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Executive Summary

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which focuses on improving
Light Water Reactors (LWRs) through Modeling and Simulation. This hub, named the Consortium for
the Advanced Simulation of LWRs (CASL), attempts to characterize and understand LWR behavior under
normal operating conditions and use any gained insights to improve their efficiency. In collaboration with
North Carolina State University (NCSU), CASL has worked extensively on the thermal-hydraulic subchannel
code Coolant Boiling in Rod Arrays—-Three Field (COBRA-TF). The NCSU/CASL version of COBRA-TF
has been rebranded as CTF.

This document focuses on code verification test problems that ensure CTF converges to the correct answer
for the intended application. The suite of code verification tests are mapped to the underlying conservation
equations of CTF, and significant gaps are addressed. Convergence behavior and numerical errors are
quantified for each of the tests. Tests that converge at the correct rate to the corresponding analytic solution
are incorporated into the CTF automated regression suite. A new verification utility is created for this
purpose, which enables code verification by generalizing the process. For problems that do not behave

correctly, the results are reported but the problem is not included in the regression suite.

In addition to verification studies, this document also quantifies the existing tests of constitutive models. A

few existing gaps are addressed by adding new unit tests.
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1. Introduction

Coolant Boiling in Rod Arrays—Three Field (COBRA-TF) is a thermal-hydraulic subchannel code for Light
Water Reactor (LWR) core analysis. It was initially developed in the early 1980’s at Pacific Northwest Na-
tional Laboratory (PNNL) to model Loss of Coolant Accidents (LOCASs) [1]. The code has been transferred
to many institutions and a varity of code version exist throughout academia and industry. One version,
rebranded as CTF, is jointly developed and maintained by the Consortium for the Advanced Simulation of
LWRs (CASL) and North Carolina State University (NCSU). Since being incorporated into CASL’s Virtual
Environment for Reactor Applications (VERA), CTF has had rapid improvements relating to its capabilities,
parallelism, performance, validation, and quality assurance. This work expands upon existing CASL efforts

to further improve the pedigree of CTF.

In order to address the reliability and predictive capability of complex simulation tools, it is necessary to
establish a pedigree for these tools. This process is accomplished through a series of tasks, which successively
add evidence that a tool is reliable [2, 3, 4].

Software Quality Assurance (SQA) is used to minimize code bugs.
Code verification ensures that the code is solving the underlying conservation equations correctly.
Solution verification quantifies the numerical biases associated with a particular choice of mesh.

Validation is used to quantify how well the equations being solved represent reality.

AN ool - o

Uncertainty Quantification (UQ) attempts to quantify all sources of uncertainty and put bounds on

any quantities of interest.

In this work, we address SQA and code verification for the thermal hydraulic subchannel code CTF.

1 CASL-U-2020-1938-000
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1.1 Verification Matrix

In this work, verification problems are mapped to the conservation equations solved by the code. CTF solves

a two fluid, three field formulation of two-phase flow and a conduction equation for the solid.

. dap ;
fluid o 4+Velap@)= T, + i (1.1)
ot —— ~~~ ~—
o advection mass transfer  turbulent mixing
transient void drift
: daph oP .
fluid =\ —
ey TR o 5 +V - (aphtl) = T'h 4+ qw + hr (1.2)
——— ~ ~—~
v advection mass transfer  convection  turbulent mixing
transient void drift
Oaptl
fluid S )
momgiltum ot +V- (apuu) = apg — aVP + Tw + Ti = T (13)
———— ~—~ ~— ~—~ ~—~ ~—~
a advection gravity — pressure force  shear interfacial shear turbulent mixing
transient void drift
solid or 9. 0T
energy PCp - = Q - qQu (14)
ot Jdr Or ~— ~—~—
v Y internal convection
transient conduction generation

Note that the phase indicator has been omitted from the fluid equations, but there are eight equations solved
for the fluid fields: three water equations, three steam equations, and two droplet equations. Droplets are
assumed to be in thermal equilibrium with water, so there is no energy conservation equation solved for the
droplet field. CTF is generally run in subchannel mode, where the advection terms and pressure force are
split into an axial and a lateral component. The solid is assumed to have a constant density and does not

move, therefore it only has an energy equation.

This work will focus primarily on single-phase liquid verification problems, with a few tests for water-steam
mixtures. It is left as a future exercise to implement problems similar to those in this report for the steam,
droplet, and noncondesible gas fields. In fact, no existing code verification problems involve either the droplet

or noncondensible gas fields.

Given this set of nonlinear coupled partial differential equations, we can formulate the verification matrix.
This matrix is shown in Table 1.1. The verification problems are divided into three categories: (1) problems
that have already been incorporated into the CTF automated regression suite, (2) problems that are harvested
from the literature, and (3) new problems solved in this report. For each chosen verification problem, the
involved conservation terms are checked (v'). Many problems involve other terms, though they are not
involved in solution of the analytic problem. For example: the CTF steam and droplet fields cannot be
disabled, many terms are set very small or very large to approximate the analytic solution, and many terms
cancel out due to symmetry. These terms are not checked in the verification matrix since they are essentially

removed from the solution.

The verification coverage is relatively good; of all conservation terms, 80% having at least one corresponding

2 CASL-U-2020-1938-000
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Table 1.1: CTF verification matrix. Only liquid and steam terms are included, as no verification problems
involve the droplet or noncondensible gas fields. The tests are split into three categories: those already
included in the automated regression suite, those harvested from the literature, and those created for this
report. Asterisks (*) indicate problems that were not incorporated into the CTF regression suite due to
unsatisfactory results. See the corresponding sections for more details.

|  Regression suite | Literature | New tests
=)
T . |38
PR 8
» B |£ § J|% E e
RN~ & Bl |~ | EBla|s |5
& A 3) 2 = o | O g a
g = S :|2 f Bl % S w
§ & 2 2 glg & &F|3 & g =
X T a2 &8 &|l®B® ©O = a8 < 5]
A 5 @2 A @2 5 4|8 § g M
T £ B ®© mw|E ¢ =<|8 3 & ¢
s 2 & & =Bl = S |5 O 3 &
Equation Term T B R O O|& 4O E|E O Z &
Fluid Mass transient v v
axial advection v v
lateral advection
mass transfer v
turbulent mixing
Fluid Energy transient v v v
axial advection v v v v v
lateral advection
interfacial transfer v
convection v v v
grid enhancement v
turbulent mixing v
Fluid Momentum  transient v
axial advection v
lateral advection v
gravity v v |V
axial pressure v v v
lateral pressure v
shear v v
grid enhancement v
form loss v
interfacial shear
turbulent mixing
Solid Energy transient v
linear conduction v
nonlinear conduction v
energy generation v v
convection v
Two-Phase v v
Equation of State v | v v v
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verification test. Mass/momentum turbulent mixing, all three lateral advection terms, and interfacial shear
are the only physics with no corresponding tests. These gaps can be filled in the future. Also note that this
formulation of the matrix only checks for testing of individual terms in the equations. A more thorough
method would be to test that all combinations of terms are tested, as it is possible that combinations of

terms reveal code bugs that are not seen when individual models are tested.

1.2 Formal Order of Accuracy

The formal order of accuracy for each equation can be derived by considering how the chosen discretization
schemes behave as the mesh is refined. In this work, all problems have uniform meshes (i.e., Az and At are
constant). We demonstrate this process for a one-dimensional single phase mass conservation equation with

no sources.
dp  Opu _

ot " oz

This is forward discretized in time and upwinded in space (assuming u > 0).

0 (1.5)

1 n n n, n n
A (pl - Pi ) + A_ (pz z-:‘ljkz - pz 1ul_+11/2) =0 (16)

Here, the superscript is the time index and the subscript is the spatial index. Now, Taylor series expansions

about ¢ and n are used to approximate pi ) P, and um’ll/2 Only second order terms are included

+
z+1/27
in these approximations.

21 9Fp|” " 1 9%p|"
il — —| AtFx At+ = —=| A ik
T Lm | AR ) M e e, (L.7)
— 1 9"p|" k ap|" 1%
v i= ) % a5 (= mpp— oo | Az+s o5 L.
Pi—1 kgok' :L’k ; ( A.T) Pi or ; z + 9 81'2 ; Az ( 8)
1 oktmp " fAz\F
n+1 m
H =23 o der| (—) At
, , , (1.9)
1 oul™ 1 0°u ou|" 1 0°u 1 0% |"
~ S| Ar+- —| Az?+ | At At2 = AzAt
W3 5, “83.@21 i +28t2 U
1 gktmpy " Az\*
7L+1 m
Yimrpy = Z Z klm! 9zkotm |, (_7> At
h=Dimi= , , (1.10)
18u 1 &%ul" ou|"™ 1 0%u 1 02%u |"
~ul — = — - — —| At P — AzAt
YT 9|, SR B, 2 +8t +281&2 2 9zdt|, ="
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Now, these Taylor series expansions are incorporated into Equation 1.6, after which the simplified equation

becomes (neglecting higher order terms and omitting ¢ and n indices):

, 2 2 2
dp  Opu _[ud®p 18p8u}Aw_{18p Au dp 5%u A (1.11)

ot = dr |20z 20x0x 2022 " 0t ox ' "ozot

Therefore, the mass equation is first order in both space and time. The same process can be repeated for

the energy and momentum equations to show that they are also first order in time and space.

For the solid energy equation, the order of accuracy can easily be derived in one dimension with constant
properties.

oT 0T

This is forward-discretized in time and center differenced in space.

1 «
Again, all discrete variables are expanded about the same spatial and temporal location. For this analysis,

we use ¢ and n + 1.

> 1 7" A o [*+2 1 827|"
=Y = = AP AT - | At | A2 1.14
PElan |, CADRTT gl A s e, (1.14)
Tn+1 B 0o 1 akT n-‘rlA i
it1 —k oﬁ daF |, & -
- 1.15
o TR 4 3_T " A.T—l—l _82T " Az? —|—l _63T " 3 i _84T " z?
T o |, 2 922 |, 6 923 |, 24 9zt |,
[e%s) 1 akT n+1 "
il elgllal &
Ukl ook ) (1.16)
et OT[" LTI LT 1Tt
Al Ox 2 a9z |, 6 0x3 |, 24 Ozt |,

These Taylor series expansions are incorporated into Equation 1.13, after which the error equation is (ne-

glecting higher order terms and omitting indices):

or T  19°T a 0T
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Therefore, the solid energy equation should be second order in space and first order in time. Note that if

the assumption of constant properties is relaxed, the analysis is more complex but has the same result.

All expected orders of accuracy are summarized in Table 1.2. Temporal and spatial orders of accuracy
are respectively indicated by p; and p,. Note that the derivation of these orders can be significantly more
complicated (e.g., if there are source terms, nonlinearities, etc.), but these more complex effects are only

expected to degrade the order of accuracy if they are implemented incorrectly or cause numerical instabilities.

Table 1.2: Formal order of accuracy for the conservation equations in CTF

Equation p, p¢

Fluid Mass 1 1

Fluid Energy 1 1
Fluid Momentum 1 1
Solid Energy 2 1

Remark. The formal order of accuracy can be problem-dependent. This happens when the coefficients in
the modified equation cancel or are equal to zero. For example, if Equation 1.11 is used to analyze a problem
where Op/dx = 0, there is no spatial error. If this is the case, the code will predict the analytic solution to

within round-off. For an example of this phenomenon, see section 2.4.

1.3 Verification Procedure

The purpose of verification is to compare the formal and observed orders of accuracy for a particular set of

equations and problem. To achieve this, we follow a prescribed process for each of the verification problems.

1. Choose the analytic model to be simulated, the quantities of interest, and formulate the analytic
solution.

2. Create a computational CTF model.

3. Ensure that the code output matches relatively well for a base choice of discretization. Significant
mismatches at this step can indicate mismatched physics, inconsistent assumptions in the analytic or
computed solutions, or errors in the post-processing of code results.

4. Successively refine the computational mesh (in space and/or time) and recompute the CTF quantities
of interest.

5. Compute the order of accuracy compared to the analytic solution by calculating the root-mean-square

error (RMSE) at each choice of discretization

N
1
||y|| = N E (yexact - ycomputed)za (118)
=1

CASL-U-2020-1938-000
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then find the order of accuracy p by fitting a linear line on the log-log plot of error-vs-discretization
|lyll = Ch? (1.19)

6. If the observed order of accuracy matches with the formal order (see Table 1.2) to within £0.1, the
verification procedure is successful. If the observed order is significantly different, the process will
require debugging to find the issue. Debugging exercises can include: examination of the Linear
Truncation Error (LTE), analysis of spatial and temporal errors, examination of code response, or
trying different code options.

7. If the observed order and formal order cannot be matched, a constant error model will be used instead
of Equation 1.19:

|lyll = Co + C1h” (1.20)

If the constant error model indicates the correct order of convergence, it indicates that there is a
constant error between ¥Yexact and Yeomputed. Such cases could indicate a small boundary condition
error, small unit conversion errors, small inconsistencies in assumptions between the analytic and
computational model, or any number of other issues. If this is the case, we will present the constant
error model results. Though there is a constant error, the problem converges numerically with the

correct order.

7 CASL-U-2020-1938-000
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2. Code Verification

The code verification problems in this chapter each fall into one of three categories: (1) already exist in the
CTF documentation and regression matrix, (2) are harvested from existing verification work in the literature,
or (3) are designed and added in this work. These categories are described in the following paragraphs, then

each problem is individually documented throughout the sections in this chapter.

The first category consists of four problems that were added in F'Y 2019 to address CTF convergence behavior:
the heat exchanger, turbulent mixing, flow split, grid enhancement, and a non-convergent grid spacer study.

Documentation of each of these can be found in the CTF Verification and Validation Manual [5].

There are three problems that have been documented in the literature but not fully incorporated into CTF:
isokinetic advection [6], linear conduction [7], and water faucet [8]. All of these had been incorporated into
the testing matrix to some extent, but there were no regression tests that specifically address convergence. As
part of this work, the first two of these problems is incorporated into the CTF documentation and regression

matrix. The water faucet problem is re-examine, but does not exhibit the expected convergence behavior.

Finally, new problems are designed and analyzed in this report: convection, friction & gravity, nonlinear
conduction, and pipe boiling. The first of these tests focuses on transient convective heat transfer between
the fluid and solid. The second focuses on the axial pressure drop in a channel. The third addresses
temperature-dependent thermal conductivity in a flat plate. The final problem is a two-phase verification
test, which is harvested from [9]. All but the nonlinear conduction problem have been added to the CTF

regression suite.

2.1 Isokinetic Advection

This section describes a series of three code verification problems that were designed to test the transient
and advective terms in the mass and energy equations. These problems were originally applied to CTF in a

conference paper [6].

8 CASL-U-2020-1938-000
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Problem Definition This problem consists of flow through a horizontal pipe with three assumptions: (1)
the velocity and pressure are constant, so the momentum equation is redundant, (2) there are no external

sources, and (3) the flow remains as single phase water.

Under these conditions, the governing equations of CTF simplify significantly. The momentum equation is

eliminated altogether and the mass and energy equations simplify to a temporal and advective component.

op op
dph dph
rra +u—8x =0 (2.2)

The analytic solution to this problem is simply the advection of the inlet condition with the velocity wu.
Three different inlet conditions are chosen to test the advection of various wave shapes: (1) a discontinuous
square wave, (2) a cosine wave, and (3) a hyperbolic tangent. The respective analytic solution for each of

these inlet conditions are shown here [6].

Yo, Ut<
Vsq = ’ (23)
Yin, ut>x
Yos ut < x
Ytanh = ’ (24)
z [(% +Yin) — (Yo — 7Vin) tanh (M)} , ut>x
Yo, ut < x
Yeos = ’ (2.5)

2 [(’Yo + Yin) + (Yo — Yin) cos (27” (¢t - %))} , ut>uwx

Here, 7 can be either density p or enthalpy h. All necessary parameters are defined in Table 2.1. The initial
and inlet quantities were iteratively selected such that the velocity and pressure are approximately constant.

Note that the inlet boundary conditions listed in the table fully define the time-dependent inlet conditions.

CTF Input The CTF input consists of a single channel with standard boundary conditions. The square
wave and cosine wave are run for five seconds, the hyperbolic tangent is run for ten. To maintain consistency

with the assumptions of this problem, a few simplifications to the input deck are necessary.

e There is an approximately constant pressure throughout the domain. This could be achieved by fixing
the density and advecting an energy wave; however, this problem employs both the energy and density
advection terms. To achieve this while using a real equation of state, density and enthalpy differences
are set such that they have approximately equal and opposite effects on pressure.

e The variation in density and enthalpy through the wave remains small, which maintains an approxi-

mately constant velocity.

9 CASL-U-2020-1938-000
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Table 2.1: Parameters for isokinetic advection verification problems

Type Parameter Symbol Value
Geometry Channel length L 0.5m
Flow area A 0.0001 m?
Wetted perimeter P, 0.040 m
Boundary condition Outlet pressure P 1bar
Inlet flow rate Min 0.050 04 kg /s
Inlet enthalpy Rin 159.22kJ /kg
Hyperbolic tangent width l 0.05m
Hyperbolic tangent offset T 5.0s
Cosine wave period P L/u
Initial condition Initial flow rate Mo 0.005kg/s
Initial enthalpy ho 167.6kJ/kg

e All source terms are set to zero using exposed parameters for Verification, Validation, and Uncertainty
Quantification (VVUQ) studies. This includes turning off friction and gravity, which removes any

expected pressure drops.

The simulation is transient and both At and Az are refined at the same rate during the verification study.
This way, the Courant-Friedrichs-Lewy (CFL) limit (uAt/Ax) is constant, which precludes numerical insta-

bilities for the CTF discretization scheme.

Results Under the conditions described thus far in this section, the expected behavior with diffusive error
is demonstrated for both temporal and spatial convergence. The problems presented in this section are

incorporated into the CTF regression suite.

The results for a square, cosine, and hyperbolic tangent waves are shown respectively in Figures 2.1, 2.2, and
2.3. For each wave type, three plots are included. First, the solution for various choices of meshing is shown
against the analytic solution at the final simulation time. Second, the corresponding point-wise errors are

plotted. Finally, the convergence of the error is demonstrated.

For the cosine and hyperbolic tangent waves, the convergence study is first order (respectively p &~ 0.925 and
p =~ 0.937). For the square wave, the order of convergence is degraded by the discontinuity being advected, so
the problem is convergent but with sub-unity convergence (p &~ 0.204). This sub-linear convergence behavior

is described in more detail in [10], where the expected behavior for constant CFL refinement is p = 0.25.

10 CASL-U-2020-1938-000
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Figure 2.1: Results for the isokinetic advection verification problem using a square wave
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Figure 2.2: Results for the isokinetic advection verification problem using a cosine wave
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Figure 2.3: Results for the isokinetic advection verification problem using a hyperbolic tangent wave
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2.2 Linear Conduction

In this section, the temperature distribution in a solid cylinder is verified to converge to the analytic solution

at the correct rate. This study is a modification of the verification work performed in [7].

Problem Definition The conduction equation in CTF is

T
pcp%—t —V-(kVT)+¢" =0. (2.6)

This equation is significantly simplified: (1) only the steady state temperature distribution is found, (2) it is
solved for one-dimensional radial conduction in radial coordinates, (3) all solid properties are constant, and

(4) internal heat generation is constant. Under these conditions, the conservation equation is

kd [ dT\
rdr (T dr) tg =0 (2.7)

In cylindrical geometry with a surface temperature boundary condition T'(r = r;) = T}, the solution to the

posed equation is

T(r) =T; + ¢ (1 - ﬁ) . (2.8)

47T/€f TJQC

For a nuclear fuel rod, the cladding and gap are also included in the geometry, so these must be accounted
for in the analytic solution. Therefore, the additional temperature drop between the fuel surface (r¢) and

the outer cladding surface is added to the boundary condition in the analytic solution.

q q Tco
Ty —Teo = In{— 2.9
Ftee 271 hgap U 2rk, " <7“ci) el

Remark. The cladding and gap mesh is fized in CTF, and therefore a constant spatial error is added
between the pin surface temperature and the rode surface temperature. The analytic solution to Equation 2.9
is Ty—Teo = 538.4K. However, the CTF computed temperature difference over this region is Ty —T¢, ~ 537.3.
When the analytical solution is calculated in the verification script, it uses the computed temperature increase
to set the boundary condition T(ry) = Ty. In this way, the numerical error introduced by the gap and
clad disretization is minimized, and we are only concerned with the numerical uncertainty in the fuel rod

discretiztion.

All variables required to find the analytic solution are defined in Table 2.2. This includes geometry, all

properties, the boundary conditions, and the linear heat rate.

14 CASL-U-2020-1938-000
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Table 2.2: Parameters for linear conduction verification problem

Type Parameter Symbol Value
Geometry Fuel surface radius Tf 0.5430 cm
Clad inside radius Py 0.6370 cm
Clad outside radius P oo 0.6402 cm
Solid property Fuel conductivity ky 7TW/m/K
Clad conductivity ke 7TW/m/K
Gap conductance hg 1000 W/m? /K
Boundary condition Clad outside temperature Teo 300K
Source terms Linear heat rate q 18.3kW/m

CTF Input The CTF input is created using CTF’s stand-alone fuel solver, CTFFuel [7]. All input
configuration is straight-forward. The cladding and gap discretization is fixed in CTF, therefore only the
temperature distribution inside the fuel pellet is plotted and analyzed for convergence. For the verification
study, all inputs are identical for successive simulations except for the number of radial rings in the fuel

region.

Results The results for the linear conduction problem are shown in Figure 2.4. The temperature dis-
tribution in the fuel pin predicted by CTF matches very closely with the analytic solution. The center of
the cylinder is furthest from the surface boundary condition and therefore exhibits an accumulation of the
spatial error. As the discretization is refined, this concentration of error at the center of the cylinder rapidly
decreases. As defined in section 1.2, the formal order of accuracy for spatial error in this equation is second

order. The convergence plot shows an observed order very close to this, p = 1.987.

2.3 Water Faucet

This section describes the first two-phase code verification problem performed in CTF. This problem is a
quintessential verification problem for one-dimensional six equation two-phase flow [9]. Verification using
this problem was originally performed in [8], but only a single mesh was included in the regression testing

suite.

Problem Definition Initially, a pipe with uniform cross-sectional area is filled with a uniform column
of liquid moving at a constant velocity. An annulus of gas surrounds the liquid and is stationary. Starting
at some initiating time, gravity causes the liquid column to accelerate downwards and the water column

becomes thinner over time.
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The six-equation model used for this analytic solution can be summarized by the mass, momentum, and

energy equation for each phase. We assume no interfacial transfer and no wall friction.

Oayp “" dagprug

= 2.10
ot or 0 ( )
O prug 3akpku% oP B
o oo oy~ okPkg =0 2L
aakpkE aakpkukEk 8akukP
= 2.12
ot oz e (2.12)

Here, k indicates either the fluid or vapor phase. Significant simplifications to this equation set are made for
this problem: (1) the problem is isothermal and therefore the energy equations are omitted, (2) the vapor
mass is negligible, (3) the pressure variations in the liquid phase are negligible, and (4) both fields have a

constant density. Under these simplifications, the governing equations become:

804 aalul

W + 2 =0 (2.13)
aalw aul -

The solution to this set of equations with initial conditions a(t = 0) = ap, w(t = 0) = up and boundary

conditions a(x = 0) = g, w(z = 0) = vy is outlined in [11].

1 — (d=ao)ug if © < x4

o = Vug+2ge’ (2.15)

g, if x> x4

Vud+2gz, ifx<uzq4

u = (2.16)

ug + gt, if & >y
Here, the location of the void fraction discontinuity is defined as z4 = ugt+ gt>/2. Recently, new solutions to
this problem have been proposed which relax the massless gas phase assumption [12]. However, the original

solutions are sufficiently accurate for low pressures, where p;/p; >> 1. All necessary conditions for this
problem are defined in Table 2.3.

CTF Input Original implementation of this problem required significant changes to the CTF source
code [8]. First, an interfacial pressure correction term was added to the momentum equation.

QU Py Pl 2 Day
———— (uy —w)

g% (2.17)

Sipc = !
Qy Py + Qp; ox
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Table 2.3: Parameters for water faucet verification problem

Type Parameter Symbol Value

Geometry Pipe length L 12m
Flow area Ay 0.785 m?

BC/IC Void fraction Qg 0.2
Liquid velocity Vo 10m/s
Outlet pressure P 10 bar

Here, § is a multiplier which turns the correction term on and off. The interfacial pressure correction term can
be derived from purely mathematical considerations to eliminate negative eigenvalues in the incompressible
limit [13, 14]. In addition, it was necessary to implement a void fraction boundary condition at the channel

outlet.

Results The results for the water faucet problem are shown in Figure 2.5. Overall, the CTF solution does
seem to be converging to the analytical solution. However, these results are not consistent with the results
in [8]. There is anomalous behavior at the inlet of the pipe; it appears that the boundary conditions are
not being properly applied at the inlet. Therefore, a meshing-dependent error is introduced to the problem.
Due to this bias, the CTF solution is not first order. Therefore, these results are not included in the CTF
automated regression suite. It is left as future work to troubleshoot these results and identify the discrepancy
with [8].

Remark. A change implemented by Delchini in [8] was reverted in Chan_type.f90 involving the
k_init_sol with_-be VUQ multiplier. Re-enabling this change removes some of the oscillations from Fig-
ure 2.5, but does not result in a first-order solution. The inlet boundary problem still exists. Additionally,
these results were reproduced at various historical points during the implementation of the interfacial pressure

correction term (using Github commits). No significant changes to the results were found.

2.4 Friction and Gravity

In this section, we verify the pressure distribution in CTF, focusing on the friction and gravity components.
Various defect tests have been performed focusing on the axial pressure distribution as well as a solution
verification study [15]. However, no code convergence study focusing on these phenomena has been performed

as of yet.

Problem Description Single phase flow with constant properties passes through a vertical tube. The

pressure is fixed at the tube outlet. At steady state, the inlet pressure is larger than the outlet pressure due
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to gravitational and frictional heads.

We make the following assumptions: (1) steady state and one-dimensional flow, (2) constant density and
velocity, (3) pipe geometry with a constant cross-section, (4) constant friction factor, and (5) isothermal

flow. Under these conditions, the mass and energy equation are eliminated and the momentum equation is

oP pu?
— —pg=f=——. 2.18
or  ° 2D ( )
The equation is integrated and an outlet boundary condition P(L) = P, is applied. In this case, the
analytic solution becomes
u2
P(2) = Pou — | f45— + pg| (L= 2). (2.19)
2Dy,

All parameters necessary to define the problem are listed in Table 2.4.

Table 2.4: Parameters for friction and gravity verification problem

Type Parameter Symbol Value
Geometry Pipe diameter D 0.0l m
Pipe length L 1m
Fluid property Density p 1000 kg /m3
Boundary condition Inlet mass flow Min 0.1kg/s
Outlet pressure P, 150 bar
Source term Gravity g 9.81456 m/s?
Friction factor f 0.002

Remark. The value for gravitational constant g is calculated by converting the value used in CTF (GC is
defined as 32.2ft/s%) to SI units.

CTF Input The CTF input is created as a single channel with geometry consistent with Table 2.4. Inlet
mass flow, inlet enthalpy, and outlet pressure are fixed. The simulation is run for one second, after which it

has reached steady state. The pressure distribution is extracted and compared to Equation 2.19.

Results The results are shown in Figure 2.6. First, we note that the pressure distribution is very accurately
calculated in CTF. In this problem, the pressure drop is a linear function of axial location; therefore, all
sources of LTE cancel in the momentum equation (since ?P/dz% = 0). Therefore, the formal order of
accuracy for this particular problem is p = 0. CTF should exactly predict the pressure distribution to within
round-off. However, there is a bias of about 8 Pa (8 x 107° bar) in the total pressure drop. This is a very

small—and likely acceptable—Dbias.
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Figure 2.6: Results for friction with gravity verification problem
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2.5 Convection

In this problem, heat transfer takes place between a solid and a stationary single phase fluid. This problem is
designed specifically to test wall heat transfer (i.e., convection), which governs the energy coupling between

the solid and fluid solutions.

Problem Description We make the following assumptions: (1) the fluid and solid can be represented as
zero-dimensional control volumes, (2) the fluid and solid are both stationary, (3) all properties are constant,
(4) the heat transfer coefficient is constant, and (5) there is no heat generation. Under these conditions, the

coupled ordinary differential equations to be solved are

oT

prfcpfa—; = hA(T, — Ty) (2.20)
Ts

Vspscpsaa—t = —hA(T, — T¢): (2.21)

If the initial conditions T¢(0) = Tto and T,(0) = T\, are applied, the solutions for T and T, can be found

as a function of time. To simplify the analytic solution, we define the thermal capacitance of the k field as

Ck = Vkpkcpk.
1 hA(Cy + Cs)
T (s b O 4 (T = T 1 € B o v S 2.29
¥ Cf+cs[ff0+ o+ (Tro — Tso) eXP< e (2.22)
1 hA(Cy + Cy)
T e [T g Ty — T Sk e ML 2.2
o Ot + Ot (70~ T) Oy exp (-2AELEC ) .23

The parameters for this problem are defined in Table 2.5. Note that all quantities in Equations 2.22 and
2.23 can be derived from the parameters in the table. For example, the heat transfer coefficient is related to
the Nusselt number via Nu = hD /ky.

CTF Input The CTF input deck for this problem required many iterations before the simulation results

matched with the analytic solution. It required that the following simplifications are made:

1. Fluid properties are fixed using the thermophysical properties.dat file and solid properties are
fixed using CTF input card group 10.

2. All external sources are disabled using the vug mult.txt file and the Nusselt number is fixed using
vuqg-param.txt.

3. To properly fix the Nusselt number, underrelaxation of the heat trasfer coefficient must be disabled.
This is done in the newly created input card 1.5.

4. The flow rate must be initialized slightly greater than zero so that Re # 0, as Nu = 0 under this

particular condition. This is achieved by initializing the fluid flow rate to 1 x 107190 kg/s.
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Table 2.5: Parameters for convection verification problem

Parameter Symbol Value

Geometry Control volume height Az 0.1m
Flow area Ay 0.0001 m?
Wetted perimeter Py 0.04m
Rod diameter D, 0.05m
Surface area A 3.142 x 1073 m?

Properties Fluid density pf 900 kg/m?
Solid density Ps 900 kg/m?
Fluid specific heat Cpf 4.25kJ/kg/°C
Solid specific heat Cha 4.25kJ /kg/°C
Fluid thermal conductivity — ky 1W/m/°C

Initial conditions Initial fluid temperature T'o 140°C
Initial solid temperature Tso 160°C

Source terms Nusselt number Nu 10

5. The fluid control volume is isolated from the surrounding ghost cells using an approximately zero-flow
boundary at the inlet. Because fluid properties are fixed, the conservation of mass dictates that there
is also zero-flow at the outlet.

6. CTF does not allow a solid to be defined as a single control volume. Therefore, two control volumes
are used and the surface volume is isolated from the center volume by making thermal conductivity

very small (k = 0).

Results The results are shown in Figure 2.7. The thermal capacitance of the solid is larger than the fluid,
so the fluid temperature changes more over the transient. The point-wise error is shown and all spatial
points appear to display first order convergence. The error between the code solution and analytic solution
converges at approximately p = 1.06 for both the solid and fluid solution. Therefore, the code displays the

expected first order convergence for the solid-to-liquid coupling.

2.6 Nonlinear Conduction

If thermal conductivity is temperature-dependent, the solid energy equation becomes nonlinear and difficult
to solve. Usually, these problems are solved numerically, but analytic solutions are possible for a few simple
cases. In this section, it is verified that the averaging of thermal conductivity to cell faces does not degrade

the order of accuracy of the conduction solution.
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Problem Description We make the following assumptions: (1) steady state solution, (2) one dimensional
Cartesian conduction, (3) all properties and geometry are constant except for thermal conductivity, and (4)

there is no internal heat generation. Under these conditions, the conservation equation to be solved is

% <k(9:)2—:) =0 (2.24)

The boundary conditions are T'(x = 0) = Ty and T'(x = L) = Tr. The thermal conductivity is a linear
function of temperature k = kj, + 8 (T — T1), where k(Ty) = ko and k(Tr) = kr. The solution to this
problem is [16]

T(ZL') =T +

kr, ko+kr L —x
F\/l—'_ﬁ k‘% T(TO _TL> =1 (2.25)

The parameters defining this problem are outlined in Table 2.6.

Table 2.6: Parameters for the nonlinear conduction problem

Parameter Symbol Value
Wall thickness L 0.01m
Left boundary condition To 155°C
Right boundary condition Ty, 150°C
Right thermal conductivity kr 5W/m/°C
Thermal conductivity slope B 2W/m

CTF Input For this problem, we create an unheated wall connected on each side to a channel. Each
channel has a large flow rate with constant temperature inlet condition, and the heat transfer coefficient to
the wall is very large. This approximates a constant temperature boundary condition. The linear function

of thermal conductivity is defined using a table in card group 10.

Remark. CTF infrastructure does not allow a suitable version of this problem to be simulated, so it is not
added to the automated regression suite. This is because:
e CTF does not print the temperature distribution inside unheated conductors in any of its output files
(text, VTK, or HDF5),
e A CTF heated conductor cannot be used to simulate wall geometry,
e An analytic solution for this problem exists for tube geometry, but a CTF heated tube cannot have
boundary conditions defined simultaneously on its inside and outside surfaces, and
o CTFFuel is restricted to solving nuclear fuel geometry.
In this paper, we present promising results (output was extracted directly using hard-coded Fortran write
statements) and leave it as a future exercise to add this problem to the regression suite after relaxing one or

more of the above restrictions.
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Results The results are shown in Figure 2.8. CTF does seem to approximate the temperature distribution
in the wall. The computational solution monotonically converges to the analytic solution; however, the
observed order is too far from the formal order to conclude that this problem is free of code bugs. Further

analysis will be necessary and this problem is not included in the automated testing suite.
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Figure 2.8: Results for the nonlinear conduction verification problem

2.7 Pipe Boiling

In this problem, we verify that interfacial transfer properly conserves energy and doesn’t degrade the expected
order of accuracy.
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Problem Description Saturated water flows through a pipe and a specified amount of heat is added
directly to the fluid. The water is initially saturated, so all energy is added as latent heat, which increases

the amount of steam.

First, we make the following assumptions which allow the CTF energy equations to be approximated using

mixture equations: (1) there is not a significant amount of droplets, and (2) the liquid and steam are in

mechanical and thermal equilibrium. Under these conditions, we solve the mixture energy equation.
Opmhm L OpmUmhm oP

ot ar T %% (2:26)

The following assumptions further simplify the mixture equation: (1) the heat flux is small enough that P,
Pm, and u,, are constant throughout the domain, (2) the heat flux is constant in time and has a cosine shape

in space.

Ohim Ohm _ 4o . ( x) (2.27)

Pm ot + PmUm 9z =A—fsm T

The inlet energy boundary condition is set such that the flow is fully saturated water: h(x = 0) = h,. The
initial condition sets the entire domain to the same enthalpy: h(t = 0) = h,. Under these conditions, the

analytic solution for enthalpy as a function of time and space can be found.

B q,L ut —x\ z o ut—u
h(z,t) = h, + o [cos <7r 17 ) cos (ﬂ'L) + 2H [ut — z]sin <7r 5T )} (2.28)

Here, H|[¢| indicates a heavyside function:

H[¢] = 0, ¢<0 (2.29)
1, ¢>0

All parameters necessary to fully define this problem are shown in Table 2.7. Note that the inlet/initial
enthalpy are calculated using a direct call to CTF property tables.

Table 2.7: Parameters for pipe boiling verification problem

Type Parameter Symbol Value
Geometry Flow area A 0.0001 m?
Pipe length L 1m
Boundary condition Inlet mass flow Min 0.1kg/s
Inlet enthalpy ho 1630.554 kJ /kg
Outlet pressure Py 155 bar
Initial condition Initial enthalpy ho 1630.554 kJ /kg
Source term Maximum heat rate q, 10kW/m
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CTF Input There are four details which should be discussed about the modeling of this problem in CTF

1. The wall heat flux is deposited directly into the fluid using the DHFRAC input in CTF card 1.2. This
bypasses the conduction solution and calculation of the heat transfer coefficient.

2. The cosine shape of the wall heat flux is achieved using a table in Card 11.4. It has 13 digits of accuracy
and is defined at each grid location used in the verification study.

3. Wall friction is disabled using vug-param.txt and gravity is disabled using vug mult.txt.

4. Interfacial friction is many orders of magnitude larger than usual, which approximates mechanical

equilibrium between the two phases.

Even so, the analytic solution uses Homogeneous Equilibrium Model (HEM) assumptions to find the enthalpy
distribution in the pipe. This is not quite equivalent to the CTF two-fluid model used for this problem.

Therefore, we expect a small bias caused by these model mismatches.

Results The CTF results are shown in Figure 2.9. The enthalpy distribution at ¢ = 0.2s is shown for
different choices of mesh. It appears that the solution is approaching the analytic solution, but with a
small bias. This is confirmed in the convergence plot, which indicates that the CTF solution is approaching
a constant error as the mesh is refined. To account for this in the calculation of the observed order of
accuracy, a constant error model is used: € = ¢, + ch”. Using this error model, the order of accuracy is

approximately p = 0.96, which is sufficiently close to one.
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Figure 2.9: Results for the pipe boiling verification problem
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In addition to the numerical algorithm that was verified in chapter 2, CTF contains a large number of

constitutive models. These models do not display grid convergence behavior, as they account for sub-grid

modeling. Therefore, these models are tested using unit tests, which verify that a call to the model has the

expected output when the input is specified. The implementation of unit tests is an essential part of the SQA

process. A general list of all CTF constitutive models is shown in Table 3.1. Note that two-phase, boiling,

and interfacial models are currently excluded from this list, as CASL focuses on simulation of Pressurized

Water Reactors (PWRs).

constitutive models.

Remark. CTF has many unit tests that verify geometry and other bookkeeping in the code (e.g. the coupling
interface, solid and fluid mesh data structures, output processing, the iterative matriz solver). Though these

types of unit tests are a vital component of SQA, they are not included in Table 3.1 as they are not evaluating

Table 3.1: CTF constitutive models and corresponding unit tests. Some groups of constitutive models are
excluded from this table: most multiphase models, all droplet entrainment/deentrainment models, and all
noncondensible gas properties. Constitutive models are split into three groups: solid energy conservation,
single phase hydraulics, and fluid energy conservation. Red check marks (v') indicate unit tests added in
this work, black check marks (v') indicate those that already existed in the CTF testing suite.

CTF Code Capability Model Unit Tests
Energy Conservation in Solids
Fuel material properties pUo2: constant v
kuoz2: MATPRO-11 v
kuoe2: Modified NFI v
kuo2: Halden v
kuo2: Density correction v
cp,uo2: MATPRO-11 v
Zircaloy material properties Pzirc: constant v
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ko ire: MATPRO-11 v
Cp,zire: MATPRO-11 v

Dynamic gap Hygs v
Heontact v
Hud v

Single Phase Hydraulics

Equation of state h: TAPWS v
k: TAPWS v
cp: IAPWS v
w: TAPWS v
o: TAPWS v
Tsar: TAPWS v

Axial/lateral wall friction f: CTF v
f: McAdams v
f+ Zigrang-Sylvester v
f+ Churchill v
f+ User-defined v

Turbulent mixing B: Rogers and Rosehart
B: Beus

Grid TKE enhancement K/Ky: Yao, Hochreiter, and Leech

Coolant Energy Conservation

Wall heat transfer Dittus-Boelter v

Subcooled nucleate boiling Thom v
Chen v

Near-wall condensation Ahmad v
Hancox-Nicoll

Grid heat transfer enhancement Nu/Nogp: Yao, Hochreiter, and Leech v

All multiphase models, droplet models, and noncondensible gas properties are excluded from the table. The
constitutive model matrix has about 88% coverage for single phase flow connected to a conductor. Given
this outline of the generally used CTF constitutive models, there are a few notable gaps. The remainder
of this chapter describes two new unit tests that are added to fill gaps in the constitutive model matrix:
Dittus-Boelter and Chen.
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The Dittus-Boelter correlation [17] is used for the heat transfer coefficient in the CTF single-phase forced

convection regimes. The coded equation for Nusselt number is

0.023Re%8Pr%4,
Nu = { max [7.86,0.023Re’*Pr"*] ,

0,

{=0
/=1
Re=0or Pr=0.

(3.1)

Here, / indicates the variable laminar_limit, which determines if there is a lower limit to the Nusselt number.

The constitutive model is contained in its own Fortran file, Dittusboelter.£90, so the implementation of

a unit test is relatively simple. The tested conditions are outlined in Table 3.2. All possible combinations of

behavior are tested, including passing through all combinations of if/then/else statements.

Table 3.2: Unit test conditions for the Dittus-Boelter constitutive model

Test Re Pr laminar_limit Nu

1 0 1.2 0

2 10 0 0

3 0 0 0

4 106 1.2 1560.991
5 102 1.2 6.214416
6 0 1.2 .false. 0

7 106 0 .false. 0

8 0 0 .false. 0

9 106 1.2 .false. 1560.991
10 102 1.2 .false. 6.214416
11 0 1:2 .true. 0

12 106 0 .true. 0

13 0 0 .true. 0

14 106 1.2 .true. 1560.991
15 102 1.2 .true. 7.860000

3.2 Chen

The Chen correlation is one option for calculating the heat transfer coefficient in the subcooled and saturated

boiling regimes. The correlation is a combination of convection and nucleate boiling transfer [18].

qH = (hNB + hc) (Tw - Tsat)
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For this unit test, only the nucleate boiling term hyp is tested. It is calculated as follows:

k0.7960.45 0.49
hNB:o.ooms[ ! _or Pr

ATO:24 A PO-75 3.3
UO'SM(}'QQh?c54p2'24 ( )

sat sat

Here, ATgqt = Ty — Tsa is the wall superheat and AP = P (T,,) — P (Ts4:) is the difference in saturation
pressure between the wall and bulk fluid. The suppression factor is presented graphically in the original

paper, but is commonly approximated as
S = (1+0.00000253Re* ) ", (3.4)

For this unit test, we employ a textbook example [19, Example 12.1]. All quantities reported in the problem
definition are listen in Table 3.3 in the original units, as well as the British units necessary for use in CTF.

Table 3.3: Chen unit tests inputs from Todreas example [19]

Parameter Symbol SI Units British Units
Pressure P 7MPa 1015.3 psi
Quality x 0.2 0.2
Diameter D 25mm 0.082ft

Mass flow rate m 800 kg/hr 1763.7 Ibm/hr
Saturated water viscosity wr 96 x 1075 Pa*s 0.2321bm/ft /hr
Saturated vapor viscosity g 18.95 x 107%Paxs  0.0461bm/ft/hr
Saturated water specific heat Cpf 5.4 x 10® J /kg/K 1.29 btu/lbm/°F
Saturated water density Py 740 kg /m? 46.20 Ibm /ft3
Saturated steam density Pg 36.5kg/m? 2.28 Ibm /ft3
Surface tension o 18.03 x 1073 N/m  1.235 x 1073 1bf/ft
Heat of vaporization hyg 1513.6kJ /kg 650.73 btu/lbm
Saturation temperature Toat 284.64°C 544.35 °F
Wall temperature Tw 290°C 544 °F
Saturated water thermal conductivity k¢ 0.567W/m/°C 0.328 btu/°F /ft /hr

The unit test is implemented to test that hyp = 1018.5 btu/hr/ft?/°F. First, chen prep is called, then
htc_chen. Care is taken to ensure that all unit conversions are consistent, and the hi1 variable is defined

locally using the provided fluid properties.

33 CASL-U-2020-1938-000



SBCASL

CTF Verification

Remark. The heat transfer coefficient reported in [19] is 5309 W /m? /°C. If his calculations are repeated to
machine precision, the heat transfer coefficient becomes 5016.6 W /m? /°C. However, the CTF implementation
is inconsistent with the original correlation. First, the APsq: term is calculated using an approzimation (of

unknown origin):

ATA

sat

APSMZ[ 5.4042h }

Vig (Tsar + 460)
1.0306 0.0020632

= + max [0, (ATu) — 5
(10g10P)0'017 (loglOP)l'(m [0, (ATsqt) — 5

Second, the suppression factor is calculated using a different equation [20)].

[1+0.12Refa*] ™" Rese < 325
S=1{[1+042RYP] ™" 325 < Repp < 50.9 (3.6)
0.1 50.9 < Reas

When these two modifications are incorporated into Todreas’ solution, the result is 5779.4 W /m?/°C
(1018.5 btu/hr/ft2 /°F ), which is the value tested in the CTF unit test. This value is about 15% from the

hand calculated value without these modifications.
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4. Conclusion

In this work, some code verification studies were performed for the NCSU/CASL version of COBRA-TF.
New tests were incorporated into the CTF automated regression suite: isokinetic advection [6], linear con-
duction [7], friction and gravity, convection, and pipe boiling. These problems, along with the existing heat
exchanger problem, were incorporated into a common Python utility that generalizes the verification process.
The python utility will enable quick implementation and testing of any future code verification studies for
CTF. For each test, the computed solution is compared to an analytic solution as the code mesh is refined.
All code behavior for these problems is consistent with expected results, indicating a lack of code bugs in
the exercised sections of the code. In addition, two problems were examined that were not added to the
automated regression suite: water faucet [8] and nonlinear conduction. For both of these tests, the results

were promising, but future work will be necessary to troubleshoot and finalize them.

The CTF automated regression suite currently contains ten code convergence studies. Though this is an
improvement over the pre-CASL version of the code, it is far from complete. First, there are gaps to address
in Table 1.1. Some terms have no corresponding verification tests: lateral advection and turbulent mixing of
mass, lateral advection of energy, interfacial shear, and turbulent mixing of momentum. Many of these gaps
could easily be filled using modifications of the existing turbulent mixing and flow split problems. For terms
that already have corresponding tests in Table 1.1, many other problems could be added to increase the
confidence in that particular term. In addition, future work should focus on testing different combinations
of terms in the conservation equations, rather than testing individual terms. It is possible that the interplay
between two different terms could reveal a code bug that is not observed when only the individual terms are
tested.

Finally, future work will also include solution verification analyses. There are a handful of solution verification
studies relevant to CTF in the literature, but none of them are included in the CTF automated regression
suite. A more inclusive and thorough solution verification study will be necessary to quantify the numerical

error when all CTF constitutive models are enabled.

In addition to the code verification studies completed in this work, a few unit tests were added to address

gaps in the constitutive model matrix. The two models with new tests are the Dittus-Boelter and Chen
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correlations. Some models in Table 3.1, such as Beus and Rogers-Rosehart, are calculated in the middle of
very large Fortran modules. It is very difficult to individually test the behavior of these models. Therefore,
to further enable future unit testing activities, these constitutive models should be migrated to their own

Fortran functions.
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