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ABSTRACT

As penetration of converter interfaced generators (CIGs) increases, the need for CIG
frequency control participation increases. Traditionally, research in this area has been
performed using positive sequence simulation software, which provides voltage magnitude and
phase measurements, but not point-on-wave (POW) measurements. This means that the
effect of frequency estimation algorithms cannot be accurately modeled, especially when the
voltage waveform is distorted by faults or load connection events. This report serves as a user
manual for an electromagnetic transient simulation testbed, which allows for accurate
modeling of frequency estimation and control techniques.
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QUICK START

1.) Modify parameters in “initSim.m”
e TFor many configurations, the only parameters that will need to be changed are in
“High level simulation parameters” section. Eg. Simulation length, the choice of
synthetic inertia (SI) algorithm, or SI gain
e For parameters in a vector structure, the elements of the vector represent the value
for that parameter for the generator location corresponding to the element’s index.
Eg.SI.k = [1, NaN, NaN, 10, 0, 100]means that CIG1 will use SI.k =
1, Generators 2 and 3 cannot be replaced with CIGs, and so on.
2.) Run “example KRK script 6g faults.m”
e Results will be logged in the base workspace
o Generator speeds: w_all <timeseries>
o CIG data: SIx <structure> (x represents the location of the CIG, so ST1
corresponds to CIG1 data)
o Simulation configuration parameters: config <structure>
e Some useful plots will be loaded immediately
3.) Begin exploring code or the rest of this user manual to learn about more advanced features
available in the testbed.



ACRONYMS AND DEFINITIONS

Abbreviation Definition
3ph 3 phase
CIG converter interfaced generator
EKF extended Kalman filter
FFT fast Fourier transform
Hinf H Infinity
MB-PSS multi-band power system stabilizer
NLLS nonlinear least squares
PLL phase locked loop
POW point-on-wave
PMU phasor measurement unit
Sl synthetic inertia
SNR signal to noise ratio
STG steam turbine and governor
TKF Taylor Kalman filter
QPLL quadrature phase locked loop
UKF unscented Kalman filter
ZOH zero order hold




1. SYSTEM REQUIREMENTS

The simulations are computationally intensive, and many useful tests take a non-negligible amount
of processing time. For reference, on a machine with 16GB of RAM and a 4-core, 1.9GHz
processor, simple simulations take about 20 seconds, while large tests like those needed to create
detailed empirical bode plots may take multiple hours. The testbed was designed and tested using
the following software.

Table 1: Software specs

Software Type Version
MATLAB Version Number: | 9.2.0.959691 (R2017a) Update 3
version
Java Version: Java 1.7.0_60-b19 with Oracle
version -java Corporation Java HotSpot(TM) 64-Bit

Server VM mixed mode

Computer Vision System Toolbox

Control System Toolbox
DO Qualification Kit
DSP System Toolbox
Filter Design HDL Coder
Toolboxes HDL Coder

Optimization Toolbox

Signal Processing Toolbox

Simscape Power Systems

Simulink
Symbolic Math Toolbox
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2. MODELING DETAILS

21. System Block Diagram

Figure 1 shows the topology of the system implemented in the testbed. It is a slightly modified
version of the Klein-Rogers-Kundur (KRK) two-area system initially proposed in [1]. The main
difference between the system in Figure 1 and the traditional KRK system is that the fourth
generator in Area 2 was split into three generators: G4, G5, and G6. In this system, Area 1 includes
bus B1 and everything to its left. Area 2, similarly, includes bus B2 and everything to its right. The
two areas are linked by two parallel 220km transmission lines. G1, G4, G5, and G6 can all be
replaced with CIGs.

&1 BAl B2 BA2 Bes &3

O+ 0

BG2 I ?j ] BG4| BG5| BGS
= LAl LA2 =

G2

Figure 1: System one-line diagram.
This means that the testbed includes inter-area modes as well as the higher frequency local modes.
A detailed view of the GIGs available in the testbed is shown in Figure 5. The block diagram in
Figure 2 shows the synchronous generators available in the testbed.

22, Synchronous Generators

The Simulink block diagram of the synchronous generator is shown in Figure 2.

\ 4

STG

Gen

v

—» MB-PSS » Exciter

Figure 2: Synchronous generator block diagram

The conventional generators are modeled using the built in Simscape blocks for synchronous
generators, steam turbines and governors (STG), and exciters. The exciter is controlled with a multi-
band power system stabilizer (MB-PSS) that was tuned so that the shape of the system frequency
curve resembles that of an actual power system when the system is subjected to a load connection
event as shown in Figure 3. After the load connection event, the system reaches the frequency nadir
at 7.5 seconds, and the recovery phase ends around 20 seconds. The frequency response of the MB-
PSS is shown in Figure 4 along with the parameters used at the time of the plot.
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Multi-Band Power System Stabilizer (mask)

This block implements a Multi-band Power System Stabilizer (MB-PSS). Two
operation modes are available: Detailed setting and simplified setting (IEEE
Std 421.5).

When "Detailed settings" is used, the low(L)-, intermediate(I)- and high(H)-
frequency time constants must be given in the following order:
Tx1 to Tx12 followed by Kx11 and Kx17 (where x=L, I or H).

Parameters

Mode of operation: Simplified settings 2
Global gain:

|10

Low frequency band: [ FL(Hz), KL ]

[0.5 10

Intermediate frequency band: [ FI(Hz), KI ]
|[0.75 40

High frequency band: [ FH(Hz), KH ]

[(12.0 160]

Signals Limits(VLmax,VImax,VHmax,VSmax)
|[.075 .15 .15 .15]

Figure 4: MB-PSS Design

Parasitic loads are included in each generator block to ensure numerical stability of load flow.
Mathworks describes the need for this in the Matlab R2017a documentation on the Synchronous
Machine block in the “Limitations” section. These parasitic loads are called “Ppara” in the block

When desired, the governor can be removed for any generator location. This allows the user to
compare the dynamics of the system with a synchronous generator and CIG more directly. Since
governor droop control can be directly emulated by a CIG, this part of the dynamics is not an
inherent difference between the two generation technologies. Removing the STG works by deleting
the STG block from the “G/Turbine & Regulators”block and then connecting the “Pref”
input to the “Pm” output. This forces a constant mechanical power at the shaft of the generator,

12
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which means that the system will retain the effect of the generator inertia, but it will not have any
effective droop control.

2.3. Converter Interfaced Generators

Figure 5 shows a block diagram of the CIG model. The main components of the CIG are the
measurement stage (V/A), the algorithm selection (not pictured), the frequency estimation stage
(Freq. Est.), and the output processing stage (Filters through Py).

BGlI

v

P
— K —{ZOH —%&—{
A
L SEl) Filters Ereq,
z Est.

Figure 5: Synthetic inertia control loop block diagram

2.3.1. Measurement Processing

The measurement processing stage is depicted as the “V/A” block in Figure 5. This block samples
the voltage and/or cutrent at a specified bus or the generator acceleration or speed at a specified
location at the sampling rate specified by SI. fs. The Simulink block diagram for the measurement
processing stage is shown in Figure 6.

Random
umbe
Sine Wave!
=4 [=]
= o . l o
s — m m

Product2

Number2
Rate Transition3
Noise Stdev2

f b iectr
A
o}

urement Delay 1

(-.

o

o
28
&

Figure 6: Measurement processing Simulink block diagram
The measurement processing stage allows the user to specify not only the sampling rate, but also the
quality of the measurements. This is accomplished through the user specifiable delay, noise
injection, sinusoid injection, and digital filtering. The delay functionality is useful for examining the
effects of communications delays when using remote measurements, while the noise injection
capabilities allow the user to test the performance of the system at different SNR levels (specified in
dB) of the input signal. The sinusoid injection allows the user to examine the effects of
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electromagnetic coupling the of the measurement signal with nearby signals like the power in the
transmission lines at the measurement bus. The “pre-filter” allows the user to test different
methods for removing these measurement corruptions.

2.3.2. Algorithm Selection

In order to avoid the computational expense of running every algorithm in every CIG during the
simulation, only the chosen algorithm is enabled. The user can select an algorithm using the
SI.alg variable, and this is generally all that a user interacts with. Sometimes, however, it may be
necessary to add a new algorithm to the testbed, in which case it will need to be added to the
algorithm selection logic. Since the algorithm selection logic is not entirely obvious in the block
diagram, the details are described here.

The algorithm enable inputs are all created using bit manipulation of the ST .alg variable. The
enable signals can be generated in the bits of enables with:

enables = 1« (Sl.alg(genNum) - 1)

where < is the left bit shift operator and genNum is the location of CIG. Therefore, if one were to
select algorithm 8, enables would be 128, or 00000000000000000000000010000000 in binary.
The enable signal for the 1** algorithm is then found as the (1 - 1) " bit of enables counting
from the least significant bit. This does not apply to the generator speed or generator acceleration
measurement driven SI control scenarios represented by SI.alg = 1and SI.alg = 0 because
these measurements do not have enable signals. The estimate of the frequency estimation algorithm
is then connected to the system using a switch. The error signal for applicable algorithms is also
passed through a switch, but this is hidden in the “Switch Alg Err” block to make the diagram more
readable.

2.3.3. Frequency Estimation Algorithms

All of the code for the frequency estimation algorithms can be found in “genLib.slx/Synthetic
Inertia/Frequency Estimation Algorithms/”.

The one phase algorithms can be used in either 1 or 3 phase mode. If SI.phase = ‘3ph’ then
the average of the frequency estimate from each phase will be used. Otherwise, if ST.phase =
‘A’ or ‘B’ or ‘C’ then only the estimate from that phase will be used. In either case, the output
of the error signal into the base workspace will be a 3-element vector at each time step. If
SI.phase = ‘3ph’ then the error for each phase will be represented. Otherwise, the error for
the phases that are not being measured will be 0 at each time step. The frequency estimation
algorithm options and their corresponding SI.alg codes are shown in Table 2.

Table 2: List of available frequency estimation algorithms

Algorithm SI.algcode

Measured Generator Acceleration

Measured Generator Speed

Phase Locked Loop (PLL)

3 Phase PLL 12

Quartz Phase Locked Loop (QPLL) B!

albhhjw|iIN|~|O

Unscented Kalman Filter (UKF) ¥

14



Algorithm SI.alg code
3 Phase UKF 6
H Infinity (Hinf) [ 7
3 Phase Hinf [9] 8
Extended Kalman Filter (EKF) [®l 9
3 Phase EKF 10
Clarke Transformation 3 Phase EKF [7:8] 11
Taylor Kalman Filter (TKF) 210 12
3 Phase TKF 210 13
Phasor Measurement Unit (PMU) [11] 14
3 Phase PMU ["1] 15
Nonlinear Least Squares (NLLS) ['2 16
3 Phase NLLS ['2 17

In order to maintain the generality of the allowable input signal, the input signal must be normalized.
This is accomplished by filling a buffer over the first few seconds of the simulation with the input
signal, which is used to determine the normalization factor for the whole simulation. This means
that if the buffer is large enough for the signal to come to steady state, then the normalized signal
will have an RMS value of 1. The block diagram for determining the normalization factor is shown
in Figure 7. The threshold for the switch is the same as the value of “Constant,” which evaluated to
1 for this simulation. Similarly, the number of samples in the buffer is set using the
SI.normWindow variable.

Constant1

round(SI.normWindow/60*Sl.fs)/Sl.fs 1/2*1/Sl.fs.
Constant Abs1
Relational
Operator1
Clock1
y
¥
In SIH P
Sample
and Hold @ 51 @
Clock norm
4800
@-—-’ Delays u max
Va

Abs Max
Buffer Gain Switch

Figure 7: Logic for determining the normalization factor for a frequency estimation algorithm input
signal

2.3.4. Post Processing

After the frequency estimation algorithms, there are two optional digital filters, a discrete derivative
filter, a gain, and a zero order hold as shown in Figure 5. The gain is set with ST .k, and the zero
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order hold brings the control signal from the algorithm sampled frequency, SI. fs, to the
simulation frequency.

The two optional filters are determined by the coefficients of their transfer functions. These
coefficients are generated in the “buildFilters” function of initSim.m. They can be turned
on and off using ST.use postFilt and SI.use controller. The controller filter is applied
first, and then the post filter is applied to the resulting signal. While the filters could be combined
into one filter, splitting them into two parts can help with numerical precision issues. For instance,
if there are many poles and zeros, the coefficients may not have enough precision to accurately
reproduce them. This is especially true if there are many poles and zeros near z=1.

2.4. Solver

In order to obtain the point-on-wave (POW) measurements, the solver for the Simscape portion of
the system, specified in the “Powergui” block, cannot be “Phasor.” Because of the
implementation of the CIG block, the “Powergui” solver must be discrete although this could be
changed with some effort. The benefit of implementing it as a discrete process is that in reality, the
frequency estimation algorithms would be implemented using a digital processort, so a discrete
simulation is more realistic. This means that the Simulink solver must also be discrete.

2.5. Transformers

The transformers in the simulation are implemented with delta-wye, three-phase transformer (two
windings) blocks from Simscape. The transformers step up the voltage from the generators and
loads for the transmission lines to reduce losses. Snubbers are used at each transformer to limit the
voltage transients in the system.

2.6. Transmission Lines

The shorter transmission lines, within each area are modeled as a pi section line, which simplifies the
necessary calculations without much impact to accuracy. The longer transmission lines, between
each area, are modeled as distributed lines since they are long enough that pi section models would
not be accurate enough. The transmission line parameters are the same as in the

power KundurTwoAreaSystem example provided by Matlab.

16



3. ADVANCED TESTING

All the advanced testing scripts are found in the “Test Scripts” folder, shown in Table 11, Section
4.4. This section offers a description of how to use these scripts and what they are doing under the
hood.

3.1. User Configurable Settings

All of the easily user configurable settings are assigned in “initSim.m” and “initAlgs.m.”
These settings can be set directly for single simulations or a set of simulation configurations can be
specified using one of the test case input methods. The parameters in the first section of
“initSim.m” are easily understood, do not have hidden interactions with other important
parameters of the simulation, and are useful in analyzing the performance of the physical system
under different conditions.

NOTE: 'The parameters in the later sections after this one offers a great deal of control over
the simulation but may require a deeper understanding of the back-end
implementation to use successfully and avoid unintended consequences.

3.1.1.  Generators and Steady State Power Flow

The parameters that affect the generators and steady state power flow are described in Table 3.

17



Table 3: Summary of generator and power flow parameters

Parameter Function Example
replaceGens Specifies the type of generator at G1, G4, | replaceGens = [1, 4, 6];
G5, and G6. Locations in this array will
be instantiated as CIGs, and all others will | G1, G4, and G6 will be instantiated
be synchronous generators. as CIGs and G2, G3, and G5 will
be synchronous generators.
removeSTGs Specifies generator locations which removeSTGs = [1, 2];
should not have steam turbine and
governors. The frequency response at G1 and G2 will have no governor
those locations will be limited to the response. This only makes sense if
generators’ inertial responses. G1 and G2 are synchronous
generators.
Hs The inertia of each generator is specified Hes = [2; 1; 2; 2 2+ 21;
in p.u. by the elements of “Hs .”
The inertia of G2 is 1p.u. and the
inertia of all other generators is
2p.u. This only affects
synchronous generators.
nomPows Sets the nominal power in watts of each nomPows = [1le9, 2e9,
generator. 1le9, 5e8, 2e8, 2e8];
The nominal power of G1 is 1e9
watts, the nominal power of G2 is
2e9 watts, and so on.
ssPows Specifies the steady state powers of each | ssPows = [1e8, 0, 2e8,
generator except G2. 5e7, 2e7, 2e7];

Generator 2 is a swing bus, so its steady
state power cannot be directly specified.
However, it can be indirectly specified by
picking the correct total system load,
which is done automatically in
“IinitSim.m” based on

‘Pg2 desired.”

The steady state reactive power for the
CIGs is automatically calculated by
running load flow on the system with all
synchronous generators in place. Then,
any CIGs will be assigned the steady
state reactive power calculated for the
generator in that position.

The steady state power of G1 is
1e8 watts, the steady state power
of G3 is 2e8 watts, and so on.

Note: the steady state power of G2
is not necessarily 0. This is
determined by the load flow and
can be indirectly set using

Pg2 desired.

18




Pg2 desired

Used to indirectly specify the steady state
power of G2. This is done automatically
in“initSim.m” by calculating the total
load in the system (before any load
connection events) that would require
Pg2 desired watts more than is
provided by G1 + G3 + G4 + G5 + G6.

Pg2 desired = 2e6;
The steady state power of G2 will
be approximately 2e6 watts. This
also dictates how much load is in
the system so that total generation
matches total load.

fracInAl

Specifies the distribution of the load in the
system. This dictates the power flow in
the system, e.g. if the local generation
matches the local load in both areas, then
there will be no power transfer between
areas at steady state.

fracInAl = 0.3;

While the total load power is
determined by Pg2_desired, 30% of
it will be in area 1, and 70% will be
in area 2. If generation is
distributed evenly between areas,
then power will flow from area 1 to
area 2 at steady state.

19




3.1.2.  Synthetic Inertia Control
Table 4: Summary of user configurable parameters for Sl control
Parameter Function Example
inSTI* Specifies the measurements that inSIgs CIGl = 'w2';
should be used for synthetic inertia.
This means that CIG1 will use
the generator speed
measurements from G2 for Sl
control if the Sl alg is set to
generator speed.
SI.alg Specifies which number algorithm SI.alg = 10*ones(1,6);
should be used for the Sl control. Can
also specify the use of generator This means that all CIGs will use
speed or generator acceleration the EKF to create a frequency
measurements for the control signal. A | estimate from POW data.
list of which number corresponds to
which algorithm can be found in
initSim.m.
SI.k The gain used for Sl control, denoted K | SI.k = [10, NaN, NaN,
in Figure 5. 0 0, 07;
CIG1 will use a gain of 10 to
generate the final control signal,
but all other CIGs will use a gain
of 0.
SI.phase The phase which the POW data should | ST .phase = ‘A’;

be sampled from.

The POW data used for
frequency estimation will be
sampled from phase A of the
bus specified by inST CIG*.

SI.use prefilt

Turns the prefilter on or off. Prefilters
are applied to the POW data before it
is used to create a frequency estimate.

SI.use prefilt =
[true, NaN, NaN,
false, false, false];

CIG1 will use the prefilter, but
none of the other CIGs will use
the prefilter.

SI.prefilt

Sets whether the prefilter will be 1: a
Butterworth filter 2: a Chebyshev filter
3: both filters

SI.preFilt =
ones (1,6) *3;

All CIGs will use both a
Butterworth filter and a
Chebyshev filter.
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SI.use postfilt

Turns the post filter on or off for each
CIG. The post filter is applied to the
frequency estimate as shown with the
“Filters” block in Figure 5. This is
applied immediately after the controller
and is therefore a good place for a low
pass filter.

SI.use postFilt =
[false, NaN, NaN,
false, true, false];

CIG5 will use the postfilter, but
none of the other CIGs will use
the postfilter.

SI.use controller

Turns the controller on or off for each
CIG. The controller is applied to the
frequency estimate as shown with the
“Filters” block in Figure 5. This is
applied before the postfilter. If the
controller has many poles, there may
be numerical inaccuracies that
introduce noise. This means it is often
better to separate any low pass filtering
and apply it with the postffilter.

SI.use controller =
[false, NaN, NaN,
false, true, truel];

CIG5 and CIG6 will use the
postfilter, but none of the other
CIGs will use the postfilter.

SI.use corr

Turns the correction algorithm on or off
for each CIG.

SI.use corr = [false,
NaN, NaN, true, true,
true];

CIG4, CIG5, and CIG6 will use
the correction algorithm but
CIG1 will not.

SI.fDelay Specifies the length of the initialization | STI.fdelay = 1.5;
period for the frequency estimate.
During initialization, the frequency The frequency estimate will be
estimate will be set to 1 p.u. until the set to 1 p.u. for the first 1.5
estimate becomes more accurate. seconds of the simulation.
SI.siOn Specifies the time when the synthetic SI.siOn = 2;

inertia control should be turned on.
This allows for transients in the
frequency estimate from initialization to
settle before any control action is
taken.

The Sl control will not start
injecting power until 2 seconds
into the simulation.

SI.normWindow

Specifies the number of cycles that
should be used to create the
normalization factor. The
normalization factor is applied to the
POW data before frequency estimation
so that the algorithms can be applied
to any signal that carries the system
frequency such as current and voltage.

SI.normWindow = 60;
The normalization factor will be
created by measuring the RMS
value of the signal over the first
60 cycles.
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SI.fs The sampling frequency for the POW SI.fs = 4800;
data. Usually this is 4.8 kHz.
The POW data will be sampled
at 4.8 kHz.
SI.delay The delay in the POW data. This can SI.delay = 0.01;

be used to simulate delay caused by
measurement devices and
communications.

The POW data used for
frequency estimation will be
delayed by 0.01 seconds.

SI.injectNoise

Specifies whether noise should be
injected into the POW measurements
for each CIG.

SI.injectNoise =
[false, NaN, NaN,
false, true, false];

Noise will be injected for the
POW data received by CIG5, but
not for any other CIG.

SI.SNR

Specifies the signal to noise ratio
(SNR) for the POW data after noise
injection if it is enabled.

SI.SNR =
80, 80,

(80,
801;

80, 80,

The SNR for POW data received
by each CIG will be 80 dB if
noise injection is enabled for that
CIG.

SI.overshootAmp

The amplitude of a sinusoidal injection
into the POW data in p.u. Setting this
to 0 will turn it off. This can be used to
simulate signal corruption from
coupling in the measurement device or
communications network.

SI.overshootAmp =
0.01;

A sinusoid with amplitude 0.01
p.u. will be injected into the
POW data.

SI.overshootFreq

The frequency of a sinusoidal injection
into the POW data in rad/s. This
feature can be used to simulate signal
corruption from coupling in the
measurement device or
communications network. It can be
turned on and off using the
SI.overshootAmp variable.

SI.overshootFreq =
8*2*pi;

A sinusoid with frequency 8*2*pi
rad/s will be injected into the
POW data if
SI.overshootAmp is not 0.

SI.ratelimit

Sets a rate limit on the output power of
the Sl control. This can be setto Inf
to remove the rate limit.

SI.ratelLimit = 10;
Each CIG is limited to changing
its output power by at most 10
watts per second.
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SI.saturation

Sets the saturation point for the output

power of the CIGs as a multiple of the

nominal power of each CIG. This can
be set to Inf to turn off saturation.

SI.saturation = 1.1;

Each CIG will be limited to
producing or consuming 1.1
times its nominal power.

al, bl a1: denominator coefficients al = [1 2];
b1: numerator coefficients bl = 1;
for the transfer function of the prefilter The transfer function of the first
(used for Butterworth filter) prefilter would be
1
s+ 2
az, b2 a2: denominator coefficients az = [1 21;
b2: numerator coefficients b2 = 1;
for the transfer function of the prefilter The transfer function of the
(used for Chebyshev filter) second prefilter would be
1
s+ 2
a3, b3 a3: denominator coefficients a3 = [1 27;
b3: numerator coefficients b3 = 1;
for the transfer function of the postfilter | The transfer function of the
postfilter would be
1
s+ 2
ad, b4 a4d: denominator coefficients a4 = [1 2]1;
b4: numerator coefficients bd = 1;
for the transfer function of the first filter | The transfer function of the first
in the controller controller filter would be
1
s+ 2
a5, bb a5: denominator coefficients ab = [1 2];
b5: numerator coefficients b = 13

for the transfer function of the second
filter in the controller

The transfer function of the

second controller filter would be
1

s+ 2
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3.1.3.  Frequency Estimation Algorithm Parameters

User configurable parameters for the algorithms listed in Table 2 are found in “initAlgs.m” and
are split up by algorithm. They are stored in the ST structure, so the extended Kalman filter (EKF)
parameters would be in ST .EKF for example. Modifying these parameters effectively requires an
understanding of the algorithm in question.

The frequency correction algorithm can be switched on and off using the “Sl.use_corr” variable,
and its parameters are specified in “initAlgs.m.” This correction algorithm is useful for
eliminating large transient errors in frequency estimates that can occur during faults and other
waveform distorting events.

If more detailed modifications are required, then you can modify the algorithms directly in
“genlib.slx/Synthetic Inertia/Frequency Estimation Algorithms/”

24



3.1.4.  Simulation and Event Settings
Table 5: Summary of general simulation and system event parameters
Parameter Function Example
tfstart Specifies the time that the system event tfstart = 5;
should begin. This means that either a
load is connected at this time or a fault A load connection event or a fault
begins at this time. will occur beginning at 5 seconds in
the simulation.
simLength The length of the simulation in seconds. simLength = 15;
The simulation will run for 15
seconds.
Ts The simulation is run using a discrete Ts = 1/24000;
solver, so this specifies the size of the
simulation time step. This should be a The simulation time step will be
multiple of ST . f£s for accurate results. 1/2400 seconds.
fault type Specifies what type of system event will fault type = 'LC1l';
occur.
A load connection event will occur
LC1 - Load connection in Area 1 in area 1.
LC2 - Load connection in Area 2
ABCG - Three phase to ground fault
ABG - Two phase to ground fault
AG - Single phase to ground fault
AB - Two phase fault
ABC - Three phase fault
Lconn al Specifies the size of the load to be Lconn_al = 100e6;

connected in area 1 in the event of a load
connection event there.

If a load connection event occurs in
area 1, it will be 100 MW.

Lconn a2

Specifies the size of the load to be
connected in area 2 in the event of a load
connection event there.

Lconn_a2 = 100e6;

If a load connection event occurs in
area 2, it will be 100 MW.

tdurload If there is a load connection event, this tdurLoad = 1;
specifies how long the load should remain
connected to the grid. The load will be disconnected 1
second after it is connected.
tdurshort If there is a fault in the grid, this specifies | tdurShort = 0.1;

how long the fault should persist before it
is cleared.

The fault will be cleared after 0.1
seconds.
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3.2 Test Case Input Methods

These scripts work by running initSim, before each test case is run, and then overwriting the
specified parameters with the specified values. This places some limitations on the parameters that
can be modified. For instance, in “initSim.m,” the load powers are calculated to yield a desired
output power at the swing bus (G2). This is useful for being able to easily guarantee the percentage
of generation that is handled at each generator. If the load powers are changed in one of the test
scripts, then the swing bus will output a different power than specified, in turn changing the share of
the generation at each generator. The other limitation is that if the reactive power flow in the
system is affected by a parameter change in a test script, then any converter interfaced generators
(CIGs) in the system will no longer produce the correct amount of reactive power. Also note that to
change the inertia of generators, the correct element of “Hs” must be modified. Modifying the
variable “H2” will not accomplish anything, but modifying “Hs (2) 7 will.

Any of the scripts in the format “test*MaxGain.m” allow for the same method of input
specification as their non-max gain counterparts. The only difference is that the script will find the
maximum stable gain of the test scenario and save the specified results using that gain.

3.2.1. Case by Case

Using “Test Scripts/testEachCase.m,” one can specify a set of tests case by case in the
code. The parameters in “initSim.m” will form the default parameters, but any parameters listed
in the “allTests” structure will be overwritten. The results to be saved for each test can also be
specified.

This script is useful for specifying a small set of tests where more than one parameter is being
varied. If only one parameter is being changed, it may be easier to use
“testSensitivityToParam.m,” and if there is a large set of tests, it may be easier to use
“testSpreadsheet.m.”

3.2.2. Parameter Range

Using “Test Scripts/testSensitivityToParam.m,” one can specify a set of tests as a list
of values for a specific parameter. For example, one can test the performance of all algorithms
under the same configuration using testVars ('SI.alg') = 0:17;. The parameters in
“initSim.m” will form the default parameters, but any parameters listed in the “allTests”
structure will be overwritten. The results to be saved for each test can also be specified.

This script is useful for specifying a set of tests where one parameter is being varied. If more than
one parameter is being changed and there are a small number of test cases, it may be easier to use
“testSensitivityToParam.m,” butif there is a large set of tests, it may be easier to use
“testSpreadsheet.m.”

3.2.3. Spreadsheet

Using “Test Scripts/testSpreadsheet.m,” one can specify a set of tests using a
spreadsheet. The parameters in “initSim.m” will form the default parameters, but any parameters
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listed in the spreadsheet will be overwritten. The results to be saved for each test can also be
specified.

This script is useful for specifying a large set of tests where more than one parameter is being varied.
If only one parameter is being changed, it may be easier to use “testSensitivityToParam.m,”
and if there is a small set of tests, it may be easier to use “testEachCase.m.” Spreadsheets can be
in .csv, .xls, or .xIsx format as long as Microsoft Excel is installed on the machine. An example of
valid spreadsheet content is shown in Table 6. The name of each test case is in the first row, and the
parameter to be overwritten is in the first column. The values are in the middle of the table, and
these can be strings or doubles.

Table 6: Example of valid spreadsheet format for "testSpreadsheet.m"

local_V_PLL B3_V _PLL BA2_V_PLL
inSI_CCD6 Vabc_G6 Vabc B3 Vabc A2
Sl.alg 2 2 2
Sl.use_postFilt 1 1 1
PLL_useFilt 0 0 0
PLL_3ph_useFilt 0 0 0
3.3. Empirical Bode Plots

Since this is not a linear system due to the generator and transmission line models, the empirical
Bode plot does not perfectly describe the system's dynamics. In fact, our research shows that most
input signals above 40Hz excite more than one frequency in the output, and the nonlinear
simulations reveal a resonance at 120Hz that is not adequately described by the Bode plot.
However, these Bode plots represent the system with enough accuracy to be useful as a tool for
designing a compensator for the system.

Matlab and Simulink’s system linearization tools do not work on the testbed because there are too
many interdependent blocks in the system. As such, creating empirical bode plots has been the only
way we have found to create a linear approximation of the system.

3.4. Maximum Stable Gain

Modify “initSim.m” to reflect the desired baseline simulation parameters that you would like to
test the performance of. Run “initSim” and “completeModel”, then run “findMaxGain” to
find the maximum stable gain for the environment variables specified in initSim.m. This can also
be used in combination with one of the scripts described in the Test Case Input Methods section.

NOTE: 'This script was designed to test max stable gain for a load connection event.

This script is useful for programmatically finding the maximum stable gain for a configuration or set
of configurations of the system. This reduces the human effort needed to compare the performance
of a set of configurations at their maximum stable gains.
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The script uses a binary search to find the maximum gain. The test condition of the binary search is
whether the simulation is stable at a gain K. If not, then K is larger than the maximum gain. Binary
search is also known as bisection search, but if you are unfamiliar, more information about the
binary search algorithm can be found here.

There are three ways that the script tests for system instability:

Simulation must run to completion

If the simulation does not run to completion, then there was an issue with the configuration.
An example of a results set that would fail this test is shown in Figure 8. Note that the
simulation length was 15 seconds and the load connection event occurred at 5 seconds.

44 Machine speeds
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Figure 8: Simulation ends early due to instability
Synchronism must be maintained
It is uncommon for a system to fail because of this point. This is because usually when the
system loses synchronism, it does not regain synchronism, but rather goes off to infinity,
which causes the simulation to end early as shown in Figure 8. Synchronism here is tested
by checking if all generators are maintaining the same frequency to within 0.1 pu (6 Hz).
There must not be significant oscillations induced in the generator speeds
This condition is tested using the fast Fourier transform (FFT) of the generator speeds. If

there is a peak with a prominence of at least 2e-6 above 5 Hz, then the oscillations are
considered significant. An example of a results set that fails this test is shown in Figure 9.

28



Machine speeds
r :

0.995 |

0.985 |

0987

0.975 |

4 6 é; 1‘0 1’2 1;1
Time (s)
Figure 9: Sl induced high frequency oscillations

3.4.1. Generating Data

1.) Set the bode plot generation parameters in “Test Scripts/example BodePlot.m” and
note the value of outSig. This determines where the output of the system is measured and affects
whether dynamics like the derivative filter are included. Also set the system configuration
parameters here or in initSim.m. The most important parameters to set for this are ST.alg, the
traditional inertia parameters, and the ST input parameters. All of these will have significant effects
on the empirical bode plot. Be sure to set the desired filtering in the system appropriately. Turning
the filters off is usually best for design since it allows the most modularity.

2.) Generate the empirical bode plot by running “Test Scripts/example BodePlot.m.” If
there are many frequencies in the “fmods” parameter, then this will take a long time. Also note that
low frequency tests take longer than high frequency tests because a whole number of cycles must be
injected.

Once you have generated the empirical bode plot data, you can use it to design a compensator or
you can use it to predict the performance of the system with a different algorithm. This prediction
is only accurate when model nonlinearities are not significant, so be sure to check the output csv file
to determine the range of frequencies that this is useful for. To perform this prediction, use
“make system bode.m” to remove the original algorithm’s frequency response. Then, the
resulting system bode plot can be composed with a different algorithm’s frequency response,
generated with “make algorithm bode.m” to predict the system frequency response with that
algorithm.

The empirical Bode plots are generated by setting the compensator transfer function to 1 and
breaking the loop in Figure 10 at Py and the location specified in the “outSig” variable. Then,
the open loop system is probed at a range of frequencies by applying a sinusoidal input at P4 and
measuring the output. The frequency response of the system at each input frequency is then
calculated by taking the ratio of the magnitude of the Fourier transform of the output at the input
frequency to that of the input: G. t£ (1, k) =0UT (idxout) /IN (idxin) ;. Where OUT is the FFT
of the output signal, IN is the FFT of the input signal, and idxin is the index of the input
frequency. G is the resulting frequency response.
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Figure 10: Synthetic inertia structure

3.4.2. Model Nonlinearities

Since this is a nonlinear model, an empirical bode plot will not capture all of the dynamics of the
system. In many cases, a pure sinusoid input with frequency w will induce an output with multiple
frequency components. This is detected by examining the FFT of the output. Every peak with
prominence at least '/ as large as the prominence of the peak at w is recorded in a .csv file. This
enables the user to see under which conditions the nonlinearities of the system have a significant
effect on the steady state output.

3.4.3. Designing Compensators

A graphical tool for designing a system compensator is provided in “Bode Design/
example BodeDesigner.m.” Instruction for using this tool are as follows:

1.) Set the bode plot generation parameters in “Test Scripts/example BodePlot.m” and
note the value of outSig. This determines where the output of the system is measured and
affects whether dynamics like the derivative filter are included. Also set the system
configuration parameters here or in initSim.m. The most important parameters to set for this
are SI.alg, the traditional inertia parameters, and the SI input parameters. All of these will
have significant effects on the empirical bode plot. Be sure to set the desired filtering in the
system appropriately. Turning the filters off is usually best for design since it allows the most
modularity.

2)

3)

4)

Generate the empirical bode plot by running “Test Scripts/example BodePlot.m.” If
there are many frequencies in the “fmods” parameter, then this will take a long time. Also note
that low frequency tests take longer than high frequency tests because a whole number of cycles
must be injected.

Run “Bode Design/ example BodeDesigner.m” to open a graphical interface for
designing the compensator through loop shaping. If any filters should be accounted for or
added to the empirical frequency response, be sure they are included in the argument of SYS =
frd(..) ;. This can be accomplished by calculating the frequency response of the filter in
question at the same frequencies as the empirical response and then combining them using

(13 * 22

Once you have finished your design, change the corresponding code in the “buildFilters”
function of “initSim.m” to initialize al through a5 and b1l through b5 correctly. Note that
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if there are a large number of poles and zeros, you may need to split the filter into two parts to
avoid negative effects from numerical precision limitations.

3.5. Results Analysis

The tools for analyzing simulation results can be found in the “Simulation Results” folder. This is
also where the test scripts save their results by default.

3.6. Comparing System Configurations

There are many cases where one might want to be able to save a snapshot of the simulation
parameters for a specific configuration as an identifier for the simulation’s results. For example, this
allows the user to recreate the simulation later to save a different variable or record the data in
higher resolution. Such a snapshot can be found in the “config” variable in the base workspace
after each simulation.

It may also be useful to compare two different results sets and understand what caused the
difference between them. This process is significantly accelerated by using the “Simulation
Results/compareConfigs.m” function. This function takes two config variables as inputs and
returns a copy of each variable that only retains the differences between them. This way the user
does not need to sift through the large number of identical parameters stored in the config
structures to find the differences.

3.7. Saving Downsampled Data

When simulations are run at 24kHz, even short simulations create a large amount of data, on the
order of 5 Gb. For most applications, 24kHz resolution is unnecessary, so a function is provided in
“Simulation Results/downsampleSimResults.m,” which downsamples any timeseries data to the
desired sampling frequency. This function can be used to save space and time.
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4, PROJECT CODE MAP

Provides a high-level description of the function of each .m file in the project.

Table 7: Top level files

File Name Description

“ completeModel.m This script updates the simulink block diagram to
reflect the system parameters selected in
initSim.m

© example_KRK_script 6g_faults.m This script runs the testbed for the configuration
specified in initSimand initAlgs.

‘& genLib.slx Contains the library models for the
traditional/converter interfaced generation blocks.

£ initSim.m System parameters are set in this file.

f initAlgs.m Frequency estimation algorithm parameters are
set in this file.

s KRK_17a_6g_useN.slx The Simulink model of the entire system, which is

modified by “completeModel .m” using
‘genlLib.slx.

5 powerlib_Mod.slx Modified version of the system library that allows
direct measurement of the synchronous
generator’s acceleration, when paired with
“spsSynchronousMachineModel Mod.sl

”

X

s spsSynchronousMachineModel Mod.slx Modified version of the system library that allows
direct measurement of the synchronous
generator’s acceleration, when paired with
‘powerlib Mod.slx”.

£ quickStart_example.m A file with a few built-in examples of how the
testbed might be used. This file is the same
structure as “testEachCase.m,” but includes a few
useful examples.

4.1. _/BODE DESIGN/

This folder contains tools for designing compensators with empirical Bode plots. The tools
for generating the data for these plots are found in the “Test Scripts” folder.
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Table 8: Bode design files

File Name

Description

© create_synthetic_data2.m

Creates three-phase synthetic data with different
types of corruption such as: phase imbalances,
distortion, amplitude modulation, frequency
modulation and noise. (Used by

make pm sigs fun.m)

£ example_BodeDesigner.m

Useful tool for designing a compensator for the
system based on an empirical bode plot. Uses
MATLAB's controlSystemDesigner.

£ filters_comp.m

Processes the output of “freq est EKF2.m"
before returning results.

© freq_est_*.m

These functions run a frequency estimation
algorithm on the input data. They are used to
create algorithm bode plots in

‘make algorithm bode.m.

©init_calc.m

Used in “freq est NLLS 1ph.m"to
determine algorithm initial conditions.

# make_algorithm_bode.m

Creates a bode plot of a frequency estimation
algorithm by itself.

© make_pm_sigs_fun.m

This function creates test signals with sinusoidally
varying frequency for use in creating algorithm
frequency response plots.

£ make_system_bode.m

Creates a system bode plot that theoretically
excludes the frequency estimation algorithm's
effect on the system.

9 setup_*.m

Initializes algorithm parameters for the matching
‘freq est *.m”function.

“yhat J fun.m

Auxiliary function for NLLS 1phase algorithm.

4.2, JESTIMATION ALGORITHMS/

This is an archive of the estimation algorithms provided at the beginning of June 2019. It is used in
“testMergeReadiness.m” to check if the algorithms in the simulation testbed perform the same
as the algorithms outside of the testbed.
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NOTE: Discrepancies between these two may be caused by updates to the algorithms in the
simulation testbed, and the algorithms in the simulation testbed should be assumed to
be the more accurate versions at the time of this archive.

Table 9: Estimation algorithm files

File Name

Description

£ alg_selector.m

A function that selects, initializes, and runs the
chosen frequency estimation algorithm.

© alphabetaT.m

Helper function for the UKF 3 phase (3ph) and
TKF 3ph algorithms that conditions the input.

© example_test_frestalg.m

Provides a user-friendly wrapper to

alg selector and plots the results compared
to the expected results (when using spreadsheet
data with known true values).

“ freq_est_*.m

These functions run a frequency estimation
algorithm on the input data.

© init_calc.m

Usedin “freq est NLLS 1ph.m"to
determine algorithm initial conditions.

£ init_calc_3ph.m

Usedin “freq est NLLS 3ph.m"to
determine algorithm initial conditions.

*

8 sim_*.slx

The Simulink block diagrams for the frequency
estimation algorithms that are implemented in
block diagram rather than code form. These are
used in their respective “freq _est *.m”files.

£ sim_example_test frestalg.m

Like “example test frestalg.m,”but
modified for use by “Test
Scripts/testMergeReadiness.m.”

£ syntheticdat_reader.m

Reads .xlIsx files containing POW data.

fyhat J fun.m

Auxiliary function for NLLS 1 phase algorithm.

@ yhat J fun_3ph.m

Auxiliary function for NLLS 3ph algorithm.

35




4.3. —ISIMULATION RESULTS/

Simulation results are saved here when using the test script files. This folder also contains tools for
analyzing simulation results.

Table 10: Simulation results files

File Name Description

“ compareConfigs.m Compares two structures containing the system
configuration variables and creates two new
structures, which only contain the differences
between the originals.

£ cursor_pointsAmp.m Finds the amplitude of a sine wave given an
exported cursor info structure. This
structure is created by selecting the peak and
trough of the wave with the datatip tool on a plot
and then exporting the data to the workspace.

£ cursor_pointsFreq.m Finds the amplitude of a sine wave given an
exported cursor info structure. This
structure is created by selecting two adjacent
peaks of the wave with the datatip tool on a plot
and then exporting the data to the workspace.

“ downsampleSimResults.m Downsamples time series data to the specified fs
to save space when saving large amounts of data.

© plotBodeComparison.m Plots multiple bode plots on the same axes for
comparison. Data is drawn from a list of .mat
files.

4.4, _ITEST SCRIPTS/

This folder contains test scripts that allow for easy specification of system configurations. The
results of these test scripts are saved in the “Simulation Results” folder. Use these tools to collect
data for later analysis.
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Table 11: Test script files

File Name

Description

© empiricalBodePlot.m

Base script for creating an empirical bode plot.

© example_BodePlot.m

Uses empiricalBodePlot to create an
empirical bode plot for the system configuration
specified in initSim.mand initAlgs.m.
Parameters specified in this file overwrite other
definitions.

“ findMaxGain.m

Running this after running initSim.m and
completeModel .m finds the maximum stable
gain for the system configuration.

“ testEachCase.m

Allows the user to specify a set of test scenarios
that are then run, and the results are saved to the
specified file.

“ testEachCaseMaxGain.m

Allows the user to specify a set of test scenarios
to find the maximum stable gain for. These tests
are then run, and the results are saved to the
specified file.

f testMergeReadiness.m

Compares the outputs of the frequency estimation
algorithms in the simulation testbed to the outputs
of the algorithms in the "Estimation Algorithms"
folder for the same input.

© testSensitivityToParams.m

Allows the user to specify a range of values for a
parameter to test the system at, and the results
are saved to the specified file.

© testSpreadsheet.m

Allows the user to specify a set of test scenarios
using a spreadsheet in .xsl, .xslx, or .csv which
are run and the results are saved.

© testSpreadsheetMaxGain.m

Allows the user to specify a set of test scenarios
to find the maximum stable gain for. The tests are
specified using a spreadsheet in .xsl, .xslx, or
.csv, and they are run and the results are saved.
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5. EXAMPLE

The code base includes a few pre-built examples for quickly familiarizing oneself with using the
testbed. These can be found in “quickStart_example.m.” This file can be used the same way as
“testEachCase.m,” but it includes some examples that show how some of the most commonly used
features can be modified. These examples include

1.) testing a system configuration under different fault conditions.
2.) testing a synthetic inertia configuration for different system power flow scenarios.
3.) testing a system configuration under different synthetic inertia controls.

Each of these examples have descriptions in the “quickStart_example.m” file, and this section goes
though the process of obtaining and interpreting the results of example 3.

The first step to running an example is to set the whichExample variable to the name of the
example you would like to run. Then, the £ilename variable should be set to the desired output
file name (do not include a file extension in the name) on line 162. For example 3, set
whichExample on line 40 to “faultConditions” and set f£ilename to “test” before running the
script. Once the simulation finishes, the command window will output “Done with simulations!!!!”

Your data can then be accessed in “Simulation Results/test.mat.” To analyze your data, you can
navigate to the “Simulation Results” folder in MATLAB, and run the command load test.mat,
which will load your simulation results into a map called “Results” in the base workspace. Typing
Results.keys into the command window will print out the data series that are saved in this
variable. The first part of the printed variable name shows which test the data series is from, and the
second part shows which variable is saved from that test. For example, ABfault configis the
config structure from the “ABfault” test.

To confirm the differences in the system configuration between each test case, you can use the
“compareConfigs” function as shown in Figure 11. For this example, the variables that changed
between each test are Lconn_al, fault type, tab off, tab on,and tdis Lc_ al,and each
variable’s values in the ABfault test are shown.

>> compConfig = compareConfigs (Results('ABfault config'), Results('LCareal config'), 'config'):
>> compConfig.config

struct with fields:

Lconn_al: 100000000
fault_type: 'AB'
tab_off: 5.1000
tab_on: 5
tdis_Lc_al: 20

Figure 11: Comparing system configurations

Now, we can plot the generator speeds that we saved. If you would like to save more or different
variables on subsequent trials, you can change the varsToSave variable on line 163. Figure 12
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shows the result of plotting these generator speeds using the provided code in the “Simulation

Results” folder.

>> abwall =
lcwall =
figure
subpliet{2,1,1)

plot (abwall)

ylabel ('Generator Speed
xlabel ('Time (s)'”
title('Generator Speeds
subplot (2,1, 2)

plot (lcwall)

ylabel ('Generator Speed
xlabel ('Time (s)')
title('Generator Speeds

As expected, this shows that a line-line fault occurred at 5 seconds in the ABfault test and a load
connection event occurred in the LCareal test. This example, and the others can be modified to

Results('LCarea

Results('ABfault w_al
")

1 wall

(p-u.)')

I B

’

for ABfault Test')

; 1.003

u

Generator Speed (p

1.001

-

Generator Speed (p.u.)
2
8

<)
©
©
~

1.002 |

1.001 |

Generator Speeds for ABfault Test

0.999
0

Time (s)

0.999 -

Generator Speeds for LCarea1 Test

o

Time (s)

Figure 12: Plotting example results

explore a host of dependencies and performance attributes of the system. Once thoroughly
understood, the testbed is a valuable and flexible tool for investigating the performance of an
electrical system with a variable amount of CIG penetration and different types of SI control.
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