the DNN model prediction to the reference solution. It is worth noting that the DNN
365 model, once trained, can be readily used to predict system behavior for other time
366 dependent inputs.

367 **5. Conclusion.** In this paper we presented a numerical approach for learning
368 unknown non-autonomous dynamical systems using observations of system states.
369 To circumvent the difficulty posed by the non-autonomous nature of the system,
370 the system states are expressed as piecewise integrations over time. The piecewise
371 integrals are then transformed into parametric form, upon a local parameterization
372 procedure of the external time-dependent inputs. We then designed deep neural
373 network (DNN) structure to model the parametric piecewise integrals. Upon using

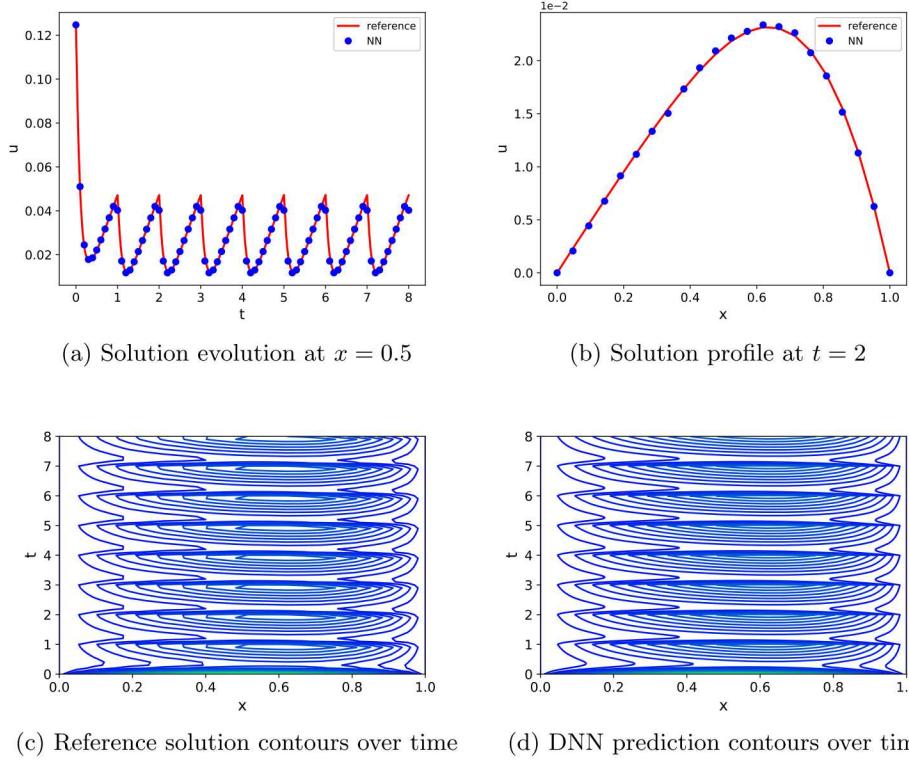


Fig. 4.5: System prediction of (4.4) with $\alpha(t) = t - |t|$, $\mu = 1$, and $\sigma = 0.5$. Comparison between the predictions by the DNN model and the reference solution.

374 sufficient training data to train the DNN model, it can be used recursively over time
 375 to conduct system prediction for other external inputs. Various numerical examples
 376 in the paper suggest the methodology holds promise to more complex applications.

[1] M. ABADI, A. AGARWAL, P. BARHAM, E. BREVDO, Z. CHEN, C. CITRO, G. S. CORRADO, A. DAVIS, J. DEAN, M. DEVIN, S. GHEMAWAT, I. GOODFELLOW, A. HARP, G. IRVING, M. ISARD, Y. JIA, R. JOZEFOWICZ, L. KAISER, M. KUDLUR, J. LEVENBERG, D. MANÉ, R. MONGA, S. MOORE, D. MURRAY, C. OLAH, M. SCHUSTER, J. SHLENS, B. STEINER, I. SUTSKEVER, K. TALWAR, P. TUCKER, V. VANHOUCKE, V. VASUDEVAN, F. VIÉGAS, O. VINYALS, P. WARDEN, M. WATTENBERG, M. WICKE, Y. YU, AND X. ZHENG, *TensorFlow: Large-scale machine learning on heterogeneous systems*, 2015, <https://www.tensorflow.org/>. Software available from tensorflow.org.

[2] S. L. BRUNTON, J. L. PROCTOR, AND J. N. KUTZ, *Discovering governing equations from data by sparse identification of nonlinear dynamical systems*, Proc. Natl. Acad. Sci. U.S.A., 113 (2016), pp. 3932–3937.

[3] S. L. BRUNTON, J. L. PROCTOR, AND J. N. KUTZ, *Sparse identification of nonlinear dynamics with control (sindyc)*, IFAC-PapersOnLine, 49 (2016), pp. 710–715.

[4] Z. CHEN AND D. XIU, *On generalized residue network for deep learning of unknown dynamical systems*, arXiv preprint arXiv:2002.02528, (2020).

[5] N. GALIOTI AND A. A. GORODETSKY, *Bayesian system id: optimal management of parameter, model, and measurement uncertainty*, (2020), <https://arxiv.org/abs/2003.02359>. Submitted.

[6] K. HE, X. ZHANG, S. REN, AND J. SUN, *Deep residual learning for image recognition*, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[7] I. G. KEVREKIDIS, C. W. GEAR, J. M. HYMAN, P. G. KEVREKIDIS, O. RUNBORG, C. THEODOROPOULOS, ET AL., *Equation-free, coarse-grained multiscale computation: Enabling macroscopic simulators to perform system-level analysis*, Commun. Math. Sci., 1 (2003), pp. 715–762.

[8] D. P. KINGMA AND J. BA, *Adam: A method for stochastic optimization*, arXiv preprint arXiv:1412.6980, (2014).

[9] Z. LONG, Y. LU, AND B. DONG, *Pde-net 2.0: Learning pdes from data with a numeric-symbolic hybrid deep network*, Journal of Computational Physics, 399 (2019), p. 108925.

[10] Z. LONG, Y. LU, X. MA, AND B. DONG, *PDE-net: learning PDEs from data*, in Proceedings of the 35th International Conference on Machine Learning, J. Dy and A. Krause, eds., vol. 80 of Proceedings of Machine Learning Research, Stockholm, Sweden, 10–15 Jul 2018, PMLR, pp. 3208–3216.

[11] N. M. MANGAN, J. N. KUTZ, S. L. BRUNTON, AND J. L. PROCTOR, *Model selection for dynamical systems via sparse regression and information criteria*, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 473 (2017).

[12] I. MEZIĆ, *Spectral properties of dynamical systems, model reduction and decompositions*, Nonlinear Dynamics, 41 (2005), pp. 309–325.

[13] I. MEZIĆ, *Analysis of fluid flows via spectral properties of the koopman operator*, Annual Review of Fluid Mechanics, 45 (2013), pp. 357–378.

[14] B. PEHERSTORFER AND K. WILLCOX, *Data-driven operator inference for nonintrusive projection-based model reduction*, Computer Methods in Applied Mechanics and Engineering, 306 (2016), pp. 196–215.

[15] A. PINKUS, *Approximation theory of the MLP model in neural networks*, Acta Numerica, 8 (1999), pp. 143–195.

[16] J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ, *Dynamic mode decomposition with control*, SIAM Journal on Applied Dynamical Systems, 15 (2016), pp. 142–161.

[17] J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ, *Generalizing koopman theory to allow for inputs and control*, SIAM Journal on Applied Dynamical Systems, 17 (2018), pp. 909–930.

[18] T. QIN, Z. CHEN, J. JAKEMAN, AND D. XIU, *A neural network approach for uncertainty quantification for time-dependent problems with random parameters*, arXiv preprint arXiv:1910.07096, (2019).

[19] T. QIN, K. WU, AND D. XIU, *Data driven governing equations approximation using deep neural networks*, Journal of Computational Physics, 395 (2019), pp. 620–635.

[20] M. RAISSI, *Deep hidden physics models: Deep learning of nonlinear partial differential equations*, The Journal of Machine Learning Research, 19 (2018), pp. 932–955.

[21] M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, *Machine learning of linear differential equations using gaussian processes*, Journal of Computational Physics, 348 (2017), pp. 683–693.

[22] M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, *Multistep neural networks for data-driven*

438 *discovery of nonlinear dynamical systems*, arXiv preprint arXiv:1801.01236, (2018).
 439 [23] R. RICO-MARTINEZ AND I. G. KEVREKIDIS, *Continuous time modeling of nonlinear systems:*
 440 *A neural network-based approach*, in IEEE International Conference on Neural Networks,
 441 IEEE, 1993, pp. 1522–1525.
 442 [24] S. H. RUDY, J. N. KUTZ, AND S. L. BRUNTON, *Deep learning of dynamics and signal-noise de-*
 443 *composition with time-stepping constraints*, Journal of Computational Physics, 396 (2019),
 444 pp. 483–506.
 445 [25] P. J. SCHMID, *Dynamic mode decomposition of numerical and experimental data*, Journal of
 446 fluid mechanics, 656 (2010), pp. 5–28.
 447 [26] C. THEODOROPOULOS, Y.-H. QIAN, AND I. G. KEVREKIDIS, “coarse” *stability and bifurcation*
 448 *analysis using time-steppers: A reaction-diffusion example*, Proceedings of the National
 449 Academy of Sciences, 97 (2000), pp. 9840–9843.
 450 [27] K. WU, T. QIN, AND D. XIU, *Structure-preserving method for reconstructing unknown hamil-*
 451 *tonian systems from trajectory data*, arXiv preprint arXiv:1905.10396, (2019).
 452 [28] K. WU AND D. XIU, *Numerical aspects for approximating governing equations using data*,
 453 Journal of Computational Physics, 384 (2019), pp. 200–221.
 454 [29] K. WU AND D. XIU, *Data-driven deep learning of partial differential equations in modal space*,
 455 Journal of Computational Physics, 408 (2020), p. 109307.