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ABSTRACT

In March and April of 2020 there was widespread concern about availability of medical
resources required to treat Covid-19 patients who become seriously ill. A simulation
model of supply management was developed to aid understanding of how to best
manage available supplies and channel new production. Forecasted demands for critical
therapeutic resources have tremendous uncertainty, largely due to uncertainties about the
number and timing of patient arrivals. It is therefore essential to evaluate any process for
managing supplies in view of this uncertainty. To support such evaluations, we
developed a modeling framework that would allow an integrated assessment in the
context of uncertainty quantification. At the time of writing there has been no need to
execute this framework because adaptations of the medical system have been able to
respond effectively to the outbreak. This report documents the framework and its
implemented components should need later arise for its application.
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1. INTRODUCTION

In March and April of 2020 there was widespread concern about availability of medical
resources required to treat Covid-19 patients who become seriously ill. A simulation model of
the human and technical resources required to treat hospitalized patients was developed to
help assess the prospect of shortfall. This Treatment Model was embedded in an uncertainty
quantification (UQ) framework to provide information about the risk of resources demands
exceeding available capacity, and the uncertainties driving any unfavorable outcomes (Swiler et
al., 2020).

Reallocation among existing stockpiles and management of new resource source might be used
to mitigate resource shortfall risks, should they be likely. A simulation model of supply
management was therefore developed to assess such mitigations (Frazier et al., 2020). Analysis
of various outbreak projection scenarios using the Treatment Model showed that forecasted
demands for critical therapeutic resources have tremendous uncertainty, largely due to
uncertainties about the number and timing of patient arrivals. It is therefore essential to
incorporate uncertainty analysis in the evaluate process for managing supplies. We developed a
modeling framework that would allow an integrated assessment of the Treatment Model and
models of supply sources and routing managers in the context of uncertainty quantification.

Because adaptations of the medical system have been able to respond effectively to the
outbreak as of the time of writing, there has been no need to apply the framework on the real
system. This report documents the framework, its implemented components, and describes an
example application so that it can be rapidly deployed in the event that need arises. The
following Chapter (2) describes the framework and its components and illustrates its
operation. Chapter 3 discusses specific implementations of Routers based on optimization
formulations.



2. FRAMEWORK COMPONENTS AND INTERACTIONS

2.1. Overview

Hospital resource demands arise from patient inflows. Our analysis focuses on those resources
needed to treat patients diagnosed with Covid-19 and requiring hospitalization. Other hospital
patient flows and Covid-19 patients being cared for elsewhere are not considered.

Figure 1 illustrates the role of the Treater model object in translating an impinging patient arrival
stream into hospital resource requirements. Model details are provided elsewhere (Swiler et al. 2020,
Beyeler et al. 2020). The interface flows in Figure 1 show how Treaters interact with their
environment as resource consumers:

e Treaters are configured at initialization to describe the kinds of processes they implement,
the resource requirements associated with each process, and the likelihood of patients with
particular characteristics being treated via distinctive sets of processes (trajectories).

e Patients arrive at irregular times during the simulation. Patients may be described as simply
as by their number or may include demographic characteristics that can influence their
treatment trajectory probabilities. Internally, the Treater tracks the progress of patients
through their individual trajectories and derives the consequent resource requirements.

e Atany time, the Treater can be interrogated to determine resource use information.

Configuration information includes

- Possible treatment trajectories
- Kind of resources to track

— - How fixed, human, and consumable
— resource are used
Historical | ==

v EPI Data — ———p  Maximum and cumulative

= Model . Treater resource use can be polled by
Patients clients
arrive over >
time, with —_—]
demographic A Treater represents any scale of system
information Many instances can be defined (e.g. county
or not or individual hospitals)

Patient feeds from models, Implemented as a Java class and as web
history, ... service

Figure 1. Depiction of Some Treater Interface Flows



Treaters accumulate the resource requirements implied by patient flows and the practices described
in the configuration scripts. They do not model responses to resource constraints. In application to
the Covid-19 response assessment, Treaters signal the potential need for additional resources to
support nominal levels of patient care. Directing those resources to places that need them involves
integrating the demands derived by the Treaters with possible sources of supply. Doing this well
poses a complicated logistical and forecasting problem. It is therefore important to be able to assess
different algorithms or heuristics that might manage resource flows.

The Hospital Resource Supply model adds those elements and defines a framework for their
effective interaction. Figure 2 shows the top-level objects considered in the framework, along with
illustrative implementations:

Demand Supply Router
Model Model

Treaters implement
Demand and Supply

Cost-minimizing flows Instantaneous cost-free
relocation

Figure 2. Top-level Objects in the Supply Model Framework with Example Instances

Demand Models represent consumers of resources. The Demand Models anticipated in application
are Treaters, however the framework design is open to other possible resource destinations (e.g.
foreign aid). Supply Models are potential sources of resources. Although resource inventories are not
considered in deriving requirements and simulating treatment processes (as discussed above in
Section 1), hospitals do maintain inventories and can share them within and across hospital systems.
This aspect of hospital behavior is captured in the Supply Model. Supply Models can also be
warehouses with static inventory and producers, whose inventory increases according to an
anticipated production schedule.

Routers mediate information and material flows among Demand Models and Supply Models, as
detailed below. Various constraints and assumptions can be adopted in order to understand what
might be needed to meet aggregate resource constraints. Logistical constraints can be explicitly
considered and managed through an optimization approach, for example, as detailed in Section 3



below. In order to simply test the ability of any routing process to reconcile demand and supply, it is
useful to posit an ideal routing process that instantaneously affects routing of any surplus resource
to points of excess demand.

2.2. Details and lllustration

The Integration Framework manages the flows of information and resources among a collection of
otherwise independent objects. Supply inventories and demand amounts are calculated by individual
(possibly independent) models. In general, flows related to each kind of resource are managed
separately, with one or more independent routers used to manage flows of each resource. Resources
can include durable goods, consumables, healthcare workers and patients. Routers apply strategies to
determine movements of resources. The Framework allows resource projections used by routers to
differ from the ground truth defined for the system, meaning the overall evaluation can also assess
allocation problems that might arise from errors in the router’s projection algorithm.

Figure 3 shows a simple illustrative application involving ventilators and masks. Note that Treaters
demand multiple types of resources, and so the Demand:Masks and Demand:Ventilators
interactions may connect to the same underlying Treater object.

Demand: :‘_ <: Demand:
Masks e TNk I s Ventilators
- i
L < » Integration Framé’work < Rou}mg:

Masks ! \ Ventilators
v /l \\1
Supply: _— Sug)plv:
Masks B “T------_ \Ventilators

Figure 3 — lllustration of Information and Material Flows Managed

The Framework’s operation can be clearly illustrated through an example sequence of interactions.
The following figures depict the flow of information and ventilators mediated by a Router that
builds internal forecasts of future demand and supply as part of its optimization process.
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Figure 4 - Framework lllustration, Step 1
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Figure 5 - Framework lllustration, Step 2
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Figure 6 - Framework lllustration, Step 3
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Figure 7 - Framework lllustration, Step 4
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Figure 8 - Framework lllustration, Step 5
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Figure 9 - Framework lllustration, Step 6
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The Framework was implemented and exercised in a trial application involving allocation of
ventilators among US states based on alternative patient loads in combination with demand
projections that matched, overshot, or undershot those projections.

The application focuses on ventilators and uses a network-based optimization model (described
below in Section 3) to design inter-state ventilator transfers based on inventories and projected
needs. All inventories were held by the Treaters used to represent individual states, and no
production was included.

The network optimization model uses distance as a cost measurement, so ventilator moves between
closer locations are preferred. The optimization is run every 10 days, and both current state
information and forecasted demand over the following 30 days are used to recommend a pattern of
ventilator moves. The model will attempt to group its ventilator moves into one day 10 days in the
future. When that day comes, ventilators are moved, and the optimization is run again.

The framework allows for the projected patient flows used by routers to differ from the actual
patient flows arriving at Treaters in the future. This allows the performance of the router algorithm
as a whole, including its forecasts of future requirements, to be assessed so that its performance in
the real world can be more accurately gauged. For example, the projections used to make routing
decisions might use patient flows from a “low” epi model, while the actual patient flows are
generated using a “high” model. The projection process can be recalibrated based on observed
patient flows and prior projections about those flows.

The application considered the continental United States (48 states + Washington D.C.), and used
patient arrival rates derived from the upper and mean projections published by IHME on April 7,
2020 to define both the actual patient arrival streams as well as the projections used in the
optimization. The two patient arrival streams and their use as both actual and projected conditions
created four experimental cases. These four experiments, and the associated deficits experienced
over the simulation period, are summarized in Table 1 below.

Patient Streams Total
Total Maximum | Largest Supply-Peak
Actual Projected Supply Demand Deficit Demand
Mean Mean 28472 15975 0 12497
Mean Upper 28472 15975 -1136 12497
Upper Mean 28472 45168 -22796 -16696
Upper Upper 28472 45168 -16723 -16696

Table 1. Ventilator Deficits Observed for Different Combinations of Actual and Projected Cases
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The total supply is how many ventilators are in the system. The maximum demand is the maximum
ventilator demand over all of the days in the simulation. The largest deficit is the worst total
ventilator shortage, summed over all states experiencing a shortage, over all of the days. The final
column provides a theoretical best-case deficit resulting from instantaneous cost-free routing. The
optimal routing solution deviates from this in the experiment with shortfalls and perfect
foreknowledge (Upper/Upper) because relocations are constrained to occur once every 10 days, and
due to internal stochasticity.

The results also suggest, for this experiment, that planning for a “worse” projection may be
preferable, for even though there is a deficit if the Mean is actualized, it is far smaller than if the
Mean projection is used with the Upper actualization. Whether this holds more generally could be
evaluated with a systematic experiment.

Figures 10-12 show ventilator supply and demand over time for three experimental cases. These
illustrate how the demand and routing decisions play out over time. Figure 10 shows the demand
(orange line), the deficit (unmet demand) (grey line), and the unused supply (ventilators that aren’t
being used) (yellow line) for the Mean projection, Upper actual scenario:

00
2096
i

Figure 10 - Demand, Deficit (unmet demand), and Unused Supply for the Mean projection, Upper
actual experiment

Figure 11 shows the same variables for the Upper projection, Upper actual experiment, and Figure
12 shows them for the Upper projection, Mean actual experiment.
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Figure 11 - Demand, Deficit (unmet demand), and Unused Supply for the Upper projection, Upper
actual experiment
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Figure 12 - Demand, Deficit (unmet demand), and Unused Supply for the Upper projection, Mean
actual experiment
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3. ROUTING ALGORITHMS

The framework is designed to allow interoperability among different implementations of Demands,
Supplies, and Routers. While Treaters are likely to be the only kind of Demand objects, many kinds
of Supply and Router instances can be anticipated. Supplies for example might come from strategic
stockpiles, characterized by an initial inventory and criteria for release, while manufacturers’
inventories can accumulate over time, and may depend on access to upstream suppliers. Routers can
also be expected to have different subtypes depending on their scope of operation, the kind of
information available to them, and the processes they consider in modeling resource relocation.

The bounding case of instantaneous cost-free transport is useful for screening purposes because it
distinguishes cases in which routing of existing (and anticipated) resources could conceivably meet
projected demand from cases in which more supply or less demand is (also) required. Besides this
trivial implementation, two optimization algorithms have been developed to help bridge gaps
between demand and supply.

Klise and Bynum (2020) have developed an approach for evaluating alternative locations for facility
expansion based on minimizing aggregate patient access cost. It has been applied to analyze
alternative sites for adding hospital capacity in New Mexico (Figure 13 below). This formulation
might also interface with the framework in two ways: as a Router of patients to Treaters based on
cost minimization, and as a Router of new bed capacity to new Treater locations.

Total Trawel e
23.0
Mew Facilibies

Fofare

Figure 13 - Possible Hospital Expansion Locations to Minimize Patient Travel under a Hypothetical
Surge Scenario

Frazier et al. (2020) have implemented a general resource-routing algorithm for minimizing unmet
demand by relocation over network characterized by edge costs. The algorithm uses both current
and forecasted demands to plan relocations and can constrain relocation moves to occur only at
certain intervals in order to capture practical logistical considerations.
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4. SUMMARY

The urgent need to provide critical care to hospitalized Covid-19 patients has placed extraordinary
strain on the US healthcare system. As an aid to managing that strain, Sandia has developed a
modeling capability that integrates resource use, production, and allocation. This capability has been
designed to help identify and alleviate prospective resource shortfalls. By exercising this system
model over a range of possible conditions and contingencies, decision-makers can characterize the
risk of shortfalls as a function of time and location and find mitigations that represent tolerable
trade-offs among desired outcomes.
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