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Deuteron-Deuteron Elastic and Three and Four-Body Breakup
Scattering Using the Faddeev-Yakubovskii Equations

John F. Carew
Brookhaven National Laboratory, Nuclear Science & Technology Department
Upton, New York 11973-5000, USA
The deuteron-deuteron elastic and three and four-body breakup scattering cross section
have been calculated using the Faddeev-Yakubovskii (FY) chain-of-partition momentum-space
equations. In this calculation the initial two-cluster potential is split into separable and non-
separable components, and the effective potential is reduced to elastic two-body and three and four-
body breakup open-channels and a closed-channel many-body contribution. The closed-channel
contribution is determined by minimizing a variational bound. The Coulomb interaction was
included by expanding the initial and final Coulomb states in a Coulomb-Sturmian basis. The three
sets of chain-of-partition integral equations were solved for the elastic and three and four-body
breakup scattering amplitudes. The calculations were performed for the S = 2 spin/L = 0 angular-
momentum state. The elastic and double-breakup calculations were performed for energies up to

E = 5.48 MeV, while the single-breakup calculations were performed for energies up to E = 4.17

MeV. In the case of elastic scattering, the calculated scattering length of 5add =7.8+£03fmisin

good agreement with a FY cluster reduction calculation. The calculated phase shift is smaller than
that predicted by the resonating group model and this difference is believed to be due to the
differences in the potential and calculation methods. The breakup cross sections were calculated
as a function of initial deuteron momentum and fragmented-deuteron momentum. The d+d —
d+n+p cross sections were compared with neutron yield measurements and, while the
measurements also included the L > 0 components, the general features were consistent. Estimates
of the calculational uncertainties/bias are provided.

PACS number(s): 25.45.De, 25.55.Ci, 25.10. +s, 24.10. -i



I. INTRODUCTION

Over the past decade there has been a considerable effort in the development and
application of the four-body scattering equations. This has included calculations using the
Alt-Grassberger-Sandhas (AGS) equations [1] solved in momentum-space [2-5] using the
Coulomb screening/renormalization method [6]. Using a single-scattering approximation,
these equations have been extended to higher energies and used in analyzing recent three-
body (160 MeV) deuteron-deuteron breakup experiments [7]. Several configuration-space
approaches have also been used: (a) the Hyperspherical- Harmonics Kohn variational
method used to solve the Schrédinger equation [8-9] and (b) the direct numerical solution
method [10-12] and the cluster reduction method [13] used to solve the Faddeev-
Yakubovskii equations [14]. In addition, the resonating group model (RGM) has been used
to solve the Schrbdinger equation using the Kohn-Hulthen variational principle and
perform four-body bound-state and elastic and transfer scattering calculations [15]. These
efforts have been focused primarily on the four-body elastic and rearrangement collisions.

A momentum-space variational-bound formulation of the N-particle scattering
problem has been developed in Ref. [16]. This approach is based on the Faddeev-
Yakubovskii chain-of-partition formulation of the N-particle equations, and makes use of
the chain-space description developed by Benoist-Gueutal and L’Huillier [17] and
Cattapan and Vanzani [18]. It is shown that the scattering amplitude for the elastic,
rearrangement and breakup processes satisfies a Lippmann-Schwinger type integral
equation in which the kernel integration is over the open channels and the closed channels

enter through the effective potential. The effective potential is a scattering operator



momentum-space matrix-element consisting of: (1) a Born exchange-term of the two-
cluster potential between different open-channel states and (2) a term involving the closed
channel Green’s function. A variational estimate for this second term is obtained when the
closed channel Green’s functions are estimated using variational upper and/or lower
bounds. In this approach the inter-particle potential is not assumed to be separable as in
typical quasi-particle schemes.

In this paper, the N-particle variational-bound equations are applied to the case of
deuteron-deuteron elastic, three-body d+d — d+n+p breakup and four-body d+d —
n+p+n+p breakup scattering. The purpose of this effort was to: (1) asses the feasibility of
four-body elastic and breakup scattering calculations using the momentum-space N-
particle Faddeev-Yakubovskii equations, (2) solve the set of coupled chain-of-partition
transition amplitude integral equations and (3) identify solution techniques and difficulties
(numerical, modeling, etc.) in their application. While the elastic scattering is a simpler
and more transparent four-body calculation, the breakup reactions are considered to be of
special importance. Because of their continuum of multiple free-particle final states, it is
expected the resulting phase-space will be used in evaluating the scattering dynamics,
Coulomb effects and 3-N force models used in multi-particle calculations.

In Section-11, the application of the Ref. [16] N-particle methods to the four-body
deuteron-deuteron scattering system is described. This includes: (a) the separable
expansion of the two-cluster open-channel resolvent operator, (b) the description of the
open and closed channel contributions to the effective potential and (c) the coupled elastic
and breakup scattering amplitude equations. The calculation methods and results are

presented in Section-111 including (a) the scattering length and elastic cross sections with



comparisons to alternate methods calculations and (b) the three and four-body breakup
cross sections as a function of the initial relative deuteron momentum and the fragmented-
deuteron momentum. A summary of the calculations is presented in Section-1V and an

analysis of the calculational uncertainty and bias is provided in the Appendix.

Il. FOUR-BODY INTEGRAL EQUATIONS

A. N-particle Chain-labeled Pair-wise Potentials

The N-particle system interacting via pair-wise potentials may be described by the

Hamiltonian

H=Ho+) Vi=Ho+V (1)

i<j
where Ho is the center-of-mass free particle energy and V;; is the interaction between

particles i and j. Following the Faddeev-Yakubovskii approach, one introduces the
Partition-a,, (1 <p<N) as a particular decomposition of the N-particle system into a unique
grouping of p disjoint (non-interacting) subsets or clusters. A Partition-b,. that can be
formed by decomposing the specific clusters of the Partition-a,, is considered to follow
from the Partition-a, and satisfies the equation b, c a,. A Chain-Aj, of partitions
corresponding to the sequential breakup of the Partition-a,, into the r-cluster Partition-a,
is represented
AL ={a, Cay_q,..,ap4; Cap} 1<p<r<N. (2)
The chains that are initiated from the single cluster Partition-a;, A, and the chains

that terminate with the N-cluster Partition-a,, are denoted AT = A" and AY = 4,.. The



complete Chain-A is initiated from a; and terminated with a.

The interaction Va, internal to Partition-a,, is the sum of all two-body potentials

that are internal to the p clusters of a,,

Vp= O Voo 3

AnN-1cap

where 1, ., is the two-body interaction associated with the Partition-an-1.

In the case of the deuteron-deuteron scattering system, eighteen chains are required
to define the chain space. Accounting for particle identity, there are only seven physically
distinguishable chains. In this case, there is only one physically distinguishable chain
describing the complete decomposition which is taken to be A% : (1,2,3,4) -
(1,4)(2,3) - (D(4)(2,3) = (D(2)(3)(4), where particles 3 and 4 are protons. The
three corresponding two-cluster chains are obtained by particle exchange. While these four
chains define the initial and final states, all chains/partitions contribute to the total

scattering interaction.
B. Separable Expansion of the Two-cluster Open-Channel Resolvent Operator

The effective potential can be determined by separating the energetically allowed
open P-channels, and noting that the scattering operator associated with a potential V =
VP + V2 can be written as T? + T2 [16]. The closed-channel operator T? satisfies the

Lippman Schwinger equation



TQ = VQ 4 VQG,T? (4)

where G, is the resolvent operator for the unperturbed system. In the case that the potential
V supports a set of bound-states with state-vectors |¢;) and energies ¢€;, the separable

potential is taken to be

VP =30 VIed(VY{e 1V (5)

where the matrix V is defined

Vij = (@:ilV]e;) . (6)

It then follows from the relation

Vel)) =V —-V")p;) =0 (7
that VPsupports the same |¢;) states. Since V* is separable, T¥ can be determined

algebraically and is given by Equation (10) of Reference-19. In the present application,

|;) are the two-cluster eigen-states of the Hamiltonian H,, representing the open-channel

configurations. Recalling that G,, = G + GoTq,G, and taking

HE =Hy + V2, (8)
it follows that

T = V2 + V26, T2 (9)
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and

Ga, = GS + GoTL Gy . (10)

Using the separable expansion for T¥ [19], 652 may be expressed as a sum over open

channels: e.g., for the d+d — d+n+p single-breakup 2

Saz (E B qtzlz)

D(-) 2
E— ;
F—aqi ¥ e <<pa2 (E - q3,); da, |

GE = GoTL.Go = f dqa, |02 (E — @2, ); 4a,)

(11)

Sa2(93)(E — qu;pe3)< D(-)

D a2 ). a2 ).
+ Z quazdpe3|(pa2(e3)(E qaz), qaz,pe3> E_qu_p£3+ee3 (pa2(63)(E qaz)' qaz'p93>

e3C ap

where the “self-energy” matrices are defined

Sat (E—a2) = (o, |08, (E)) (12)

and

e (B = 02e) = (0000 06|00 Erpey))- (13)

The distorted bound-state and breakup states are, respectively,

1 In the case of double-breakup, the separable term for the 1902 ey (E —d2,); days Pess Pey)
four-body breakup state is added to the rhs of Equation (11) when E > 0.
2 For convenience, the energy continuation is suppressed when it is E + ie.



|92 (E)) = G (E)Va, |Pa,) (14)

and |(pCDI_2 (63)(E); p€3> = GC?Z (E)Vaz |(pa2 (63)( pe3)> 1 (15)



here ng is the resolvent operator associated with the potential Vag and p., is the relative
momentum of the two clusters resulting from the fragmentation. (It is noteworthy that
there is no distortion when the states are on-shell; i.e., |<p£2) - |(pa2> when E = —¢,,.)
The state [@g,; qa2> represents the situation in which the two clusters of Partition-a, move
freely with a (renormalized) relative momentum of q,,, with |(pa2> describing the bound-

states of the two clusters of Partition-a, with total energy = —¢, Similarly,

2

|Pa,es) Day pe3) represents a scattering state of H,,in which the initial partition is es (c

az) with the two clusters of a, having relative momentum q,, and the two clusters which

are bound in Partition-a, and are fragmented in Partition-e; have relative momentum p.. .
The state |(pe3> describes the initial bound states of the three clusters of Partition-es with

total energy -e,

,- The distorted states |@2 (E—d2,)idq,) and |92 .\(E —
qﬁz) s ay pe3) in Equation (11) are obtained by replacing the bound-states by the distorted
bound-states defined in Equations (14) and (15).

While the ch non-separable component of the potential is neglected in typical
separable expansions, the non-separable component is included in the present approach. It

enters the effective potential calculation through the closed-channel resolvent operator ng,

via the distortion of the initial and final states and as a contribution to the effective

potential. In the case of the deuteron-deuteron system, the closed-channel Q-space

resolvent operator sz is determined by a variational bound procedure.

C. Transition Amplitudes and the Effective Potential



In the case of deuteron-deuteron scattering, the Ref. [16] (Equation-58) expression

for the T;; scattering amplitudes reduces to the following three chains of coupled integral

equations: The d+d — d+d elastic amplitude

Ty = Vi1 + T11P1 VA4, (16)

the d+d — d+n+p breakup amplitudes

Ty = Vop + Ty PoV3; (17)

Ty1 = Vo1 + To2PoVoq + To1 PV (18)

and the d+d — n+p+n+p double-breakup amplitudes 3
T3y = V3 + T3P,V (19)

T31 = V3q + T3,P,V3q + T31P1 V4. (20)

On the left: Index-1 corresponds to the final one-momentum symmetrized two-partition
(2,4)(1,3) free-particle state, Index-2 corresponds to the two-momentum symmetrized
three-partition (1)(3)(2,4) free-particle state and Index-3 corresponds to the three-
momentum symmetrized four-partition (1)(2)(3)(4) free-particle state. On the right: Index-

1 corresponds to the initial one-momentum symmetrized two-partition (1,4)(2,3) free-

% In the double-breakup calculations, each fragmented deuteron was assumed to have the
same internal momentum and, as a result of momentum constraints, V55 and T4 are zero.



particle state and Index-2 corresponds to the two-momentum symmetrized three-partition
(2.3)(1)(4) free-particle state. The propagators P;(qg,; E) and P,(qg,, pe,; E) are
defined in terms of the self-energy matrices, S;, the cluster-cluster momenta, q,,and p.,,

and the deuteron cluster binding energy e,

Saz (E_qéz)
E-q},+2¢

Pi(qqy E) = (21)

and

Say(es)(E—Q,:Pe
Pz(qaz,pes;E) — 2az2( 5)( 2 3). (22)

E_qéz_pg3 +e

The deuteron breakup has been included by adding a second separable term to the
two-cluster potential, with a deuteron scattering state of momentum p,, replacing the
bound-state. P; is the bound-state propagator and P, is the corresponding breakup

propagator. ~ The distortion of the states |2 (E —q32,);qa,) and @) . \(E —

qﬁz) s ay pe3) is caused by the non-separable component of the potential. These distorted

states only appear as final states in the effective potential since there is no distortion of the
initial on-shell states.

The effective potential V;; consists of the two terms

ij

where the P-space open-channel (cluster-to-cluster) Born-exchange contribution is

11



B = <<pf Ol (i) +va §)|<pj> (24)

and Vl.?. is the Q-space closed-channel variational contribution. For convenience, in this

calculation the GC?Z input for the closed-channel variational contribution has been simplified

by (1) assuming a single term symmetric trial function g, and (2) neglecting the small
second-order contributions from the weakend non-separable potential.* The closed-

channel variational contribution is then °

VQ_4-T[

(") p@ (D
=gV ey, (25)

where the initial and final chain-dependent potentials are

V(1,1) = (golV(1,4)191), (26)
v(1,2) = (golV(2,3)l91), (27)
VD(2,1) = (golV(1,2)l¢2), (28)
V(2,2) = (golV(2,3)l¢2) (29)

and VO3, 1) = VO(i,2) = <(piD Ow(2,4) +v(13)lg0). (30)

The Q-space chain-dependent propagators are P9(1,1) = (1 + a?)/d, P%(1,2) =
—a(l14+a)/d, P°22)=P°11) and P9(2,1)=P%12), where a=
(90| V(1,4)|g0)/4Dy, d =1+ a? —2a® and Dy = (go|E — Ho|go)-

The Vi? contribution is determined using a variational-bound procedure [16] for

4 This simplification neglects the non-separable potential contributions to GC?Z (p=2

terms of A in Equation (62) of [16]).
® For convenience, Chains 2 and 5 of [16] have been relabeled 1 and 2, respectively.



determining GC?Z. Since the weakend closed-channel two-cluster potential Vag does not
support bound states below the four-body threshold (i.e., E < 2e = 4.38 MeV), the g, trial
function is spatially damped and the error in the GC?Z estimate can be shown to be of definite

sign allowing both upper and lower bound estimates to be determined. In this calculation,
the g, trial function is determined by minimizing the variational expression for which the
error is known to be positive, providing an upper bound. This g, minimization procedure
was carried out at each energy E < 2¢, providing an energy dependent trial function. When

E > 2¢, the trial function must include a four-cluster continuum scattering function.® Since

in these calculations E < 2¢ and Vi‘]? is generally small compared to B;;, the energy

dependence above E > 2¢ was approximated and V.3 (E > 2€) was taken to be V2 (E =
2€).

In order to account for the Coulomb interaction, the initial and final Coulomb states
were each expanded in a Coulomb-Sturmian (CS) basis. This allowed the CS components
of these states to be determined analytically. In the case of elastic scattering the expansion
was made in terms of the deuteron-deuteron separation, while in the breakup calculations
the expansion was made using the proton-proton separation. The calculation of the
effective potential matrix elements with respect to the CS basis was reduced to a one-
dimensional integration, which was performed numerically. In defining the basis states,
the scaling factor of the CS functions was taken to be 3.0 fm™ consistent with the range of
the potential. As in Ref. [20], a smoothing factor was employed to minimize the effect of

the Gibbs oscillations as the number of CS expansion terms (NCS) increases. The

® It is also noteworthy that when E > 2¢, the error in the variational estimate is not of
definite sign and the usual GC?Z bound feature is no longer available.
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calculations were performed with a converged CS expansion of NCS = 21 terms.

To minimize calculation uncertainty, numerical techniques including extended-
precision coding to eliminate round-off and increase accuracy, range-dependent mesh to
improve accuracy and convergence-acceleration to improve efficiency have been
employed. As additional qualification, a detailed and systematic assessment of the
calculational uncertainties has been performed. This has included the evaluation of the
uncertainties and bias, their propagation through the calculation and their effect on the d+d
scattering length and elastic amplitude calculation. This assessment is included in the

Appendix.

I11. CALCULATION METHODS AND RESULTS

A. Calculation Methods

The transition amplitudes were calculated using the set of ten (when the imaginary
amplitudes are included) coupled momentum-space integral Equations (16)-(20). In
solving the coupled equations, the T,, and T;, intermediate-state amplitudes were
determined first, and then substituted into the equations for the T,; and T;; final-state
amplitudes. The real and imaginary amplitude components were uncoupled iteratively.

The calculations were performed for the S = 2 spin/L = 0 angular momentum state

using the Gaussian two-body potential and associated deuteron (e = - 2.193 MeV) bound-

state wave function of Ref. [21].” The Vi? effective potential was calculated using an input

" The Gaussian potential is used here since: (1) it allows the effective potential (9D)



Green’s function determined using the upper-bound variational principle together with the
go Gaussian trial function. The L=0 component of the potential was determined by an
additional angular integration which was also performed analytically.

As an initial assessment of the calculation methods, the elastic unitarity was
calculated for energies up to 5.48 MeV (i.e. above the four-body breakup threshold). The
unitarity dependence on phase shift was determined and the calculated SS* and the SS* =
1 unitarity circle are compared in Figure-1. Below the three-body breakup threshold (phase
shift = - 13.7 deg) unitarity is satisfied exactly and the two curves agree to within + 0.01%.
This agreement is consistent with the accuracy of the T,; amplitudes, which was
independently determined to be + 0.01%. Above the three-body threshold the T,
amplitude also contributes to the unitarity sum, which results in a reduction in the T;;
fractional contribution and a reduction in the radius of the elastic unitarity curve (i.e., SS*
moves toward the inside of the circle). Similarly, above the four-body threshold (phase
shift = - 31.7 deg) the T3, amplitude results in a further reduction in the radius of the elastic
unitarity curve. However, because of the reduced magnitude of the breakup cross sections
this contribution is very small and the two curves are almost identical. This was confirmed
by the elastic channel calculation of Si,S,; =1 — S7;1S;; = 0.0006 and the breakup
channel calculation, using the T, amplitude, of S7,S,; = 0.0007 (the difference being
round-off). The breakup calculation involved the summation over both the final state two-

body momentum and the fragmented deuteron internal momentum.

integrations to be performed analytically and (2) the kernel of the amplitude momentum-
space integral equation is analytic, eliminating the difficulties associated with the complex
singularities and contour rotation that occur with Yukawa-type potentials.

15
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Figure-1. Elastic unitarity vs. phase shift (-1.1 to - 38.5 deg) to energies above the
four-body breakup threshold for the S = 2/L = 0 state. The three (four)-body threshold is
at -13.7 (-31.7) deg to the horizontal.

At the two breakup thresholds, the SS* calculations were performed with an extra
fine energy mesh to allow a detailed description of the elastic and breakup cross sections
and possible threshold anomalies. The calculations, however, indicated no anomalies or
significant deviations from the unitarity circle. This is believed to be due to the Coulomb
repulsion which maintains a large deuteron-deuteron separation at low energy (i.e., just
above the threshold). As a result of this barrier the breakup cross section is insensitive to
the energy (the cross section and its derivatives tend to zero at the threshold [22]) and no

anomaly or cusp is introduced.

B. Elastic Scattering



The scattering length calculation was performed using the zero-energy K-matrix

form of the d+d — d+d elastic chain equation. The elastic S = 2 Coulomb-modified

scattering length calculation predicted a value of *agq = +7.8 + 0.3 fm. This compares well

with the ®a4q = +7.5 fm value of Filikhin and Yakovlev (FY) of Ref. [23] calculated using

the configuration-space cluster reduction method including Coulomb effects.

The calculated S = 2/L = 0 deuteron-deuteron phase shift for momentum below the
single-breakup threshold (x < 0.325 fm™) is given in Figure-2. For comparison, the
Filikhin and Yakovlev phase shift calculation using the MT I-111 two-body potential [24]
is also included. It is seen that the FY phase shift is substantially more negative with a
stronger momentum dependence than the present calculation. This difference is believed
to be due to the difference in potentials. The Pauli repulsion in the symmetric S=2 spin
state ensures the particles are well-separated, increasing the sensitivity of the phase shift to
the long-range properties of the potential. The effective-range of the MT I-1ll Yukawa
potential is a factor of ~ 3 larger than the range of the Gaussian potential used in the present
calculation. As indicated in the effective-range expansion, this will increase the phase shift

and result in the observed stronger momentum dependence.®

8 As described in the Appendix, this value is the result of a recent detailed uncertainty
analysis that has been performed for the scattering length calculation and is an update of
the %agq = 8.2 fm value of Ref. [16].

® While the FY and present predictions of the phase shift disagree, the zero-energy
scattering length predictions are in good agreement. This insensitivity of the scattering
length to the potential is consistent with previous 4N calculations in which the particles are
well-separated [25].

17
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Figure-2. Deuteron-Deuteron S = 2/L = 0 scattering phase shift vs. the relative
momentum, below the three-body breakup threshold (x = 0.325 fm™).

In Figure-3, the phase shift calculation of Hofmann and Hale (HH) of Ref. [15] is
compared with the present calculation. The calculations were performed for momentum
above the double-breakup threshold (x = 0.460 fm™) up to a momentum of x = 0.514 fm"-
1 (E = 5.48 MeV), and use the RGM with the more recent Bonn-based Gaussian potential
of Kellermann et al. of Ref. [26]. While both calculations have the same linear dependence
on momentum, the present calculation indicates a smaller phase shift. However, the Bonn-
based potential used in the RGM calculation differs in that it includes: (1) a strong attractive
core for r < 1.0 fm and (2) a slightly weaker attractive long-range tail for r = 1.0 fm. The

larger phase shift of the RGM calculation is believed to be due to the strong attractive core



of the Bonn-based potential and the difference in the calculation methods.'® Variational-

bound calculations using the Ref. [26] Gaussian Bonn-based potential are presently

underway.
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Figure-3. Deuteron-Deuteron S = 2/L = 0 scattering phase shift vs. the relative
momentum, above the four-body breakup threshold (x = 0.460 fm™).

C. Three-Body d+d — d+n+p Breakup Scattering

The breakup cross section was calculated for the cases where the fragmented-

deuteron takes the specific fractions FKE = 0.1, 0.5 and 0.9 of the available (x > 0.325

10 The Ref [26] potential consists of (seventeen) damped Gaussian terms and the effective-
range is similar to that of the Gaussian used in the present calculation. Consequently,
unlike the difference with the FY calculation, this difference in phase shift can not be
explained by a difference in the effective-range of the potentials.

19



fm™1) initial kinetic energy. The calculations were performed as a function of initial relative
deuteron momentum up to a value of x = 0.449 fm™? (E = 4.17 MeV). The S=2/L =0
Coulomb-corrected breakup cross section for these cases is given in Figure-4 as a function

of the initial relative deuteron momentum.

30

- d+d — d+n+p

20 ——FKE=0.1

15
=-FKE = 0.5

10
FKE=0.9

Cross Section[102 mb/(sr> MeV)]

v

0 A
0.3 0.35 0.4 0.45
Relative Momentum (fm™)

Figure-4. d+d — d+n+p S =2/L =0 breakup cross section vs. the initial deuteron
relative momentum, as a function of the fragmented-deuteron kinetic energy fraction

(FKE).

The breakup cross section was also calculated as a function of FKE at E = 3.29
MeV (x = 0.398 fm™). The normalized breakup cross section and Coulomb-corrected cross
section are presented in Figure-5. For comparison, the normalized D(d,np)D neutron yield
measured by Cranberg et al. [27] at E = 3.15 MeV and zero-degrees (with the beam) is also

presented. Comparing the measured neutron yield and the uncorrected breakup cross



section, it is seen that both the measured and calculated peaks occur at FKE ~ 0.40.
However, the measurement is significantly more peaked than the calculation. The effective
potential includes terms that contribute exponential factors of the form exp (a k - K),
where K is the deuteron-deuteron relative momentum, which would produce the stronger
peak. However, these terms do not contribute in the L = 0 calculation. On the other hand,
the measurements of Cranberg and those of Cabral et al. [28] include a strong angular
dependence indicating the presence of the L > 0 contributions which would explain the

sharper peak in the measurements.

-2 d+d — d+n+p

—6—C-CROSS SECTION
—B—-CROSS SECTION
CRANBERG (et. al.)

Relative Neutron Yield

0 02 04 06 08 1
Fragmented-Deuteron Energy (FKE)

Figure-5. Relative neutron yield for the d+d — d+n+p reaction vs. the fragmented-
deuteron kinetic energy fraction (FKE), together with the (normalized) cross sections and
Coulomb-corrected cross sections. Calculations are at 3.29 MeV and the Cranberg et al.

measurements are at 3.15 MeV.
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D. Four-Body d+d — n+p+n+p Breakup Scattering

The breakup cross section was calculated for the cases where the fragmented-
deuterons each take an equal fraction FKE = 0.05, 0.25 and 0.45 of the available (x > 0.460
fm™1) initial kinetic energy. The calculations were performed as a function of the initial
relative deuteron momentum up to a value of x = 0.514 fm™ (E = 5.48 MeV). The S =
2/L = 0 Coulomb-corrected breakup cross section for these cases is given in Figure-6 as a

function of the initial relative deuteron momentum.

! d+d — n+p+n+p

>

m 08

E 0.6 ——FKE = 0.05
-a 04 =fi—-FKE = 0.45
§ 0o » FKE = 0.25
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3 0.44 0.46 0.48 0.5 0.52

S

Relative Momentum (fm™)

Figure-6. d+d — n+p+n+p S =2/L =0 breakup cross section vs. the initial deuteron
relative momentum, as a function of the fragmented-deuteron kinetic energy fraction

(FKE).

The breakup cross section was also calculated as a function of FKE at E = 4.82



MeV (x = 0.482 fm™). The normalized breakup cross section and Coulomb-corrected
breakup cross section are presented in Figure-7. The breakup cross section peaks at FKE
~0.25. The Coulomb-correction is especially large at FKE ~ 0.45, where the fragmented-
deuteron energy is large and the proton-proton energy is low. This reduces the proton
penetration factor C, and decreases the Coulomb uncorrected cross section in Figure-7.
This is exacerbated by the fact that the available energy in this case is only 0.434 MeV

compared to the 3-body breakup where the available energy is 1.097 MeV.

L2 d+d — n+p+n+p
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0 01 02 03 04 05
Fragmented-Deuteron Energy (FKE)

Figure-7. Normalized cross sections and Coulomb-corrected cross sections (i.e.,
the relative neutron yield) for the d+d — n+p+n+p reaction vs. the fragmented-deuteron

kinetic energy fraction (FKE) at 4.82 MeV.

IV. SUMMARY
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The deuteron-deuteron elastic, three-body and four-body breakup scattering
cross sections have been calculated using the Faddeev-Yakubovskii chain-of-partition
momentum-space equations as described in Ref. [16]. In this approach the initial two-
cluster potential is split into separable and non-separable components, and the scattering
amplitudes satisfy a Lippmann-Schwinger type equation in which the kernel integration is
over the open channels and the closed channels enter through the effective potential. The
effective potential consists of a P-space open-channel Born-exchange term and a Q-space
closed-channel variational contribution. The effective potential closed-channel term is
determined by minimizing a variational bound. The Coulomb effects are included by
expanding the initial and final Coulomb states in a Coulomb-Sturmian basis.

The three sets of chain-of-partition momentum-space integral equations were
solved for the elastic and three and four-body breakup scattering amplitudes. The

calculations were performed for the S = 2 spin/L = 0 angular-momentum state. In the case

of elastic scattering, the calculated scattering length of ®aqq = 7.8 + 0.3 fm compares well

with the ®aqq = +7.5 fm value of Ref. [23] calculated using the configuration-space cluster

reduction method. However, the calculated phase shift is smaller than that predicted by
the RGM calculation of Ref. [15]. This difference is believed to be due to the different
potentials and methods used in the calculations.

The d+d — d+n+p breakup cross sections were calculated as a function of initial
deuteron momentum and fragmented-deuteron energy. The cross sections were compared
with neutron yield measurements and, while the measurements also included the L > 0
angular-momentum and spin < 2 components, the general features were consistent. The

d+d — n+p+n+p breakup cross sections were also calculated as a function of initial



deuteron momentum and fragmented-deuteron energy. No comparisons were made for the
double-breakup since applicable measurements were not available. Estimates of the

calculational uncertainties and bias were also provided.

APPENDIX

Uncertainty Analysis for the Deuteron-Deuteron Scattering Calculations

A. Scattering Length Calculation

The variational-bound formulation of the N-particle scattering problem
based on the Faddeev-Yakubovskii equations is given in Ref. [16]. This integral-equation
formulation, implemented using a set of specially designed numerical methods, has been

applied to the two-cluster case of deuteron-deuteron scattering. Using this approach, the
S=2 deuteron-deuteron scattering length is calculated to be *agq = + 8.2 fm.

The various many-body techniques developed for the N > 4 particle systems
necessarily include a number of difficult to assess approximations. In order to assess the
effect of the calculational uncertainties introduced by the approximations and numerical
methods used in the scattering length calculation a detailed uncertainty analysis has been
performed. This analysis included: (a) the identification of the significant sources of
systematic bias and random uncertainties, (b) the estimation of these biases and (one-
sigma) uncertainties and (c) the determination of their effects on the deuteron-deuteron

scattering length calculation.
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The results of this analysis are summarized in Table-1. The determination of the
B;; Born-exchange term in the effective potential (Equation (24)) requires a two-
dimensional spatial integration. This integration was performed numerically using two
methods: (1) as a two-dimensional integral and (2) as the product of two one-dimensional
integrals in a series expansion. A comparison of these two methods indicated a scattering
length uncertainty of + 0.09 fm with no systematic bias.** The closed-channel Q-space
contribution to the effective potential (Equation (25)) was determined using the upper-
bound variational principle for the Q-space Green’s function. The selection of the trial
function in this variational calculation also introduces uncertainty. Based on sensitivity
studies of the upper bound, it is estimated this term contributes a scattering length bias of
+ 0.1 fm and an uncertainty of £ 0.1 fm.

The determination of the off-shell long-range distortion of the deuteron bound
states (Equations (14) and (15)), by the non-separable component of the potential V€,
requires the solution of a (negative-energy) Lippmann-Schwinger type integral equation

for ng (E). Since the potential V¢ is weak and to avoid the large momentum-space matrix

inversion, sz (E) was approximated with G,(E). To evaluate this approximation, the
second-order Born contribution was added. Comparing these calculations, it was
determined that the G, (E") calculation of the distorted bound states introduces a scattering
length uncertainty of + 0.2 fm and no bias. In addition, to reduce computing time a

relatively coarse mesh was used to represent the distortion momentum dependence. A fine

111t should be noted that the bias and uncertainty values given here are applicable for the
specific parameters and methods used in this calculation. It is expected these
uncertainties/biases can be reduced by further tightening of the methods.



mesh calculation indicated a scattering length bias of — 1.3 fm and an uncertainty of £ 0.1
fm.

To minimize numerical uncertainty in the determination of the Coulomb-Sturmian
components of the initial and final states, an accurate integration of the individual terms of
the CS-expansion and their summation is required. This calculation has been performed
using both a numerical and analytic approach. Comparison of the results of these
calculations indicates a scattering length uncertainty of = 0.1 fm and no systematic bias.
Based on the observed asymptotic dependence of the scattering length on the number of
CS expansion terms, it is estimated the numerics of the smoothing process used to minimize
the effect of Gibbs oscillations contribute a + 0.06 fm uncertainty. No bias is indicated.

In order to assess the accuracy of the Coulomb-Sturmian representation of the
initial and final states, the order of the expansion was increased to tighten the convergence
(NCS = 25 terms). The results indicated a scattering length bias of + 0.8 fm and an
uncertainty of £ 0.1 fm.

Applying this statistical bias/uncertainty data, the base calculation is updated in
Table-1 leading to a deuteron-deuteron scattering length of ®agq = + 7.8 + 0.3 fm. This
variational (momentum-space) integral-equation calculation is in good agreement with the

cluster-reduction (configuration-space) integro-differential equation result of *agq =+ 7.5

fm [23].

B. Scattering Amplitude Calculations

The zero-energy K-matrix scattering length and the E > 0 elastic T-matrix
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amplitude calculations differ in that the T-matrix calculation includes a pole in the two-
body momentum integration. The methods for treating this pole are well established and
introduce no significant additional uncertainty/bias. The calculation of the effective
potential is the same in both cases. The self-energy matrices, bound-state distortion and
propagators are determined using the exact same methods in these calculations. The
numerical solution of the K-matrix and T-matrix integral equations has been verified and
is not a significant contributor to the uncertainty. The Coulomb-Sturmian expansion is the
same. As a result it is expected the elastic amplitude calculational uncertainty will be
similar to that of the scattering length calculation.

In the case of the E > € breakup amplitude calculations, the inhomogenous terms
of the integral equations (Egs. (18) and (20)) include the T,, and T3, amplitudes and the
uncertainty and bias observed in the scattering length are not applicable. In addition, the
E > 2¢ four-body breakup effective potential does not include the required four-cluster

continuum scattering trial function. It is expected the use of the approximate energy-
independent Vi?(E = 2¢) potential above E > 2¢ will increase the uncertainty/bias as

energy increases. The uncertainty analysis for the breakup amplitudes will be performed

after the inclusion of the free-particle scattering term in the E > 2¢ trial function.



Table-1. Effect of Approximations and Numerical Methods Uncertainties and bias on the
Deuteron-Deuteron Scattering Length Calculation.

Source of Bias/Uncertainty Bias (fm) | Uncertainty (fm)
Born-exchange term spatial integration 0.0 + 0.09
Variational-bound trial function +0.1 + 0.01
Second-order Born distortion 0.0 + 0.2
Distortion coarse-mesh momentum -13 + 0.1
Coulomb-Sturmian convergence +0.8 + 0.1
Integration and summation of CS terms 0.0 + 0.1
Smoothing numeric 0.0 + 0.06
Total -04 + 0.3
Sa4q = 8.2 + Bias + Uncertainty = 7.8 £ 0.3 fm
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