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Deuteron-Deuteron Elastic and Three and Four-Body Breakup 
Scattering Using the Faddeev-Yakubovskii Equations 

 
 John F. Carew 

 
 Brookhaven National Laboratory, Nuclear Science & Technology Department 

Upton, New York 11973-5000, USA 
 

 The deuteron-deuteron elastic and three and four-body breakup scattering cross section 

have been calculated using the Faddeev-Yakubovskii (FY) chain-of-partition momentum-space 

equations.  In this calculation the initial two-cluster potential is split into separable and non-

separable components, and the effective potential is reduced to elastic two-body and three and four-

body breakup open-channels and a closed-channel many-body contribution.  The closed-channel 

contribution is determined by minimizing a variational bound.  The Coulomb interaction was 

included by expanding the initial and final Coulomb states in a Coulomb-Sturmian basis.  The three 

sets of chain-of-partition integral equations were solved for the elastic and three and four-body 

breakup scattering amplitudes.  The calculations were performed for the S = 2 spin/L = 0 angular-

momentum state.  The elastic and double-breakup calculations were performed for energies up to 

E = 5.48 MeV, while the single-breakup calculations were performed for energies up to E = 4.17 

MeV.  In the case of elastic scattering, the calculated scattering length of 5add = 7.8 ± 0.3 fm is in 

good agreement with a FY cluster reduction calculation.  The calculated phase shift is smaller than 

that predicted by the resonating group model and this difference is believed to be due to the 

differences in the potential and calculation methods.  The breakup cross sections were calculated 

as a function of initial deuteron momentum and fragmented-deuteron momentum.  The d+d → 

d+n+p cross sections were compared with neutron yield measurements and, while the 

measurements also included the L > 0 components, the general features were consistent.  Estimates 

of the calculational uncertainties/bias are provided.  

PACS number(s):  25.45.De, 25.55.Ci, 25.10. +s, 24.10. -i 

 



I.  INTRODUCTION  

 

Over the past decade there has been a considerable effort in the development and 

application of the four-body scattering equations.  This has included calculations using the 

Alt-Grassberger-Sandhas (AGS) equations [1] solved in momentum-space [2-5] using the 

Coulomb screening/renormalization method [6].  Using a single-scattering approximation, 

these equations have been extended to higher energies and used in analyzing recent three-

body (160 MeV) deuteron-deuteron breakup experiments [7].  Several configuration-space 

approaches have also been used: (a) the Hyperspherical- Harmonics Kohn variational 

method used to solve the Schrödinger equation [8-9] and (b) the direct numerical solution 

method [10-12] and the cluster reduction method [13] used to solve the Faddeev-

Yakubovskii equations [14].  In addition, the resonating group model (RGM) has been used 

to solve the Schrödinger equation using the Kohn-Hulthèn variational principle and 

perform four-body bound-state and elastic and transfer scattering calculations [15].  These 

efforts have been focused primarily on the four-body elastic and rearrangement collisions.   

A momentum-space variational-bound formulation of the N-particle scattering 

problem has been developed in Ref. [16].  This approach is based on the Faddeev-

Yakubovskii chain-of-partition formulation of the N-particle equations, and makes use of 

the chain-space description developed by Benoist-Gueutal and L’Huillier [17] and 

Cattapan and Vanzani [18].  It is shown that the scattering amplitude for the elastic, 

rearrangement and breakup processes satisfies a Lippmann-Schwinger type integral 

equation in which the kernel integration is over the open channels and the closed channels 

enter through the effective potential.  The effective potential is a scattering operator 
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momentum-space matrix-element consisting of: (1) a Born exchange-term of the two-

cluster potential between different open-channel states and (2) a term involving the closed 

channel Green’s function.  A variational estimate for this second term is obtained when the 

closed channel Green’s functions are estimated using variational upper and/or lower 

bounds.  In this approach the inter-particle potential is not assumed to be separable as in 

typical quasi-particle schemes.   

In this paper, the N-particle variational-bound equations are applied to the case of 

deuteron-deuteron elastic, three-body d+d → d+n+p breakup and four-body d+d → 

n+p+n+p breakup scattering.  The purpose of this effort was to: (1) asses the feasibility of 

four-body elastic and breakup scattering calculations using the momentum-space N-

particle Faddeev-Yakubovskii equations, (2) solve the set of coupled chain-of-partition 

transition amplitude integral equations and (3) identify solution techniques and difficulties 

(numerical, modeling, etc.) in their application.  While the elastic scattering is a simpler 

and more transparent four-body calculation, the breakup reactions are considered to be of 

special importance.  Because of their continuum of multiple free-particle final states, it is 

expected the resulting phase-space will be used in evaluating the scattering dynamics, 

Coulomb effects and 3-N force models used in multi-particle calculations.   

 In Section-II, the application of the Ref. [16] N-particle methods to the four-body 

deuteron-deuteron scattering system is described.  This includes: (a) the separable 

expansion of the two-cluster open-channel resolvent operator, (b) the description of the 

open and closed channel contributions to the effective potential and (c) the coupled elastic 

and breakup scattering amplitude equations.  The calculation methods and results are 

presented in Section-III including (a) the scattering length and elastic cross sections with 



comparisons to alternate methods calculations and (b) the three and four-body breakup 

cross sections as a function of the initial relative deuteron momentum and the fragmented-

deuteron momentum.  A summary of the calculations is presented in Section-IV and an 

analysis of the calculational uncertainty and bias is provided in the Appendix. 

 

II.  FOUR-BODY INTEGRAL EQUATIONS 

 

A.  N-particle Chain-labeled Pair-wise Potentials 

 
The N-particle system interacting via pair-wise potentials may be described by the 

Hamiltonian     

          (1) 

where  is the center-of-mass free particle energy and 𝑉𝑉𝑖𝑖𝑖𝑖 is the interaction between 

particles i and j.  Following the Faddeev-Yakubovskii approach, one introduces the 

Partition-𝑎𝑎𝑝𝑝 (1 ≤ p ≤ N) as a particular decomposition of the N-particle system into a unique 

grouping of p disjoint (non-interacting) subsets or clusters.  A Partition-𝑏𝑏𝑟𝑟 that can be 

formed by decomposing the specific clusters of the Partition-𝑎𝑎𝑝𝑝, is considered to follow 

from the Partition-ap and satisfies the equation 𝑏𝑏𝑟𝑟 ⊂ 𝑎𝑎𝑝𝑝.  A Chain-𝐴𝐴 𝑝𝑝
 𝑟𝑟  of partitions 

corresponding to the sequential breakup of the Partition-𝑎𝑎𝑝𝑝 R into the r-cluster Partition-𝑎𝑎𝑟𝑟 

is represented  

            𝐴𝐴 𝑝𝑝
 𝑟𝑟 = {𝑎𝑎𝑟𝑟 ⊂ 𝑎𝑎𝑟𝑟−1, … ,𝑎𝑎𝑝𝑝+1 ⊂ 𝑎𝑎𝑝𝑝�     1 ≤ p < r ≤ N.           (2) 

 
The chains that are initiated from the single cluster Partition-𝑎𝑎1 R, 𝐴𝐴 1

 𝑟𝑟, and the chains 

that terminate with the N-cluster Partition-𝑎𝑎𝑁𝑁, are denoted 𝐴𝐴 1
 𝑟𝑟 = 𝐴𝐴 𝑟𝑟 and 𝐴𝐴 𝑟𝑟

 𝑁𝑁 = 𝐴𝐴 𝑟𝑟.  The 
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complete Chain-A is initiated from 𝑎𝑎1 R and terminated with 𝑎𝑎𝑁𝑁.   

 The interaction 𝑉𝑉𝑎𝑎𝑝𝑝 internal to Partition-𝑎𝑎𝑝𝑝 is the sum of all two-body potentials 

that are internal to the p clusters of 𝑎𝑎𝑝𝑝 

         
𝑉𝑉𝑎𝑎𝑝𝑝 = � 𝑉𝑉𝑎𝑎𝑁𝑁−1

𝑎𝑎𝑁𝑁−1 ⊂ 𝑎𝑎𝑝𝑝

,        (3)
 

 
 
where  𝑉𝑉𝑎𝑎𝑁𝑁−1  is the two-body interaction associated with the Partition-aN-1. 
 
           In the case of the deuteron-deuteron scattering system, eighteen chains are required 

to define the chain space.  Accounting for particle identity, there are only seven physically 

distinguishable chains.  In this case, there is only one physically distinguishable chain 

describing the complete decomposition which is taken to be 𝐴𝐴 1
 4 : �1,2, 3,� 4�� →

�1, 4��(2, 3�� → (1)�4��(2, 3�� → (1)(2)(3�)(4�), where particles 3 and 4 are protons.  The 

three corresponding two-cluster chains are obtained by particle exchange.  While these four 

chains define the initial and final states, all chains/partitions contribute to the total 

scattering interaction. 

 

B.  Separable Expansion of the Two-cluster Open-Channel Resolvent Operator 

 

 The effective potential can be determined by separating the energetically allowed 

open P-channels, and noting that the scattering operator associated with a potential 𝑉𝑉 =

 𝑉𝑉𝑃𝑃 +  𝑉𝑉𝑄𝑄 can be written as 𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑄𝑄 [16].  The closed-channel operator 𝑇𝑇𝑄𝑄 satisfies the 

Lippman Schwinger equation 

 



𝑇𝑇𝑄𝑄 = 𝑉𝑉𝑄𝑄 + 𝑉𝑉𝑄𝑄𝐺𝐺0𝑇𝑇𝑄𝑄             (4) 

 

where 𝐺𝐺0 is the resolvent operator for the unperturbed system.  In the case that the potential 

V supports a set of bound-states with state-vectors |𝜑𝜑𝑖𝑖⟩ and energies 𝜖𝜖𝑖𝑖 , the separable 

potential is taken to be 

 

𝑉𝑉𝑃𝑃 =  ∑  𝑉𝑉𝑖𝑖,𝑗𝑗 |𝜑𝜑𝑖𝑖⟩(𝑉𝑉−1)𝑖𝑖𝑖𝑖�𝜑𝜑𝑗𝑗|𝑉𝑉           (5) 

 

where the matrix V is defined 

 

𝑉𝑉𝑖𝑖𝑖𝑖 = �𝜑𝜑𝑖𝑖|𝑉𝑉|𝜑𝜑𝑗𝑗� .            (6) 

 

It then follows from the relation 

 
𝑉𝑉𝑄𝑄|𝜑𝜑𝑖𝑖⟩ = (𝑉𝑉 − 𝑉𝑉𝑃𝑃)|𝜑𝜑𝑖𝑖⟩ = 0             (7) 

that 𝑉𝑉𝑃𝑃supports the same |𝜑𝜑𝑖𝑖⟩ states.  Since 𝑉𝑉𝑃𝑃 is separable, 𝑇𝑇𝑃𝑃 can be determined 

algebraically and is given by Equation (10) of Reference-19.  In the present application, 

 |𝜑𝜑𝑖𝑖⟩ are the two-cluster eigen-states of the Hamiltonian 𝐻𝐻𝑎𝑎2 representing the open-channel 

configurations.  Recalling that 𝐺𝐺𝑎𝑎2 = 𝐺𝐺0 + 𝐺𝐺0𝑇𝑇𝑎𝑎2𝐺𝐺0 and taking 

 

𝐻𝐻𝑎𝑎2
𝑄𝑄 = 𝐻𝐻0 + 𝑉𝑉𝑎𝑎2

𝑄𝑄 ,              (8) 

it follows that    

                                                    𝑇𝑇𝑎𝑎2
𝑄𝑄 = 𝑉𝑉𝑎𝑎2

𝑄𝑄 + 𝑉𝑉𝑎𝑎2
𝑄𝑄𝐺𝐺0𝑇𝑇𝑎𝑎2

𝑄𝑄             (9)                    
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and           

            𝐺𝐺𝑎𝑎2 = 𝐺𝐺𝑎𝑎2
𝑄𝑄 + 𝐺𝐺0𝑇𝑇𝑎𝑎2

𝑃𝑃 𝐺𝐺0 .          (10) 

 

Using the separable expansion for 𝑇𝑇𝑃𝑃 [19], 𝐺𝐺𝑎𝑎2
𝑃𝑃  may be expressed as a sum over open 

channels: e.g., for the d+d → d+n+p single-breakup 1, 2 

 

𝐺𝐺𝑎𝑎2
𝑃𝑃 = 𝐺𝐺0𝑇𝑇𝑎𝑎2

𝑃𝑃 𝐺𝐺0 = �𝑑𝑑q𝑎𝑎2 |𝜑𝜑𝑎𝑎2
𝐷𝐷 �𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �;𝐪𝐪𝑎𝑎2�
𝐒𝐒𝑎𝑎2�𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �
𝐸𝐸 − 𝐪𝐪𝑎𝑎22 +  𝝐𝝐𝑎𝑎2

�𝜑𝜑𝑎𝑎2
𝐷𝐷(−)�𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �;𝐪𝐪𝑎𝑎2| 

 
                                                                                                                                     (11)  
 

 + � �𝑑𝑑
𝑒𝑒3⊂ 𝑎𝑎2

𝐪𝐪𝑎𝑎2𝑑𝑑𝐩𝐩𝑒𝑒3|𝜑𝜑𝑎𝑎2(𝑒𝑒3)
𝐷𝐷 � 𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �;𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝒆𝒆𝟑𝟑�
𝐒𝐒𝒂𝒂𝟐𝟐(𝒆𝒆3)�𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 ;𝐩𝐩𝒆𝒆3�
𝐸𝐸 − 𝐪𝐪𝑎𝑎22 − 𝐩𝐩𝑒𝑒𝟑𝟑2 + 𝝐𝝐𝒆𝒆𝟑𝟑

�𝜑𝜑𝑎𝑎2(𝑒𝑒3)
𝑫𝑫(−) � 𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �;𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝒆𝒆𝟑𝟑� 

               
 
where the “self-energy” matrices are defined 

 

S𝑎𝑎2
−1 �𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 � =  �𝜑𝜑𝑎𝑎2�𝜑𝜑𝑎𝑎2
𝐷𝐷 (𝐸𝐸)�           (12) 

and 

S𝑎𝑎2(𝑒𝑒3)
−1 �𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 ; p𝑒𝑒3� =  �𝜑𝜑𝑎𝑎2(𝑒𝑒3)
(−) (p𝑒𝑒3)�𝜑𝜑𝑎𝑎2(𝑒𝑒3)

𝐷𝐷 (𝐸𝐸; p𝑒𝑒3)�.    (13) 

 

The distorted bound-state and breakup states are, respectively, 

 
1 In the case of double-breakup, the separable term for the  |𝜑𝜑𝑎𝑎2(𝑒𝑒4)

𝐷𝐷 � 𝐸𝐸 − 𝐪𝐪𝑎𝑎2
2 �;𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝒆𝒆𝟑𝟑,𝐩𝐩𝒆𝒆𝟒𝟒� 

four-body breakup state is added to the rhs of Equation (11) when E > 0. 
2 For convenience, the energy continuation is suppressed when it is 𝐸𝐸 + 𝑖𝑖𝑖𝑖. 
 
 
 



                   |𝜑𝜑𝑎𝑎2
𝐷𝐷 (𝐸𝐸)� = 𝐺𝐺𝑎𝑎2

𝑄𝑄 (𝐸𝐸)𝑉𝑉𝑎𝑎2|𝜑𝜑𝑎𝑎2�                     (14) 

and                |𝜑𝜑𝑎𝑎2(𝑒𝑒3)
𝐷𝐷 (𝐸𝐸);𝐩𝐩𝑒𝑒3� = 𝐺𝐺𝑎𝑎2

𝑄𝑄 (𝐸𝐸)𝑉𝑉𝑎𝑎2|𝜑𝜑𝑎𝑎2(𝑒𝑒3)( 𝐩𝐩𝑒𝑒3)� ,        (15)            
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here 𝐺𝐺𝑎𝑎2
𝑄𝑄  is the resolvent operator associated with the potential 𝑉𝑉𝑎𝑎2

𝑄𝑄 and 𝐩𝐩𝑒𝑒3 is the relative 

momentum of the two clusters resulting from the fragmentation.  (It is noteworthy that 

there is no distortion when the states are on-shell; i.e., |𝜑𝜑𝑎𝑎2
𝐷𝐷 � →  |𝜑𝜑𝑎𝑎2� when E = −𝜖𝜖𝑎𝑎2.)  

The state |𝜑𝜑𝑎𝑎2;𝐪𝐪𝑎𝑎2� represents the situation in which the two clusters of Partition-𝑎𝑎2 move 

freely with a (renormalized) relative momentum of 𝐪𝐪𝑎𝑎2, with |𝜑𝜑𝑎𝑎2� describing the bound-

states of the two clusters of Partition-𝑎𝑎2 R with total energy  = −𝜖𝜖𝑎𝑎2.  Similarly, 

|𝜑𝜑𝑎𝑎2(𝑒𝑒3);𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝑒𝑒3� represents a scattering state of 𝐻𝐻𝑎𝑎2in which the initial partition is e3 (⊂

 a2) with the two clusters of 𝑎𝑎2 having relative momentum 𝐪𝐪𝑎𝑎2 and the two clusters which 

are bound in Partition-𝑎𝑎2 R and are fragmented in Partition-𝑒𝑒3 R have relative momentum 𝐩𝐩𝑒𝑒3.  

The state |𝜑𝜑𝑒𝑒3� describes the initial bound states of the three clusters of Partition-e3 with 

total energy -𝜖𝜖𝑒𝑒3. The distorted states |𝜑𝜑𝑎𝑎2
𝐷𝐷 �𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �;𝐪𝐪𝑎𝑎2� and |𝜑𝜑𝑎𝑎2(𝑒𝑒3)
𝐷𝐷 �𝐸𝐸 −

𝐪𝐪𝑎𝑎2
2 �;𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝑒𝑒3� in Equation (11) are obtained by replacing the bound-states by the distorted 

bound-states defined in Equations (14) and (15).  

 While the 𝑉𝑉𝑎𝑎2
𝑄𝑄 non-separable component of the potential is neglected in typical 

separable expansions, the non-separable component is included in the present approach.  It 

enters the effective potential calculation through the closed-channel resolvent operator 𝐺𝐺𝑎𝑎2
𝑄𝑄 , 

via the distortion of the initial and final states and as a contribution to the effective 

potential.  In the case of the deuteron-deuteron system, the closed-channel Q-space 

resolvent operator 𝐺𝐺𝑎𝑎2
𝑄𝑄  is determined by a variational bound procedure.   

 

C.  Transition Amplitudes and the Effective Potential 



 

In the case of deuteron-deuteron scattering, the Ref. [16] (Equation-58) expression 

for the 𝑇𝑇𝑖𝑖𝑖𝑖 scattering amplitudes reduces to the following three chains of coupled integral 

equations:  The d+d → d+d elastic amplitude 

  

                           𝑇𝑇11 = 𝑉𝑉11 + 𝑇𝑇11𝑃𝑃1𝑉𝑉11,                (16) 

 

the  d+d → d+n+p breakup amplitudes  

  

                                       𝑇𝑇22 = 𝑉𝑉22 + 𝑇𝑇22𝑃𝑃2𝑉𝑉22                 (17) 

                  𝑇𝑇21 = 𝑉𝑉21 + 𝑇𝑇22𝑃𝑃2𝑉𝑉21 + 𝑇𝑇21𝑃𝑃1𝑉𝑉11       (18) 

 

 and the d+d → n+p+n+p double-breakup amplitudes 3  

                           𝑇𝑇32 = 𝑉𝑉32 + 𝑇𝑇32𝑃𝑃2𝑉𝑉22                  (19) 

                 𝑇𝑇31 = 𝑉𝑉31 + 𝑇𝑇32𝑃𝑃2𝑉𝑉21 + 𝑇𝑇31𝑃𝑃1𝑉𝑉11.         (20) 

 

On the left: Index-1 corresponds to the final one-momentum symmetrized two-partition 

(2,4�)(1,3�) free-particle state, Index-2 corresponds to the two-momentum symmetrized 

three-partition (1)(3�)(2,4�) free-particle state and Index-3 corresponds to the three-

momentum symmetrized four-partition (1)(2)(3�)(4�) free-particle state.  On the right: Index-

1 corresponds to the initial one-momentum symmetrized two-partition (1,4�)(2,3�) free-

 
3 In the double-breakup calculations, each fragmented deuteron was assumed to have the 
same internal momentum and, as a result of momentum constraints, 𝑉𝑉33 and 𝑇𝑇33 are zero. 
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particle state and Index-2 corresponds to the two-momentum symmetrized three-partition 

(2,3�)(1)(4�) free-particle state.  The propagators 𝑃𝑃1�𝐪𝐪𝒂𝒂𝟐𝟐;  𝐸𝐸� and  𝑃𝑃2�𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝑒𝑒3;𝐸𝐸� are 

defined in terms of the self-energy matrices, 𝑆𝑆𝑖𝑖, the cluster-cluster momenta, 𝐪𝐪𝑎𝑎2and 𝐩𝐩𝑒𝑒3 ,  

and the deuteron cluster binding energy 𝜖𝜖,  

 𝑃𝑃1�𝐪𝐪𝒂𝒂𝟐𝟐;𝐸𝐸� =
𝑆𝑆𝒂𝒂𝟐𝟐�𝐸𝐸−𝐪𝐪𝑎𝑎2

2 �

𝐸𝐸−𝐪𝐪𝑎𝑎2
2 + 2𝜖𝜖

                          (21) 

and 

𝑃𝑃2�𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝑒𝑒3;𝐸𝐸� =
𝑆𝑆𝑎𝑎2(𝑒𝑒3)�𝐸𝐸−𝐪𝐪𝑎𝑎2

2 ;𝐩𝐩𝑒𝑒3 �
𝐸𝐸−𝐪𝐪𝑎𝑎2

2 −𝐩𝐩𝑒𝑒3
2 +𝜖𝜖

 .         (22)   

  

 The deuteron breakup has been included by adding a second separable term to the 

two-cluster potential, with a deuteron scattering state of momentum 𝐩𝐩𝑒𝑒3 replacing the 

bound-state.  𝑃𝑃1 is the bound-state propagator and 𝑃𝑃2 is the corresponding breakup 

propagator.  The distortion of the states |𝜑𝜑𝑎𝑎2
𝐷𝐷 �𝐸𝐸 − 𝐪𝐪𝑎𝑎2

2 �;𝐪𝐪𝑎𝑎2� and |𝜑𝜑𝑎𝑎2(𝑒𝑒3)
𝐷𝐷 �𝐸𝐸 −

𝐪𝐪𝑎𝑎2
2 �;𝐪𝐪𝑎𝑎2 ,𝐩𝐩𝑒𝑒3� is caused by the non-separable component of the potential.  These distorted 

states only appear as final states in the effective potential since there is no distortion of the 

initial on-shell states.   

The effective potential 𝑉𝑉𝑖𝑖𝑖𝑖 consists of the two terms 

 

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄 ,           (23) 

 

where the P-space open-channel (cluster-to-cluster) Born-exchange contribution is  

 



𝐵𝐵𝑖𝑖𝑖𝑖 = �𝜑𝜑𝑖𝑖
𝐷𝐷 (−)�𝑉𝑉�2, 4�� + 𝑉𝑉(1, 3�)�𝜑𝜑𝑗𝑗�           (24) 

  

and 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄 is the Q-space closed-channel variational contribution.  For convenience, in this 

calculation the 𝐺𝐺𝑎𝑎2
𝑄𝑄  input for the closed-channel variational contribution has been simplified 

by (1) assuming a single term symmetric trial function 𝑔𝑔0 and (2) neglecting the small 

second-order contributions from the weakend non-separable potential.4  The closed-

channel variational contribution is then 5 

               𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄 =

4𝜋𝜋
𝐷𝐷0

𝑽𝑽𝑖𝑖
(𝐹𝐹)𝑷𝑷𝑄𝑄 𝑽𝑽𝑗𝑗

(𝐼𝐼) ,                                     (25) 

where the initial and final chain-dependent potentials are 

 𝑉𝑉(𝐼𝐼)(1,1) = ⟨𝑔𝑔0|𝑉𝑉�1, 4��|𝜑𝜑1⟩,                        (26) 

 𝑉𝑉(𝐼𝐼)(1,2) = ⟨𝑔𝑔0|𝑉𝑉�2, 3��|𝜑𝜑1⟩,                        (27) 

  𝑉𝑉(𝐼𝐼)(2,1) = ⟨𝑔𝑔0|𝑉𝑉�1, 4��|𝜑𝜑2⟩,                        (28)                        

                            𝑉𝑉(𝐼𝐼)(2,2) = ⟨𝑔𝑔0|𝑉𝑉�2, 3��|𝜑𝜑2⟩                          (29)                                 

and     𝑉𝑉(𝐹𝐹)(𝑖𝑖, 1) =  𝑉𝑉(𝐹𝐹)(𝑖𝑖, 2) = �𝜑𝜑𝑖𝑖
𝐷𝐷 (−)|𝑉𝑉�2, 4�� + 𝑉𝑉�1, 3��|𝑔𝑔0⟩.    (30) 

The Q-space chain-dependent propagators are 𝑃𝑃𝑄𝑄(1,1) = (1 + 𝑎𝑎2)/𝑑𝑑,  𝑃𝑃𝑄𝑄(1,2) =

−𝑎𝑎 (1 + 𝑎𝑎)/𝑑𝑑, 𝑃𝑃𝑄𝑄(2,2) = 𝑃𝑃𝑄𝑄(1,1) and 𝑃𝑃𝑄𝑄(2,1) = 𝑃𝑃𝑄𝑄(1,2), where 𝑎𝑎 =

⟨𝑔𝑔0� 𝑉𝑉�1, 4���𝑔𝑔0⟩/4𝐷𝐷0,  𝑑𝑑 = 1 + 𝑎𝑎2 − 2𝑎𝑎3 and 𝐷𝐷0 = ⟨𝑔𝑔0|𝐸𝐸 − 𝐻𝐻0|𝑔𝑔0⟩. 

The 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄 contribution is determined using a variational-bound procedure [16] for 

 
4 This simplification neglects the non-separable potential contributions to 𝐺𝐺𝑎𝑎2

𝑄𝑄  (p = 2 
terms of 𝐴𝐴 in Equation (62) of [16]).   
5 For convenience, Chains 2 and 5 of [16] have been relabeled 1 and 2, respectively. 



                                                                                                                                                        
13   

determining 𝐺𝐺𝑎𝑎2
𝑄𝑄 .  Since the weakend closed-channel two-cluster potential 𝑉𝑉𝑎𝑎2

𝑄𝑄 does not 

support bound states below the four-body threshold (i.e., E < 2𝜖𝜖 = 4.38 MeV), the 𝑔𝑔0 trial 

function is spatially damped and the error in the 𝐺𝐺𝑎𝑎2
𝑄𝑄  estimate can be shown to be of definite 

sign allowing both upper and lower bound estimates to be determined.  In this calculation, 

the 𝑔𝑔0 trial function is determined by minimizing the variational expression for which the 

error is known to be positive, providing an upper bound.  This 𝑔𝑔0 minimization procedure 

was carried out at each energy E < 2𝜖𝜖, providing an energy dependent trial function.  When 

E > 2𝜖𝜖, the trial function must include a four-cluster continuum scattering function.6  Since 

in these calculations E ≲ 2𝜖𝜖 and 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄 is generally small compared to 𝐵𝐵𝑖𝑖𝑖𝑖 , the energy 

dependence above E > 2𝜖𝜖 was approximated and 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄(E >  2𝜖𝜖) was taken to be 𝑉𝑉𝑖𝑖𝑖𝑖

𝑄𝑄(E =

2𝜖𝜖). 

In order to account for the Coulomb interaction, the initial and final Coulomb states 

were each expanded in a Coulomb-Sturmian (CS) basis. This allowed the CS components 

of these states to be determined analytically.  In the case of elastic scattering the expansion 

was made in terms of the deuteron-deuteron separation, while in the breakup calculations 

the expansion was made using the proton-proton separation.  The calculation of the 

effective potential matrix elements with respect to the CS basis was reduced to a one-

dimensional integration, which was performed numerically.  In defining the basis states, 

the scaling factor of the CS functions was taken to be 3.0 fm-1 consistent with the range of 

the potential.  As in Ref. [20], a smoothing factor was employed to minimize the effect of 

the Gibbs oscillations as the number of CS expansion terms (NCS) increases.  The 

 
6 It is also noteworthy that when E > 2𝜖𝜖, the error in the variational estimate is not of 
definite sign and the usual 𝐺𝐺𝑎𝑎2

𝑄𝑄  bound feature is no longer available. 



calculations were performed with a converged CS expansion of NCS = 21 terms. 

To minimize calculation uncertainty, numerical techniques including extended-

precision coding to eliminate round-off and increase accuracy, range-dependent mesh to 

improve accuracy and convergence-acceleration to improve efficiency have been 

employed.  As additional qualification, a detailed and systematic assessment of the 

calculational uncertainties has been performed.  This has included the evaluation of the 

uncertainties and bias, their propagation through the calculation and their effect on the d+d 

scattering length and elastic amplitude calculation.  This assessment is included in the 

Appendix. 

 

III.  CALCULATION METHODS AND RESULTS 

 

A. Calculation Methods 

 

The transition amplitudes were calculated using the set of ten (when the imaginary 

amplitudes are included) coupled momentum-space integral Equations (16)-(20).  In 

solving the coupled equations, the 𝑇𝑇22 and 𝑇𝑇32 intermediate-state amplitudes were 

determined first, and then substituted into the equations for the 𝑇𝑇21 and 𝑇𝑇31 final-state 

amplitudes.  The real and imaginary amplitude components were uncoupled iteratively.     

  The calculations were performed for the S = 2 spin/L = 0 angular momentum state 

using the Gaussian two-body potential and associated deuteron (𝜖𝜖 = - 2.193 MeV) bound-

state wave function of Ref. [21].7  The 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄 effective potential was calculated using an input 

 
7 The Gaussian potential is used here since: (1) it allows the effective potential (9D) 
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Green’s function determined using the upper-bound variational principle together with the 

𝑔𝑔0 Gaussian trial function.  The L=0 component of the potential was determined by an 

additional angular integration which was also performed analytically.  

As an initial assessment of the calculation methods, the elastic unitarity was 

calculated for energies up to 5.48 MeV (i.e. above the four-body breakup threshold).  The 

unitarity dependence on phase shift was determined and the calculated SS* and the SS* = 

1 unitarity circle are compared in Figure-1.  Below the three-body breakup threshold (phase 

shift = - 13.7 deg) unitarity is satisfied exactly and the two curves agree to within ± 0.01%.  

This agreement is consistent with the accuracy of the 𝑇𝑇11 amplitudes, which was 

independently determined to be ± 0.01%.  Above the three-body threshold the 𝑇𝑇21 

amplitude also contributes to the unitarity sum, which results in a reduction in the 𝑇𝑇11 

fractional contribution and a reduction in the radius of the elastic unitarity curve (i.e., SS* 

moves toward the inside of the circle).  Similarly, above the four-body threshold (phase 

shift = - 31.7 deg) the 𝑇𝑇31 amplitude results in a further reduction in the radius of the elastic 

unitarity curve.  However, because of the reduced magnitude of the breakup cross sections 

this contribution is very small and the two curves are almost identical.  This was confirmed 

by the elastic channel calculation of 𝑆𝑆12⋇ 𝑆𝑆21 = 1 − 𝑆𝑆11⋇ 𝑆𝑆11 = 0.0006 and the breakup 

channel calculation, using the 𝑇𝑇21 amplitude, of 𝑆𝑆12⋇ 𝑆𝑆21 = 0.0007 (the difference being 

round-off).  The breakup calculation involved the summation over both the final state two-

body momentum and the fragmented deuteron internal momentum.  

 

 
integrations to be performed analytically and (2) the kernel of the amplitude momentum-
space integral equation is analytic, eliminating the difficulties associated with the complex 
singularities and contour rotation that occur with Yukawa-type potentials.  



 

 

 

 Figure-1. Elastic unitarity vs. phase shift (-1.1 to - 38.5 deg) to energies above the 
four-body breakup threshold for the S = 2/L = 0 state.  The three (four)-body threshold is 
at -13.7 (-31.7) deg to the horizontal. 

 

 

At the two breakup thresholds, the SS* calculations were performed with an extra 

fine energy mesh to allow a detailed description of the elastic and breakup cross sections 

and possible threshold anomalies.  The calculations, however, indicated no anomalies or 

significant deviations from the unitarity circle.  This is believed to be due to the Coulomb 

repulsion which maintains a large deuteron-deuteron separation at low energy (i.e., just 

above the threshold).  As a result of this barrier the breakup cross section is insensitive to 

the energy (the cross section and its derivatives tend to zero at the threshold [22]) and no 

anomaly or cusp is introduced. 

 

B. Elastic Scattering 
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The scattering length calculation was performed using the zero-energy K-matrix 

form of the d+d → d+d elastic chain equation.  The elastic S = 2 Coulomb-modified 

scattering length calculation predicted a value of 5add = +7.8 ± 0.3 fm.8 This compares well 

with the 5add = +7.5 fm value of Filikhin and Yakovlev (FY) of Ref. [23] calculated using 

the configuration-space cluster reduction method including Coulomb effects. 

The calculated S = 2/L = 0 deuteron-deuteron phase shift for momentum below the 

single-breakup threshold (𝜅𝜅  < 0.325 fm-1) is given in Figure-2.  For comparison, the 

Filikhin and Yakovlev phase shift calculation using the MT I-III two-body potential [24] 

is also included.  It is seen that the FY phase shift is substantially more negative with a 

stronger momentum dependence than the present calculation.  This difference is believed 

to be due to the difference in potentials.  The Pauli repulsion in the symmetric S=2 spin 

state ensures the particles are well-separated, increasing the sensitivity of the phase shift to 

the long-range properties of the potential.  The effective-range of the MT I-III Yukawa 

potential is a factor of ~ 3 larger than the range of the Gaussian potential used in the present 

calculation.  As indicated in the effective-range expansion, this will increase the phase shift 

and result in the observed stronger momentum dependence.9  

 

 
8  As described in the Appendix, this value is the result of a recent detailed uncertainty 
analysis that has been performed for the scattering length calculation and is an update of 
the 5add = 8.2 fm value of Ref. [16]. 
9 While the FY and present predictions of the phase shift disagree, the zero-energy 
scattering length predictions are in good agreement.  This insensitivity of the scattering 
length to the potential is consistent with previous 4N calculations in which the particles are 
well-separated [25]. 
 



 

 

 

 Figure-2.  Deuteron-Deuteron S = 2/L = 0 scattering phase shift vs. the relative 
momentum, below the three-body breakup threshold (𝜅𝜅 = 0.325 fm-1). 

 

 

In Figure-3, the phase shift calculation of Hofmann and Hale (HH) of Ref. [15] is 

compared with the present calculation.  The calculations were performed for momentum 

above the double-breakup threshold (𝜅𝜅 = 0.460 fm-1) up to a momentum of 𝜅𝜅 = 0.514 fm-

1 (E = 5.48 MeV), and use the RGM with the more recent Bonn-based Gaussian potential 

of Kellermann et al. of Ref. [26].  While both calculations have the same linear dependence 

on momentum, the present calculation indicates a smaller phase shift. However, the Bonn-

based potential used in the RGM calculation differs in that it includes: (1) a strong attractive 

core for r ≲ 1.0 fm and (2) a slightly weaker attractive long-range tail for r ≳ 1.0 fm.  The 

larger phase shift of the RGM calculation is believed to be due to the strong attractive core 
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of the Bonn-based potential and the difference in the calculation methods.10  Variational-

bound calculations using the Ref. [26] Gaussian Bonn-based potential are presently 

underway.                                                

 

 

 

 Figure-3.  Deuteron-Deuteron S = 2/L = 0 scattering phase shift vs. the relative 
momentum, above the four-body breakup threshold (𝜅𝜅 = 0.460 fm-1). 
 

 

C.  Three-Body d+d → d+n+p Breakup Scattering 

 

The breakup cross section was calculated for the cases where the fragmented-

deuteron takes the specific fractions FKE = 0.1, 0.5 and 0.9 of the available  (𝜅𝜅  > 0.325 

 
10 The Ref [26] potential consists of (seventeen) damped Gaussian terms and the effective-
range is similar to that of the Gaussian used in the present calculation.  Consequently, 
unlike the difference with the FY calculation, this difference in phase shift can not be 
explained by a difference in the effective-range of the potentials. 
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fm-1) initial kinetic energy.  The calculations were performed as a function of initial relative 

deuteron momentum up to a value of 𝜅𝜅  = 0.449 fm-1 (E = 4.17 MeV).  The S = 2/L = 0 

Coulomb-corrected breakup cross section for these cases is given in Figure-4 as a function 

of the initial relative deuteron momentum.   

 

 

 

Figure-4.  d+d → d+n+p  S = 2/L = 0 breakup cross section vs. the initial deuteron 

relative momentum, as a function of the fragmented-deuteron kinetic energy fraction 

(FKE). 

 

The breakup cross section was also calculated as a function of FKE at E = 3.29 

MeV (𝜅𝜅 = 0.398 fm-1).  The normalized breakup cross section and Coulomb-corrected cross 

section are presented in Figure-5.  For comparison, the normalized D(d,np)D neutron yield 

measured by Cranberg et al. [27] at E = 3.15 MeV and zero-degrees (with the beam) is also 

presented.  Comparing the measured neutron yield and the uncorrected breakup cross 
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section, it is seen that both the measured and calculated peaks occur at FKE ~ 0.40.  

However, the measurement is significantly more peaked than the calculation.  The effective 

potential includes terms that contribute exponential factors of the form exp (𝛼𝛼 𝜿𝜿 ∙ 𝚱𝚱 ), 

where 𝚱𝚱 is the deuteron-deuteron relative momentum, which would produce the stronger 

peak.  However, these terms do not contribute in the L = 0 calculation.  On the other hand, 

the measurements of Cranberg and those of Cabral et al. [28] include a strong angular 

dependence indicating the presence of the L > 0 contributions which would explain the 

sharper peak in the measurements.    

 

 

 

Figure-5.  Relative neutron yield for the d+d → d+n+p reaction vs. the fragmented-

deuteron kinetic energy fraction (FKE), together with the (normalized) cross sections and 

Coulomb-corrected cross sections.  Calculations are at 3.29 MeV and the Cranberg et al. 

measurements are at 3.15 MeV. 
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D.  Four-Body d+d → n+p+n+p Breakup Scattering 

 

The breakup cross section was calculated for the cases where the fragmented-

deuterons each take an equal fraction FKE = 0.05, 0.25 and 0.45 of the available (𝜅𝜅 > 0.460 

fm-1) initial kinetic energy.  The calculations were performed as a function of the initial 

relative deuteron momentum up to a value of   𝜅𝜅  = 0.514 fm-1 (E = 5.48 MeV).  The S = 

2/L = 0 Coulomb-corrected breakup cross section for these cases is given in Figure-6 as a 

function of the initial relative deuteron momentum.  

 

 

 

Figure-6.  d+d → n+p+n+p  S = 2/L = 0 breakup cross section vs. the initial deuteron 

relative momentum, as a function of the fragmented-deuteron kinetic energy fraction 

(FKE). 

 

The breakup cross section was also calculated as a function of FKE at E = 4.82 
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MeV (𝜅𝜅 = 0.482 fm-1).  The normalized breakup cross section and Coulomb-corrected 

breakup cross section are presented in Figure-7.  The breakup cross section peaks at FKE 

~ 0.25.  The Coulomb-correction is especially large at FKE ~ 0.45, where the fragmented-

deuteron energy is large and the proton-proton energy is low. This reduces the proton 

penetration factor 𝐶𝐶0 and decreases the Coulomb uncorrected cross section in Figure-7.  

This is exacerbated by the fact that the available energy in this case is only 0.434 MeV 

compared to the 3-body breakup where the available energy is 1.097 MeV.  

 

 

 

Figure-7.  Normalized cross sections and Coulomb-corrected cross sections (i.e., 

the relative neutron yield) for the d+d → n+p+n+p reaction vs. the fragmented-deuteron 

kinetic energy fraction (FKE) at 4.82 MeV. 

 

IV.  SUMMARY 
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 The deuteron-deuteron elastic, three-body and four-body breakup scattering 

cross sections have been calculated using the Faddeev-Yakubovskii chain-of-partition 

momentum-space equations as described in Ref. [16].  In this approach the initial two-

cluster potential is split into separable and non-separable components, and the scattering 

amplitudes satisfy a Lippmann-Schwinger type equation in which the kernel integration is 

over the open channels and the closed channels enter through the effective potential.  The 

effective potential consists of a P-space open-channel Born-exchange term and a Q-space 

closed-channel variational contribution.  The effective potential closed-channel term is 

determined by minimizing a variational bound.  The Coulomb effects are included by 

expanding the initial and final Coulomb states in a Coulomb-Sturmian basis.   

The three sets of chain-of-partition momentum-space integral equations were 

solved for the elastic and three and four-body breakup scattering amplitudes.  The 

calculations were performed for the S = 2 spin/L = 0 angular-momentum state.  In the case 

of elastic scattering, the calculated scattering length of 5add = 7.8 ± 0.3 fm compares well 

with the 5add = +7.5 fm value of Ref. [23] calculated using the configuration-space cluster 

reduction method.  However, the calculated phase shift is smaller than that predicted by 

the RGM calculation of Ref. [15].  This difference is believed to be due to the different 

potentials and methods used in the calculations. 

The d+d → d+n+p breakup cross sections were calculated as a function of initial 

deuteron momentum and fragmented-deuteron energy.  The cross sections were compared 

with neutron yield measurements and, while the measurements also included the L > 0 

angular-momentum and spin < 2 components, the general features were consistent.  The 

d+d → n+p+n+p breakup cross sections were also calculated as a function of initial 



                                                                                                                                                        
25   

deuteron momentum and fragmented-deuteron energy.  No comparisons were made for the 

double-breakup since applicable measurements were not available.  Estimates of the 

calculational uncertainties and bias were also provided. 

 

APPENDIX 

 

Uncertainty Analysis for the Deuteron-Deuteron Scattering Calculations 

 

A. Scattering Length Calculation 

 

 The variational-bound formulation of the N-particle scattering problem 

based on the Faddeev-Yakubovskii equations is given in Ref. [16].  This integral-equation 

formulation, implemented using a set of specially designed numerical methods, has been 

applied to the two-cluster case of deuteron-deuteron scattering.  Using this approach, the 

S=2 deuteron-deuteron scattering length is calculated to be 5add = + 8.2 fm. 

The various many-body techniques developed for the N ≥ 4 particle systems 

necessarily include a number of difficult to assess approximations.  In order to assess the 

effect of the calculational uncertainties introduced by the approximations and numerical 

methods used in the scattering length calculation a detailed uncertainty analysis has been 

performed.  This analysis included: (a) the identification of the significant sources of 

systematic bias and random uncertainties, (b) the estimation of these biases and (one-

sigma) uncertainties and (c) the determination of their effects on the deuteron-deuteron 

scattering length calculation. 



The results of this analysis are summarized in Table-1.  The determination of the 

𝐵𝐵𝑖𝑖𝑖𝑖 Born-exchange term in the effective potential (Equation (24)) requires a two-

dimensional spatial integration.  This integration was performed numerically using two 

methods: (1) as a two-dimensional integral and (2) as the product of two one-dimensional 

integrals in a series expansion.  A comparison of these two methods indicated a scattering 

length uncertainty of  ± 0.09 fm with no systematic bias.11  The closed-channel Q-space 

contribution to the effective potential (Equation (25)) was determined using the upper-

bound variational principle for the Q-space Green’s function.  The selection of the trial 

function in this variational calculation also introduces uncertainty.  Based on sensitivity 

studies of the upper bound, it is estimated this term contributes a scattering length bias of 

+ 0.1 fm and an uncertainty of ± 0.1 fm. 

The determination of the off-shell long-range distortion of the deuteron bound 

states (Equations (14) and (15)), by the non-separable component of the potential 𝑉𝑉𝑄𝑄, 

requires the solution of a (negative-energy) Lippmann-Schwinger type integral equation 

for 𝐺𝐺𝑎𝑎2
𝑄𝑄 (𝐸𝐸).  Since the potential 𝑉𝑉𝑄𝑄 is weak and to avoid the large momentum-space matrix 

inversion, 𝐺𝐺𝑎𝑎2
𝑄𝑄 (𝐸𝐸) was approximated with 𝐺𝐺0(𝐸𝐸).  To evaluate this approximation, the 

second-order Born contribution was added.  Comparing these calculations, it was 

determined that the 𝐺𝐺0(𝐸𝐸) calculation of the distorted bound states introduces a scattering 

length uncertainty of  ± 0.2 fm and no bias.  In addition, to reduce computing time a 

relatively coarse mesh was used to represent the distortion momentum dependence.  A fine 

 
11 It should be noted that the bias and uncertainty values given here are applicable for the 
specific parameters and methods used in this calculation.  It is expected these 
uncertainties/biases can be reduced by further tightening of the methods. 
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mesh calculation indicated a scattering length bias of – 1.3 fm and an uncertainty of ± 0.1 

fm.   

To minimize numerical uncertainty in the determination of the Coulomb-Sturmian 

components of the initial and final states, an accurate integration of the individual terms of 

the CS-expansion and their summation is required.  This calculation has been performed 

using both a numerical and analytic approach.  Comparison of the results of these 

calculations indicates a scattering length uncertainty of ± 0.1 fm and no systematic bias.  

Based on the observed asymptotic dependence of the scattering length on the number of 

CS expansion terms, it is estimated the numerics of the smoothing process used to minimize 

the effect of Gibbs oscillations contribute a ± 0.06 fm uncertainty.  No bias is indicated. 

In order to assess the accuracy of the Coulomb-Sturmian representation of the 

initial and final states, the order of the expansion was increased to tighten the convergence 

(NCS = 25 terms).  The results indicated a scattering length bias of + 0.8 fm and an 

uncertainty of ± 0.1 fm.  

Applying this statistical bias/uncertainty data, the base calculation is updated in 

Table-1 leading to a deuteron-deuteron scattering length of 5add = + 7.8 ± 0.3 fm.  This 

variational (momentum-space) integral-equation calculation is in good agreement with the 

cluster-reduction (configuration-space) integro-differential equation result of 5add  = + 7.5 

fm [23]. 

 

B.  Scattering Amplitude Calculations 

 

The zero-energy K-matrix scattering length and the E > 0 elastic T-matrix 



amplitude calculations differ in that the T-matrix calculation includes a pole in the two-

body momentum integration.   The methods for treating this pole are well established and 

introduce no significant additional uncertainty/bias.  The calculation of the effective 

potential is the same in both cases.  The self-energy matrices, bound-state distortion and 

propagators are determined using the exact same methods in these calculations.  The 

numerical solution of the K-matrix and T-matrix integral equations has been verified and 

is not a significant contributor to the uncertainty.  The Coulomb-Sturmian expansion is the 

same.  As a result it is expected the elastic amplitude calculational uncertainty will be 

similar to that of the scattering length calculation.     

In the case of the E > 𝜖𝜖 breakup amplitude calculations, the inhomogenous terms 

of the integral equations (Eqs. (18) and (20)) include the 𝑇𝑇22 and 𝑇𝑇32 amplitudes and the 

uncertainty and bias observed in the scattering length are not applicable.  In addition, the 

E > 2𝜖𝜖 four-body breakup effective potential does not include the required four-cluster 

continuum scattering trial function.  It is expected the use of the approximate energy-

independent 𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄(E = 2𝜖𝜖) potential above E > 2𝜖𝜖 will increase the uncertainty/bias as 

energy increases.  The uncertainty analysis for the breakup amplitudes will be performed 

after the inclusion of the free-particle scattering term in the E > 2𝜖𝜖 trial function.  
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Table-1.  Effect of Approximations and Numerical Methods Uncertainties and bias on the          
Deuteron-Deuteron Scattering Length Calculation.   
 
 
          Source of Bias/Uncertainty   Bias (fm) Uncertainty (fm)                    

        
 Born-exchange term spatial integration        0.0         ±  0.09 

       Variational-bound trial function    + 0.1         ±  0.01 

        Second-order Born distortion        0.0         ±  0.2 

    Distortion coarse-mesh momentum      - 1.3         ±  0.1 

     Coulomb-Sturmian convergence    + 0.8         ±  0.1 

 Integration and summation of CS terms       0.0         ±  0.1 

             Smoothing numeric       0.0         ±  0.06 

                            Total     - 0.4         ±  0.3 

                          5add = 8.2 + Bias ± Uncertainty = 7.8 ± 0.3 fm 
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